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nth-nearest-neighbor distribution functions of an interacting fluid from the pair correlation
function: A hierarchical approach
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The paper presents a general formalism for thenth-nearest-neighbor distribution~NND! of identical inter-

acting particles in a fluid confined in an-dimensional space. Thenth-NND functions, W(n, r̄ ) ~for n

51,2,3, . . . ) in a fluid are obtained hierarchically in terms of the pair correlation function andW(n21,r̄ )
alone. The radial distribution function~RDF! profiles obtained from the molecular dynamics~MD! simulation
of Lennard-Jones~LJ! fluid is used to illustrate the results. It is demonstrated that the collective structural
information contained in the maxima and minima of the RDF profiles being resolved in terms of individual
NND functions may provide more insights about the microscopic neighborhood structure around a reference
particle in a fluid. Representative comparison between the results obtained from the formalism and the MD
simulation data shows good agreement. Apart from the quantities such asnth-NND functions and
nth-nearest-neighbor distances, the average neighbor population number is defined. These quantities are evalu-
ated for the LJ model system and interesting density dependence of the microscopic neighborhood shell
structures are discussed in terms of them. The relevance of the NND functions in various phenomena is also
pointed out.
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I. INTRODUCTION

For studying the properties of a many-body system
interacting particles, the question of fundamental importa
often is to know, how the nearest-neighbor~NN! particles
influence some reference particle of interest in the syst
An answer to this question as well as an estimate of an
portant quantity, the mean NN distance requires knowle
of the nearest-neighbor distribution~NND! functions. Micro-
scopic structural informations of a fluid are usually obtain
mainly from the pair correlation functions determined eith
through experiments@1#, or estimated from various theoret
cal schemes@2# or from computer simulation studies@3#.
However, the maxima and minima of these functions,
though collectively contain significant and quite useful stru
tural information, they cannot provide further detailed micr
scopic information directly in terms of first-, second-
higher-order neighbors distributed around a central part
in a fluid.

The question of finding NND functions has been stud
with considerable success in recent past particularly for h
sphere systems@4,5#. Appropriate derivation of equation o
states for fluids may require knowledge of such functio
@6,7#. Local field distribution for a correlated system h
been recognized to depend significantly on the NND fu
tions @8#. Various transport phenomena in heterogeneous
dia @9–11# ~e.g., electron mobility in insulating fluid@9#, dif-
fusion limited rate constants@10#, etc.! are also influenced
considerably by the immediate neighboring particle distrib
tions. NND functions~though not used directly very often!
are also likely to be of particular importance in understa
ing the nucleation processes@12# ~in homogeneous system

*Electronic address: bbiplab2juchem@hotmail.com
1063-651X/2003/67~4!/041208~11!/$20.00 67 0412
f
e

.
-
e

d
r

l-
-
-

le

d
rd

s

-
e-

-

-

and also in case of electrochemical phase formations@13#! as
well as in the spectroscopic studies@14# of quenching of
photoexcitations~by intermolecular collisions! and solvent
relaxation processes@15# ~often studied by Raman or Ray
leigh light scattering processes which arise from the fluct
tions of the system polarizabilities!. This is expected as suc
processes are mainly associated with the static and dyna
influences of the predominantly interacting neighboring s
ute and solvent particles around the reference particle
interest in an interacting fluid system. Knowledge of t
nearest-neighbor distances have also found importance i
verse other fields such as, for example, in controlling of
ramics structures@16#, in the case of nucleation of pits o
stainless steel@17#, and also in biological systems to chara
terize spatial patterns of the populations in animals, pla
and organisms@18#.

Paul Hertz@19# was first to work on the NND function~to
be referred to as thefirst NND function in this paper! and
NN distance of randomly distributed particles. Assumi
ideally random stellar distribution, Chandrasekhar@20# used
these results for studying stellar dynamics and showed
the force acting on an individual star was largely due to
NN.

The first NND functions for irreversible deposition ph
nomena at far from equilibrium@21,22# have also been stud
ied recently, which comes under the vast area of stud
named after random sequential adsorption~RSA! models
@23–28# associated with the clustering, aggregation, a
growth processes. Such studies, however, were essen
motivated by the significant amount of work undertaken
Torquato and others@4,5,29,30# in the last decade to under
stand the first NND functions under equilibrium in the fluid
Two different types of first NND functions viz., void an
particle probability densities for the many-body syste
were obtained by Torquato, Lu, and Rubinstein@4#. Interest-
©2003 The American Physical Society08-1
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ing analytical expressions for essential quantities likecondi-
tional pair distribution functions necessary for obtaining t
first NND were derived for hard sphere system, in particu
using low density expansion. However, obtaining such a
lytic expressions for interacting systems, in general, and
those having attractive interaction components, in particu
seems to be extremely difficult if not impossible.

A general formalism for obtaining the first as well a
higher-order NND functions particularly for an interactin
many-body system would thus be of considerable inter
Efforts have been made by several authors@31–33# to ad-
dress this issue in recent past. As in the first NN case@4#, the
nth-NND functions~for n.1) are also expected to be re
lated to then-particle correlation function for the many-bod
systems. In the low density limit then-particle correlation
function, r (n)( r̄ 1 , r̄ 2 , . . . ,r̄ n) ~for n.1) may be expresse
as the product of the pair correlation functions. With su
considerations Mazur@31# attempted to evaluate thenth
NND under low density condition. An approximate schem
more appropriate for low density, to take care of the e
cluded volume effect of the (n21) neighbors in the interior
on thenth NN was used and illustrated particularly in th
context of hard sphere system. However, the question
still remains to be answered is the following : How to find
general formalism for obtainingnth-NND functions~with n
51,2,3, . . . , etc.! that can be conveniently used for an inte
acting fluid system with more realistic interparticle intera
tion and is not restricted to the hard sphere system alon

With a view to answer the question posed above,
present here, a general, hierarchical formalism which un
certain reasonable approximations become quite accurat
the interacting single component fluid systems. It is sho
that, given the pair correlation function for a fluid~obtained
experimentally, theoretically, or by simulation studies!, the
nth-NND functions become easily computable for alln
~1,2,3, . . . , etc.! at larger range of density. The hierarchic
relation involves (n21)th-NND function alone unlike in
Ref. @31# where all lower-order NND functions up ton51
are required simultaneously. The formalism also provide
way to resolve the pair correlation function of the fluid
terms of all higher-order NND functions. The present a
proach bypasses difficulties encountered in other approa
in an interesting and subtle way while keeping the formali
quite general and simple with closed form hierarchical so
tions amenable for easy computation leading to signific
insights about the fluid~of interacting particles not restricte
to hard spheres alone! structure. Representative comparis
of the predictions from the present formalism with simu
tion data@obtained for Lennard-Jones~LJ! system#, as will
be discussed later, shows very encouraging results.

