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The paper presents a general formalism for ritlenearest-neighbor distributidfNND) of identical inter-
acting particles in a fluid confined in a-dimensional space. Thath-NND functions,W(n,r_) (for n
=1,2,3...) in afluid are obtained hierarchically in terms of the pair correlation function Md—lﬂ
alone. The radial distribution functiaiRDF) profiles obtained from the molecular dynam{d4D) simulation
of Lennard-Jones$LJ) fluid is used to illustrate the results. It is demonstrated that the collective structural
information contained in the maxima and minima of the RDF profiles being resolved in terms of individual
NND functions may provide more insights about the microscopic neighborhood structure around a reference
particle in a fluid. Representative comparison between the results obtained from the formalism and the MD
simulation data shows good agreement. Apart from the quantities suchthaBIND functions and
nth-nearest-neighbor distances, the average neighbor population number is defined. These quantities are evalu-
ated for the LJ model system and interesting density dependence of the microscopic neighborhood shell
structures are discussed in terms of them. The relevance of the NND functions in various phenomena is also

pointed out.
DOI: 10.1103/PhysReVvE.67.041208 PACS nunier61.20—p, 05.20-y
[. INTRODUCTION and also in case of electrochemical phase formafib8p as

well as in the spectroscopic studigs4] of quenching of
For studying the properties of a many-body system ofphotoexcitationsgby intermolecular collisionsand solvent
interacting particles, the question of fundamental importanceelaxation processg45] (often studied by Raman or Ray-
often is to know, how the nearest-neight®N) particles leigh light scattering processes which arise from the fluctua-
influence some reference particle of interest in the systentions of the system polarizabilitigsThis is expected as such
An answer to this question as well as an estimate of an improcesses are mainly associated with the static and dynamic
portant quantity, the mean NN distance requires knowledg@nfluences of the predominantly interacting neighboring sol-
of the nearest-neighbor distributigNND) functions. Micro-  ute and solvent particles around the reference particles of
scopic structural informations of a fluid are usually obtainedinterest in an interacting fluid system. Knowledge of the
mainly from the pair correlation functions determined eithernearest-neighbor distances have also found importance in di-
through experimentgl], or estimated from various theoreti- verse other fields such as, for example, in controlling of ce-
cal schemeg2] or from computer simulation studigsS]. ramics structure$16], in the case of nucleation of pits on
However, the maxima and minima of these functions, alstainless stedll7], and also in biological systems to charac-
though collectively contain significant and quite useful struc-terize spatial patterns of the populations in animals, plants,
tural information, they cannot provide further detailed micro-and organism$18].
scopic information directly in terms of first-, second- or  Paul HertZ19] was first to work on the NND functiofto
higher-order neighbors distributed around a central particléye referred to as théirst NND function in this paperand
in a fluid. NN distance of randomly distributed particles. Assuming
The question of finding NND functions has been studiedideally random stellar distribution, Chandrasek[0] used
with considerable success in recent past particularly for harthese results for studying stellar dynamics and showed that
sphere systempt,5]. Appropriate derivation of equation of the force acting on an individual star was largely due to its
states for fluids may require knowledge of such functionsNN.
[6,7]. Local field distribution for a correlated system has The first NND functions for irreversible deposition phe-
been recognized to depend significantly on the NND functnomena at far from equilibriui21,22 have also been stud-
tions[8]. Various transport phenomena in heterogeneous meed recently, which comes under the vast area of studies
dia[9-11 (e.g., electron mobility in insulating flui®], dif-  named after random sequential adsorpti®@SA) models
fusion limited rate constantslO], etc) are also influenced [23-2§ associated with the clustering, aggregation, and
considerably by the immediate neighboring particle distribugrowth processes. Such studies, however, were essentially
tions. NND functions(though not used directly very often motivated by the significant amount of work undertaken by
are also likely to be of particular importance in understand-Torquato and otherg4,5,29,3Q in the last decade to under-
ing the nucleation processgs?] (in homogeneous systems stand the first NND functions under equilibrium in the fluids.
Two different types of first NND functions viz., void and
particle probability densities for the many-body systems
*Electronic address: bbiplajuchem@hotmail.com were obtained by Torquato, Lu, and Rubinstedh Interest-

1063-651X/2003/6()/04120811)/$20.00 67 041208-1 ©2003 The American Physical Society



BIPLAB BHATTACHARJEE PHYSICAL REVIEW E67, 041208 (2003

ing analytical expressions for essential quantities tikadi- II. n-PARTICLE DISTRIBUTION FUNCTION

tional pair distribution functions necessary for obtaining the Considerina a svstemn of identical interacting particles
first NND were derived for hard sphere system, in particular, . . ing a systemn . . 9p
distributed isotropically in a--dimensional space of volume

using low density expansion. However, obtaining such ana; ) ) .
lytic expressions for