A brief review of then-particle distribution function is
presented in Sec. II. The formalism to obtain thenth-NND
functions for an-dimensional system of identical interactin
particles with number densityr is presented in Sec. III. Vari
ous relevant quantities derived from the formalism are a
described in the section. In Sec. IV the details of molecu
dynamics simulation and computational methodologies
presented. Results obtained for the LJ fluid are discusse
Sec. V followed by our concluding remarks in Sec. VI.
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II. n-PARTICLE DISTRIBUTION FUNCTION

Considering a system ofN identical, interacting particles
distributed isotropically in an-dimensional space of volum
V, the reduced n-particle probability density
r (n)( r̄ 1 , r̄ 2 , . . . ,r̄ n), for n,N, is defined by@2#

r (n)~ r̄ 1 , r̄ 2 , . . . ,r̄ n!

5
N!

~N2n!!ZN
E

0

V

•••E
0

V

e2bUN( r̄ 1 , r̄ 2 , . . . r̄ N)

3dn r̄ n11dn r̄ n12•••dn r̄ N . ~1!

The positional vector of thei th particle is represented asr̄ i

and then-particle correlation functiong(n)( r̄ 1 , r̄ 2 , . . . ,r̄ n) is
defined as

r (n)~ r̄ 1 , r̄ 2 , . . . ,r̄ n!5rng(n)~ r̄ 1 , r̄ 2 , . . . ,r̄ n!. ~2!

In the above equationr is the bulk number density of the
system with volumeV andZN , the configurational integral is
given by

ZN5E
0

V

•••E
0

V

e2bUN( r̄ 1 , r̄ 2 , . . . r̄ N)dn r̄ 1dn r̄ 2•••dn r̄ N . ~3!

The quantityr (n)( r̄ 1 , r̄ 2 , . . . ,r̄ n)dn r̄ 1dn r̄ 2•••dn r̄ n therefore
gives the probability of simultaneously finding the center
a particle in volume elementdn r̄ 1 about r̄ 1, the center of a
second particle in volume elementdn r̄ 2 about r̄ 2 etc. up to
finding the nth particle in volume elementdn r̄ n about r̄ n
irrespective of the positions of the rest of the (N2n) par-
ticles. For an uncorrelated system,r (n)5rn and the
n-particle correlation functiong(n)( r̄ 1 , r̄ 2 , . . . ,r̄ n) becomes
unity. Let us now, for example, consider a configuration o
hard sphere system wheren particles are placed so that a fe
among them overlap. Such overlaps in the excluded volu
regions for the hard spheres would lead toUN( r̄ 1 , r̄ 2 , . . . r̄ N)
in the integral above to be almost infinitely large and th
r (n)( r̄ 1 , r̄ 2 , . . . ,r̄ n) will be virtually zero for such a configu-
ration. Therefore, the excluded volume effect is incorpora
in the definition ofr (n)( r̄ 1 , r̄ 2 , . . . ,r̄ n) through the interpar-
ticle potentialUN( r̄ 1 , r̄ 2 , . . . r̄ N). It is also to be noted in Eq
~1! that the other (n11) to N particles, the positions o
which are integrated or averaged out, will also influence
value of r (n)( r̄ 1 , r̄ 2 , . . . ,r̄ n) in a mean field sense for th
similar reason.

III. NEIGHBOR DISTRIBUTIONS FOR INTERACTING
PARTICLES

A. nth-nearest-neighbor distribution

The nth-NND function,W(n, r̄ ) of a n-dimensional sys-
tem with N identical particles is defined such that, given
reference particle present at the origin,W(n, r̄ )dn r̄ gives the
probability of finding itsnth NN ~for n51,2,3, . . . , etc.! in
8-2
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the volume elementdn r̄ betweenr̄ and r̄ 1dn r̄ . Our defini-
tion of the NN is consistent with the earlier works on t
NND functions and it is considered that there must be o
and only onenth neighbor as pointed out in Ref.@31#. Con-
sequently, it can be shown that all the NND functions a
strictly normalized, and may therefore be specifically
ferred to as normalized NND~NNND! functions. However,
for the rest of the paper the name NND will be used inste
of NNND to keep it short and simple for convenience.

In the present formalism, it is to be noted that the nea
neighbors of a particle in the fluid are assumed never to
degenerate, that is, these neighbors are never located a
actly the same distance from the center of the particle.
generate neighbors may definitely arise, for example, a
limiting case like the close packed or jammed situation o
hard sphere system. Present formalism does not, howe
address directly to such a situation which essentially rep
sents a solid phase wherein a reference particle is expect
have m ~say! equidistant neighbors withm.1 in contact
with the particle. Use of NND functions defined above f
such a situation requires careful interpretation ofm such
neighbors. For example, in case of a fluid, if the centers om
such neighbors beyond the (n21)th neighbor of a referenc
particle becomes exactly degenerate, which is extremely
likely in a fluid, those neighbors may be arbitrarily labeled
nth neighbor, (n11)th neighbor, up to (n1m21)th neigh-
bor without any loss of generality. However, further discu
sions related to such degenerate neighbor situation is spe
cally excluded from this paper to focus mainly on the gene
nature of the formalism proposed here.

The probability,W(n, r̄ )dn r̄ , defined above is now ex
pressed as a conditional probability that out of possibleN
21) neighbor particles of a reference particle in the syste
(n21) particles remain in the interior of spherical volum
V( r̄ ) of radius r̄ around the reference particle placed at t
center, thenth particle remains within volume elementdn r̄

betweenr̄ and r̄ 1dn r̄ and the remaining (N2n21) par-
ticles occupy the rest of the volume. Therefore, the proba
ity, in general, can be written formally as

W~n, r̄ !dn r̄ 5r21E
0

V( r̄ )
dn r̄ 1•••E

0

V( r̄ )
dn r̄ n21

3H E
V8( r̄ )

V

dn r̄ n11•••E
V8( r̄ )

V

dn r̄ N21

3r (N)~ r̄ 1 , . . . r̄ n21 , r̄ , r̄ n11••• r̄ N21!dn r̄ J . ~4!

A particle being chosen at the origin for a homogeneo
system is reflected through the factorr21 and all the dis-
tances are measured with respect to its position at the or
The lower limit of V8( r̄ ) ensures the exclusion of volume
V( r̄ ) anddn r̄ from being occupied by any of the (n11) to
(N21) particles. Obviously, any function of interest for
bulk system of interacting particles involvingN-particle cor-
relation function is not of much use without further simp
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fication. In a similar spirit as the earlier approaches for
first NND @19,20#, the condition of excluding thenth and
higher-order neighbors from the interior of volumeV( r̄ ) is
solely taken care of by introducingW(n, r̄ ) itself in the right-
hand side of Eq.~4! and the equation forW(n, r̄ ) is rewritten
as

W~n, r̄ !dn r̄

5S 12E
0

V( r̄ )
W~n,t̄ !dnt̄ D

3H Fr21E
0

V( r̄ )
•••E

0

V( r̄ )
r (n11)~ r̄ 1r̄ 2••• r̄ n21 , r̄ !

3dn r̄ 1dn r̄ 2•••dn r̄ n21Gdn r̄ J . ~5!

The first factor in the above expression, which introduc
nonlinearity explicitly into the problem, by definition ensure
the absence of thenth neighbor@and thus rest of the (N
2n21) higher-order neighbors also# within the spherical
volume V( r̄ ) around the central particle. The second te
now gives the conditional probability of finding the cente
of the particles 1 to (n21) within the spherical volume
V( r̄ ) around a reference particle at the origin and thenth
particle within the volume elementdn r̄ betweenr̄ and r̄

1dn r̄ , irrespective of the positions of the rest of the (N2n
21) particles. Here we have ignored any explicit depe
dence of the second factor on the spatial positions of high
order neighbors and the (n11)-particle correlation function
is influenced by the higher neighbors in a mean field sen
For the spherically symmetric homogeneous system w
bulk number densityr and with r (2)( r̄ )5r2g(2)( r̄ ), from
Eq. ~5! the expression for the first NND,W(1,r̄ ) becomes

W~1,r̄ !dn r̄ 5S 12E
0

V( r̄ )
W~1,t̄ !dnt̄ D $rg(2)~ r̄ !dn r̄ %. ~6!

The factorrg(2)( r̄ ) here may be also referred to as the loc
density @2#. The above equation for the first NND can b
exactly solved and will be discussed later in Sec. III B.

For higher-order neighbors~i.e., n.1), finding a closed
form exact solution even for Eq.~5! for an interacting system
becomes very complicated for involving many particle co
relation functions. We therefore reformulate the equation i
an exactly solvable hierarchical equation forW(n, r̄ ),
wherein the second factor in Eq.~5! is further rewritten, in a
similar spirit as before, in terms of the (n21)th NND,
W(n21,r̄ ), and the pair correlation function. In the fina
proposition of the present formalism, the probability that t
nth NN to a reference particle kept at origin, occurs betwe
r̄ and r̄ 1dn r̄ , is thus equated with the product of three fa
tors as follows,
8-3
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BIPLAB BHATTACHARJEE PHYSICAL REVIEW E67, 041208 ~2003!
W~n, r̄ !dn r̄ 5S 12E
0

V( r̄ )
W~n,t̄ !dnt̄ D

3S E
0

V( r̄ )
W~n21,t̄ !dnt̄ D ~r21r (2)~ r̄ !dn r̄ !.

~7!

In the above equation, the first factor ensures that nonth
neighbor exists interior tor̄ @having volumeV( r̄ )], and the
second factor ensures that the (n21)th neighbor~and thus
all lower order neighbors! does exist interior tor̄ . In the third
factor, the termr21r (2)( r̄ )dn r̄ , is used as the probability o
finding a particle~which eventually becomes thenth neigh-
bor! within a volume element ofdn r̄ in a n-dimensional
space at a distancer̄ from the central reference particle irre
spective of the positions of the rest of the particles.

In the present formalism, the excluded volume effect g
incorporated hierarchically through the functionr (2)( r̄ ),
which would be replaced byr2g(2)( r̄ ). g(2)( r̄ ) being the pair
correlation function, its oscillating nature as obtained eit
from experiments or from theory, or from simulation studi
of interacting fluid systems, already reflects the exclud
volume effect due to the finite size of the particles and th
interactions in the fluid. Therefore, althoughm-particle cor-
relation function for 1<m<(n21) is not explicitly utilized
at the outset in the formalism of thenth-NN distribution, the
higher-order correlation gets incorporated hierarchically i
the formalism through the nontrivial nonlinear dependen
of W(n, r̄ ) on g(2)( r̄ ) andW(n21,r̄ ) alone. The basic inpu
being the pair correlation functiong(2)( r̄ ) which gets suit-
ably modified as the density or the temperature changes
system, the proposed formalism for obtainingW(n, r̄ ) hier-
archically is expected to be very accurate for thermodyna
systems at arbitrary densities and temperatures. For thi
erarchical nature, this approach is likely to give rise to a v
good upper bound estimate for thenth-NND functions as
g(2)( r̄ ) is influenced by the many-body effect in a mean fie
sense~cf. Sec. II!. The representative comparison of the r
sults with the simulation data also show good agreemen

For a homogeneous system of spherically symme
identical particles, the pair correlation function depends o
on the magnitude of the interparticle separation,r. The su-
perscript ofg(2)( r̄ ) and the bar overr will be ignored for
notational simplicity in the subsequent discussions and it
also be referred to as the radial distribution function~RDF!.
By replacing the volume elementdn r̄ by 4pr 2dr for the
three-dimensional system, Eq.~7! becomes

W~n,r !5F12E
0

r

W~n,t!4pt2dtG
3F E

0

r

W~n21,t!4pt2dtGrg~r !. ~8!

From the above equation we derive
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dr S W~n,r !

@F~n21,r !#rg~r ! D52S W~n,r !

@F~n21,r !#rg~r ! D
3F~n21,r !rg~r !4pr 2, ~9!

where

F~n,l!5E
0

l

W~n,t!4pt2dt. ~10!

Hence, on integration Eq.~9! gives

W~n,r !5rg~r !F~n21,r !

3expF2E
0

r

rg~t!F~n21,t!4pt2dtG , ~11!

since according to Eq.~8!, the term within the bracket in the
left-hand side of Eq.~9! becomes unity asr→0. Equation
~11! represents the exact hierarchical solution of thenth
NND in terms of (n21)th NND and theg(r ). For the first
NND the solution becomes even simpler as shown below

B. First nearest-neighbor distribution

The probability that the NN~to be referred to as the firs
NN! to a particle, kept at origin, occurs betweenr̄ and r̄

1dn r̄ is denoted byW(1,r̄ )dn r̄ . This probability must be
clearly equal to the probability that no particle exists inter
to r̄ times the probability that a particle does exist betweer̄

and r̄ 1dn r̄ . Accordingly, for spherically symmetric par
ticles, W(1,r ) must satisfy the relation, as can also be o
tained from Eq.~6!,

W~1,r !5S 12E
0

r

W~1,t!4pt2dt D rg~r !. ~12!

From the above equation one can derive

d

dr S W~1,r !

rg~r ! D52S W~1,r !

rg~r ! D rg~r !4pr 2. ~13!

Hence, on integrating,

W~1,r !5rg~r ! expF2E
0

r

rg~t!4pt2dtG , ~14!

since according to Eq.~12!, W(1,r )→rg(r ) asr→0. There-
fore, Eq.~14! gives the expression for the first NND for a
interacting fluid. Representative comparison between this
sult and the simulation data for Lennard-Jones fluid sho
very good agreement and will be discussed later. For s
tially uncorrelated systemsg(r ) being unity, Eq.~14! leads
to Hertz’s solution@19,20# for Poisson distributed points
~also for randomly distributed fully penetrable spheres! with
number densityr. Equation~14! for the first NND function
is also similar as that obtained in Refs.@4,31# for hard
spheres except that instead of 4pr 2rg(r ) they involvedcon-
ditional pair distribution function,G(r). Use of analytic ex-
pressions of such functions obtained for hard sphere syst
8-4
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@4,29# under various approximation schemes led to v
good agreement with the Monte Carlo simulation results
the first NND functions. To the best of our knowledge, ho
ever, we have not come across any comparative stud
show how the results of first NND function obtained usi
appropriately the RDF obtained from the computer simu
tion of hard sphere model system differs from that obtain
using analytical expression for theconditionalpair distribu-
tion function. Preliminary studies@34# using Percus-Yevick
RDF for hard sphere model, which is not quite accurate
higher densities, calculatedW(1,r ) according to Eq.~14!
matched quite well particularly at lower densities with t
results of Torquato and Lee@29# using theconditional pair
distribution function expression obtained from the Carnah
Sterling approximation. We intend to undertake shortly su
comparative studies for hard sphere model system by ob
ing reliable RDF functions at arbitrary densities using m
lecular dynamics simulation.

In the present formalism Eqs.~11! and~14! therefore give
us the complete solution of thenth NND in terms of hierar-
chy of equations. It is also to be noted that Eq.~14! can be
obtained from Eq.~11! by substitutingF(0,r )51 in it, re-
flecting the presence of the central reference particle. In v
of this, Eq. ~11! may be considered to give the comple
solution of the problem~for all n) in the present formalism
The first NND,W(1,r ) is obtained from Eq.~14! using the
knowledge ofg(r ) obtained either from experimental, the
retical, or computer simulation studies. All othernth-NND
functions, W(n,r ) for n52,3,4, . . . ,(N21) are obtained
from the knowledge ofg(r ) and only the numerically al-
ready obtainableW(n21,r ) function alone instead of requir
ing simultaneously all theW(m,r ) functions with 1<m
<(n21) as required according to the earlier work of Maz
@31#.

C. Normalization check for W„n,r …

The probability of finding thenth NN within the sphere of
radius r around a particle kept at the center is given
F(n,r ) @cf. Eq. ~10!#. According to the definition ofW(n,r ),
the function F(n,r ) should become unity for anyn<(N
21) asr→`. This can be tested by evaluating the followin
integral,

I 5E
0

`

W~n,r !4pr 2dr. ~15!

Above integral can be rewritten as

I 5E
0

`

2S d

dr
@Y~n21,r !# Ddr,

which gives

I 52Y~n21,r !u0
` , ~16!

where

Y~n21,r !5expF2E
0

r

rg~t!F~n21,t!4pt2dtG . ~17!
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The integral in the exponent above, in the thermodynam
limit, will be infinitely large asr→`, sinceg(t) and F(n
21,t) have non-negative finite values in the ranget.0.
Thus, from Eq.~16!,

I 52e2`1e051.

The above result indicates, as mentioned earlier, that
nth-NND functions are normalized for all values ofn
51,2,3, . . . ,(N21). Also note that havingt as the upper
limit instead of infinity, from Eq.~15! I 5F(n,t), and Eq.
~16! leads toF(n,t)512Y(n21,t), relating F(n,t) with
F(n21,t).

D. Averagenth-nearest-neighbor distance

The general definition for the averagenth-NN distance is
as follows,

^r n&5E
0

`

rW~n,r !4pr 2dr, ~18!

which can be rewritten as

^r n&5E
0

`

2r H d

dr
@Y~n21,r !#J dr, ~19!

whereY(n21,r ) is defined in Eq.~17!. By doing integration
by parts we get

^r n&52rY~n21,r !u0
`1E

0

`

Y~n21,r !dr. ~20!

The first term in the above equation becomes zero as in
thermodynamic limit the exponent inY(n21,r ) @cf. Eq.
~17!# will diverge asr→`. Therefore, we obtain the fina
expression as

^r n&5E
0

`

Y~n21,r !dr. ~21!

The above expression shows that the averagenth-NN dis-
tance completely depends on the (n21)th-NND function
and the RDFg(r ).

The difference between the successive mean nea
neighbor distances can now be written as

^r n11&2^r n&5E
0

`

@Y~n,r !2Y~n21,r !#dr

5E
0

`

drY~n,r !H 12expF2E
0

r

rg~t!

3@F~n21,t!2F~n,t!#4pt2dtG J .

Considering the definitions of thenth-NND functions
@W(n,r )# and F(n,r ) @cf. Eq. ~10!#, it is expected that the
probability of finding (n21) neighbors would be greate
than findingn neighbors within a radial distancer around a
8-5
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reference particle for an interacting system. Thus one
argue~also may be easily confirmed forn51,2,3, . . . , etc.,
from the relation ofF(n,t) with F(n21,t) mentioned in
Sec. III C and F(0,r )51, mentioned in Sec. III B! that
@F(n21,r )2F(n,r )#>0 ~equality corresponds to the de
generate situation, not considered here! for any values ofn at
any value ofr. Y(n,r ) being always a positive quantity@cf.
Eq. ~17!#, this inequality thus suggests from the above re
tion that @^r n11&2^r n&#>0 for any value ofn. This nonde-
creasing as well as nonlinear~particularly pronounced a
higher densities! dependence of the meannth-NN distances
on n is also demonstrated in the results obtained from
simulation data~cf. Sec. V!.

E. Average neighbor population in the spherical
neighborhood

It is to be noted thatF(n,r ) as defined in Eq.~10!, gives
the probability of finding central particles havingn neighbors
within the spheres of radiusr around them. So the number o
particles havingnth NN within spheres of radiusr around
them isNF(n,r ), whereN is the total number of particles in
the bulk system. The fraction of particles havingn neighbors
within spheres of radius r around them is thus
@F(n,r )/S i 51

N21F( i ,r )#. The average neighbor populatio
^nr&, i.e., the average number of neighbors likely to
present within a sphere of radiusr around any particle taken
as the central particle in a fluid is thus expressed for the
time as the following quantity,

^nr&5 (
n51

N21 n•F~n,r !

(
i 51

N21

F~ i ,r !

. ~22!

Density dependence of this quantity and its relevance
ticularly in the context of neighborhood shell structures w
be discussed for the LJ fluid in Sec. V.

IV. SIMULATION AND COMPUTATIONAL DETAILS

For some preliminary representative comparison betw
the results obtained from the present formalism and that f
the simulation directly, molecular dynamics~MD! simulation
@3# of spherically symmetric interacting model system w
undertaken. All MD simulation studies reported here ha
been carried out in the microcanonical ensemble with cu
boundary conditions. The particle-particle interaction w
modeled as Lennard-Jones~LJ! potential,u(r )54e@(s/r )12

2(s/r )6#. The LJ parameterse ands corresponding to ar-
gon (e5120kB and s53.41A) were used and the particl
mass was taken to be 39.95~Ar!. A (53535) cell was
considered for each of the simulation run involving 500 p
ticles. Time steps of 10 fs were used for integration. Integ
tions in the simulation were carried out using the veloc
verlet scheme@3#. Simulations were carried out for a tota
period of 500 ps. The equilibrium periods were of 200
during which the velocities were scaled to obtain the des
temperature. The densities were varied by appropria
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modifying the size of the unit cells. The desired temperatu
were also suitably chosen so that the average tempera
during the MD runs for the systems at different densit
were comparable and at lower than the room temperatur

For the computation of the relevant quantities, the res
of the preceding section were converted into correspond
nondimensional forms. The probability of finding thenth NN
within a spherical shell volume of 4pr 2dr around a particle
at the origin is given byW(n,r )34pr 2dr. In terms of a
nondimensional variablex(5r /s), this probability is rede-
fined as P(n,x)dx with P(n,x)5s3W(n,xs)4px2. The
P(n,x) functions are obtained from the expression
W(n,r ) in Eq. ~11! as follows,

P~n,x!5r* 4px2g~x!F~n21,x!

3expF2E
0

x

r* g~t!F~n21,t!4pt2dtG ~23!

with r* 5rs3 and the integratednth-NND function@cf. Eq.
~10!#,

F~n,x!5E
0

x

P~n,t!dt. ~24!

Results are discussed in the following section in terms
the nth-NND functions,P(n,x) calculated according to Eq
~23!. The probability of finding thenth NN within the spheri-
cal volume of radiusxs around a central reference particle
computed according to Eq.~24!. The averagenth-NN dis-
tances are computed by rewriting Eq.~18! as

^Xn&5E
0

`

xP~n,x!dx ~25!

so that ^r n&5^Xn&s. The average neighbor populatio
within a sphere of radiusxs around an arbitrary referenc
particle @cf. Eq. ~22!# is evaluated as

^nx&5 (
n51

N21 n•F~n,x!

(
i 51

N21

F~ i ,x!

. ~26!

For some representative comparison theP(n,x) values
were also determined directly from the simulation data d
ing MD run as follows,

P~n,x!D5
1

t (
i 51

t
Ns,n~x,i !

Ns~ i !
. ~27!

In the above,t is the number of MD time steps andNs( i ) is
the number of particles sampled at thei th MD time step.
Among theseNs( i ) particles,Ns,n(x,i ) is the number of such
sampled particles in thei th MD time step, each of which
having (n21) neighbors within a sphere of radiusx around
them also has at least one or more particles present with
spherical shell of thicknessD between the spheres of radiu
x andx1D. In our studies,Ns( i ) is same as the total numbe
8-6
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of particles used for the simulation. To get better accurac
the calculation ofP(n,x), t and Ns( i ) must be very large
and D must be chosen very small. For our estimation
P(n,x) we have chosenD50.0025.

For the discussion in the following section, the releva
quantities in the above equations were computed using
extended Simpson’s rule@35# for numerical integrations and
the cubic spline interpolation method@36#.

V. DISCUSSION

It is understood that the RDF profiles contain considera
amount of microscopic information according to the classi
theory of fluid. It is also of great advantage that these profi
are obtainable experimentally, theoretically, or by suita
computer simulation studies. The RDF profiles obtain
from the MD simulation of the LJ fluid at two different den
sities having comparable system temperatures are show
Fig. 1. In both the cases the sharp rise ofg(xs) before
x(5r /s)51.0 indicates softness of the LJ fluid. At less
density the peak positions of theg(r ) profiles appears a
higher values ofx and the peaks are broadened reflecting
an average sense, more diffused structures~‘‘neighborhood
shells’’! around the particles in the fluid. However, furth
detailed insight in terms of nearest-neighbors around a re
ence particle is not very apparent from these RDF profi
For example, from the RDF profiles, it is virtually impossib
to comment on the most probable position of the first NN
a central reference particle in a fluid. This position, in ge
eral, should not be associated with the first maxima of
RDF profiles as will be demonstrated below. An importa
emphasis of the present work is therefore, in a way, to
solve the full microscopic structural information content
the RDF profiles into individual NND functions.

Before discussing thenth-NND function, P(n,x) in de-
tail, some representative comparisons between these f
tions obtained according to the proposed formalism@cf. Eq.
~23!# and the simulation studies@cf. Eq. ~27!# are shown in
Figs. 2~a! and 2~b!. Such analysis of higher-order neighbo
for an interacting system has been done here. Very g

FIG. 1. Radial distribution function~RDF! profiles g(xs) ob-
tained from the MD simulation of Lennard-Jones fluid against
dial distancex(5r /s) at the densitiesr* 50.8564~a!, 0.6422~b! at
comparable temperaturesT(K) 598.076262.3927~a! and 98.5407
62.2084~b!.
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agreements between the computedP(n,x) profiles and the
simulation results~shown forn51,2,3) at both the densitie
studied is indicative of the reasonable assumptions inco
rated into our present formalism. The deviations between
computedP(n,x) and the simulation data for highern val-
ues, in particular, are not completely unexpected and ma
due to two reasons. One obvious reason being that such
viations at highern as well as small deviations aroun
maxima, for example, forn53 in Figs. 2~a! and 2~b! are
likely to narrow down with the simulation results obtaine
from even larger system size and with longer MD simulati
run with smallerD values@cf. Eq. ~27!#. An elaborate simu-
lation study on an even larger system, particularly to stu
the hard sphere neighbor distributions is intended in n
future to have better insights into such neighbor distribut
problems. The other possible reason for the deviations
higher n values may be associated with the assumptions
the formalism leading to a certain degree of over estimat
and an attempt for further improvement of the formalism
being looked into. However, considering that the RDF of t
interacting system is the only input into the proposed form
ism, the results reported here are also quite useful due to
simplicity of the approach and the agreement in the rep
sentative comparison between the formalism results and

-

FIG. 2. ~a!,~b! Representative comparison ofnth-NND func-
tions, P(n,x) vs x(5r /s) curves~solid lines! with corresponding
simulation data~symbols! for n51,2,3 at densitiesr* 50.8564~a!,
0.6422~b! at corresponding comparable temperatures as in Fig
The corresponding RDFg(xs) shifted by constant values@10.0 for
2~a! and 8.0 for 2~b!# are also shown.
8-7
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BIPLAB BHATTACHARJEE PHYSICAL REVIEW E67, 041208 ~2003!
simulation data as seen in Figs. 2~a! and 2~b!.
The rest of the discussions in this section will be based

the results for the LJ fluid computed from theP(n,x) pro-
files obtained following Eq.~23!. In Fig. 3, at the highes
density considered, theP(n,x) functions for n51 –50 are
plotted along with the RDF,g(r ) shifted vertically by a con-
stant amount for suitable visual comparison. Conventiona
the first peak of the RDF is associated with the first neigh
shell for any reference particle in a fluid and the first shel
considered to be extended up to the first minimum of
RDF. TheP(n,x) plots, however, indicate that the maximu
of the first NN appears at a distance closer than the first p
position of the corresponding RDF. This indicates that
almost all the particles their first NN remains at a clos
proximity than the distance at which the first peak ofg(r )
appears. The first minimum of the RDF appears at nearr
51.5s for the densityr* 50.8564 ~cf. Fig. 1!. It is seen
from theP(n,x) plots in the figure that several neighbors a
present within that range and there theP(n,x) is maximum
for n527. From simple spatial arrangement considerati
this suggests that the conventional first neighbor shel
likely to consist of more than the immediate neighbors. Su
neighbors are therefore not equivalent in terms of their pr
imities with respect to the central reference particles and t
would behave differently physicochemically compared
for example, the first NN. The figure also shows that
around r 51.1s, while many particles are surrounded b
eight or less neighbors there is virtually no particle s
rounded by 12 or more neighbors. The significantly larg
overlap betweenP(1,x) andP(8,x) as compared to that be
tweenP(1,x) andP(12,x), at the highest density considere
is also possibly an indication of the fact, as the voron
analysis suggested earlier@37#, that the bcc clusters are th
probable nuclei for the crystallization of the soft spheres. T
sharper and more symmetricP(n,x) profiles having smaller
width for smallern ~5, say! are because of the neighbors
the immediate vicinity of the central particles which a
more strongly held. The smaller peak height with larg
width of the P(n,x) profiles for intermediate values ofn
indicate that the population of such neighbors are also r
tively smaller and distributed over a larger range due to m

FIG. 3. nth-NND functions,P(n,x) of the Lennard-Jones fluid
plotted against radial distancex(5r /s) at densityr* 50.8564 and
temperatureT(K)598.076260.2.3927 forn51 –50. Correspond-
ing RDF g(xs) shifted by a constant value 11.0, is also shown.
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pronounced excluded volume effect in the region wh
minima of g(r ) occurs.

The relative comparison of theP(n,x) profiles at two
densities shown in Fig. 4 indicate the dependence of
neighborhood structures on the densities at comparable
peratures. It is clear that compared to theg(xs) plots as
shown in the same figure, remarkable differences in
P(n,x) profiles forn51 –5 leads to better insights about th
neighborhood structures in a fluid. The peaks at lower d
sity are smaller in height, relatively wider and shifted
higher values ofx indicating relatively more diffused neigh
borhood structures. Smaller separations of the succes
P(n,x) peaks at the larger density reflect more comp
neighborhood.

In Fig. 5, the probabilities of finding thenth NN within a
sphere of radiusr (5xs), is plotted in terms of the inte-
gratednth-NND functions,F(n,x) @cf. Eq. ~24!# for two
different densities. For both the densities,F(n,x)→1 at
higher values ofx for all n indicates strict normalization

FIG. 4. Relative comparison ofnth-NND functions, P(n,x)
plotted against radial distancex(5r /s) for n51 –5 at densities
r* 50.8564~solid lines! andr* 50.6422~dotted lines! with respec-
tive temperatures as in Fig. 1. Corresponding RDF,g(xs) profiles,
shifted by a constant value 10.0 are also shown.

FIG. 5. Integratednth-NND functions,F(n,x) plotted against
radial distancex(5r /s) for n51 –10 at densitiesr* 50.8564
~solid lines! andr* 50.6422~dotted lines! at respective comparabl
temperatures as in Fig. 1.
8-8
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property. TheF(n,x) curves reaching unity more slowly fo
the lower density reflect relatively more diffused neighb
structures.

The averagenth-NN distances,̂ Xn& obtained according
to Eq. ~25!, for different values ofn ~showing their nonde-
creasing dependence onn) at the two densities considere
are shown in Fig. 6. The points for the lower density show
almost linear dependence withn in the initial range indicat-
ing that the successive neighbors are almost evenly dis
uted. The dependence is relatively nonlinear for the hig
density. This nonlinearity is likely to be more pronounc
with further increase in density. More rigid structuredness
the immediate vicinity of any central particle is reflected
the slower variation of thêXn& for smallern values at the
higher density. At further higher densities, close to the clo
packing density, this region is likely to be like a plate
indicating almost equidistant and nearly equivalent nei
bors of the first shell in the immediate vicinity of any partic
taken as the central reference particle.

These points are further illustrated in terms of anot
new quantity, the average neighbor population^nx& around
an arbitrary reference particle, calculated according to
~26!. At x→0 limit both the numerator and the denominat
of Eq. ~26! becomes zero giving rise to the limiting value
^nx& to be unity. So the deviation of̂nx& from unity, i.e.,
^nx&21 indicates the average neighbor population. The p
of ^nx& against the nondimensional radial distancex is shown
in Fig. 7. Figure 7~a! at the higher density is significantl
nonlinear indicating prominent neighborhood shell structu
For example, the point at which the slope significantly d
creases~nearx51.32 and̂ nx&57.4), shown approximately
as p on Fig. 7~a! qualitatively indicates that the neighbo
within x<1.32 ~say! would behave differently physico
chemically than those atx.1.32. The value of̂ nx& at the
point indicates that most particles will be surrounded by
to seven neighbors within that spherical radius ofr
51.32s. The first inflexion point observed in Fig. 7~a! for
the higher density would be even sharper at further hig
density and may possibly be associated with the first ne

FIG. 6. Averagenth-NN distance plotted againstn for two den-
sities r* 50.8564~squares! and r* 50.6422~triangles! at respec-
tive comparable temperatures as in Fig. 1.
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bor shell. Figure 7~b!, however, shows almost linear depe
dence indicating that the neighbors around any central
ticle are evenly distributed. The slope change at the poinq
occurs at higher value ofx and is also not so sharp indicatin
that the neighborhood shell structure is more diffused at
lesser densities. From these considerations,^nx& may be a
more suitable quantity for defining the shell boundar
which will be prominent particularly at higher densities.

VI. CONCLUSION

In the general formalism presented here, thenth-NND
function of an isotropic interacting fluid is expressed in ter
of pair correlation function and the (n21)th-NND function
alone. The resulting nonlinear relationship introduc
n-particle correlations into the problem in a hierarchic
manner. Similar approach may be of importance in ot
areas of interest too for handling higher-order correlatio
These NND functions apart from providing interesting d
tailed insights about the neighborhood structure~not other-
wise directly available! are also likely to make one apprec
ate the RDF profiles of a fluid even better from microsco
structural point of view. The radial distribution functions b
ing relatively easily obtainable either from experiments, th
oretical or simulation studies, the present formalism provid
a quite general closed form solution for the neighbor fun
tions which could be computed without much difficulties f
interacting systems, and is likely to work for systems at
bitrary densities and temperatures.

The comparative studies of thenth-NND functions ob-
tained from the formalism match very well with the MD
simulation data, particularly for smaller values ofn indicat-
ing the approximations associated with the present formal
to be quite reasonable. From the results analyzed for
LJ-fluid system, it is observed that significant details of t
neighborhood structures are revealed by the neighbor di
bution functions which are not directly obtainable from t

FIG. 7. Average NN population within a sphere around a cen
particle plotted against the radial distancex(5r /s) at densities
r* 50.8564~a! andr* 50.6422~b! at respective comparable tem
peratures as in Fig. 1. The points around which the slope of
curves decreases is indicated byp @for ~a!# andq @for ~b!#.
8-9
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RDF profiles alone. For example, relevant information ab
the microstructures may be obtained in terms of the aver
nth-NN distances. These quantities apart from demonstra
their nondecreasing dependence onn also show significant
nonlinear variation withn particularly at higher densities. A
newly defined quantity, the average neighbor populat
number within a sphere of radiusr around a central particle
leads to important insights about the neighborhood~‘‘shell’’ !
structures around a reference particle in a fluid, as discu
in the preceding section.

We intend to undertake extensive MD simulation study
particularly hard spheres and other interacting model syst
with even larger system size in near future to study the
malism further. Extension of the present work for the mu
component systems as well as incorporating time dep
dence into the formalism would be our next aim. The lo
field distributions around a reference particle in a fluid be
significantly influenced by the NN particles, appropriate u
.
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nd
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m
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of the NND functions may be of significant importance f
better understanding of various phenomena involving nu
ation and growth processes as well as in the formulation
dynamic processes associated with the quenching~by neigh-
boring particle collision! and solvent relaxation of photoex
cited molecules in a fluid.

ACKNOWLEDGMENTS

The author is greatly indebted to S. K. Rangarajan
introducing him to the field of theoretical research and
valuable comments on the problem. The author sincerely
knowledges S. Yashonath for introducing him to the field
computer simulation studies and for immense support.
nancial support from the Department of Science and Te
nology, New Delhi, India~Grant No. HR/OY/C-05/96! and
the DSA program of the Department of Chemistry, Jadav
University is gratefully acknowledged.
ta

ys.

s.

r

@1# A. Botti, F. Bruni, A. Isopo, M.A. Ricci, and A.K. Soper, J
Chem. Phys.117, 6196 ~2002!; T. Yamaguchi, C.J. Benmore
and A.K. Soper,ibid. 112, 8976~2000!; T. Pfleiderer, I. Wald-
ner, H. Bertagnolli, P.K. Todheide, B. Kirchner, H. Huber, a
H.E. Fisher,ibid. 111, 2641~1999!.

@2# D.A. McQuarrie,Statistical Mechanics~Harper and Row, New
York, 1976!; J.P. Hansen and I.R. McDonald,Theory of Simple
Liquids ~Academic Press, New York, 1976!.

@3# M.P. Allen and D.J. Tildesley,Computer Simulation of Liquids
~Clarendon Press, Oxford, 1987!; D. Frenkel and B. Smit,Un-
derstanding Molecular Simulation-From Algorithms to App
cations~Academic Press, San Diego, 1996!; J.M. Haile,Mo-
lecular Dynamics Simulation-Elementary Methods~Wiley,
New York, 1992!.

@4# S. Torquato, B. Lu, and J. Rubinstein, Phys. Rev. A41, 2059
~1990!.

@5# S. Torquato, Phys. Rev. Lett.74, 2156 ~1995!; S. Torquato,
Phys. Rev. E51, 3170~1995!.

@6# H. Reiss and A.D. Hammerich, J. Phys. Chem.90, 6252
~1986!.

@7# J.R. MacDonald, J. Phys. Chem.96, 3861~1992!.
@8# S.H. Simon, V. Dobrosavljevic, and R.M. Stratt, J. Che

Phys.93, 2640~1990!.
@9# S.H. Simon, V. Dobrosavljevic, and R.M. Stratt, J. Che

Phys.94, 7360~1991!.
@10# S. Torquato and J. Rubinstein, J. Chem. Phys.90, 1644~1989!.
@11# J. Rubinstein and S. Torquato, J. Fluid Mech.206, 25 ~1989!.
@12# F.F. Abraham,Homogeneous Nucleation Theory~Academic

Press, New York, 1974!; P.G. Benedetti,Metastable Liquids
~Princeton University Press, Princeton, 1996!; R. Radhakrish-
nan and B.L. Trout, J. Chem. Phys.117, 1786 ~2002!; P.A.
Thiel and J.W. Evans, J. Phys. Chem. B104, 1663~2000!.

@13# A. Serruya, J. Mostany, and B. Scharifker, J. Chem. Soc., F
aday Trans.89, 255 ~1993!; R.C. Salvarezza, A.J. Arvia, an
A. Milchev, Electrochim. Acta35, 289 ~1990!; R. de Levie,
Adv. Electrochem. Electrochem. Eng.13, 125 ~1984!.

@14# Collision and Interaction Induced Spectroscopy, edited by
.

.

r-

G.C. Tabisz and M.N. Neuman~Kluwer, Dordrecht, 1995!; N.
Turro, Modern Molecular Photochemistry ~Benjamin/
Cummings, Menlo Park, California, 1978!.

@15# B. Bagchi and A. Chandra, Adv. Chem. Phys.80, 1 ~1991!;
Phenomena Induced by Intermolecular Interactions, edited by
G. Birnbaum~Plenum, New York, 1985!.

@16# I.A. Aksay, Ceram. Int.17, 267 ~1991!.
@17# R.C. Salvarezza, A.J. Arvia, and A. Milchev, Electrochim. Ac

35, 289 ~1990!.
@18# P.J. Clark and F.C. Evans, Ecology35, 445 ~1954!; J.G. Mc-

Nally and E.C. Cox, Development105, 323 ~1989!.
@19# P. Hertz, Math. Ann.67, 387 ~1909!.
@20# S. Chandrasekhar, Rev. Mod. Phys.15, 1 ~1943!.
@21# M.D. Rintoul, S. Torquato, and G. Tarjus, Phys. Rev. E53, 450

~1995!.
@22# P. Viot, P.R. Van Tassel, and J. Talbot, Phys. Rev. E57, 1661

~1998!.
@23# J.W. Evans, Rev. Mod. Phys.65, 1281 ~1993!; J. Talbot, G.

Tarjus, P.R. Van Tassel, and P. Viot, Colloids Surf., A165, 287
~2000!.

@24# M.K. Hassan, J. Schimidt, B. Blasius, and J. Kurths, Ph
Rev. E65, 045103~2002!.

@25# J.J. Gonzalez, P.C. Hemmer, and J.S. Hoye, Chem. Phy3,
228 ~1974!.

@26# G. Tarjus, P. Schaaf, and J. Talbot, Stat. Phys.63, 167 ~1991!.
@27# P. Viot, G. Tarjus, S.M. Ricci, and J. Talbot, J. Chem. Phys.97,

5212 ~1992!.
@28# M.C. Bartelt and V. Privman, Phys. Rev. A44, R2227~1991!;

B. Bhattacharjee and S.K. Rangarajan, J. Chem. Phys.99,
8897 ~1993!.

@29# S. Torquato and S.B. Lee, Physica A167, 361 ~1990!.
@30# J. Rubinstein and S. Torquato, J. Chem. Phys.88, 6372~1988!.
@31# S. Mazur, J. Chem. Phys.97, 9276~1992!.
@32# U.F. Edgal, J. Chem. Phys.94, 8191~1991!.
@33# N.L. Lavrik and V.P. Voloshin, J. Chem. Phys.114, 9489

~2001!; A. Milchev, ibid. 100, 5160~1994!.
@34# P. Sur, M. Sc.~Physical Chemistry! project report, Jadavpu
8-10



nd
2

nth-NEAREST-NEIGHBOR DISTRIBUTION . . . PHYSICAL REVIEW E67, 041208 ~2003!
University, 2002 under supervision of the present author~un-
published!.

@35# Handbook of Mathematical Functions, edited by M.
Abramowitz and I.A. Stegun~Dover Publications, New York,
1970!.
04120
@36# Numerical Recipes in Fortran–The Art of Scientific Comput-
ing, edited by W.H. Press, S.A. Teukolsky, W.T. Vetterling, a
B.P. Flannery~Cambridge University Press, Cambridge, 199!.

@37# J.N. Cape, J.L. Finney, and L.V. Woodcock, J. Chem. Phys.75,
2366 ~1981!.
8-11


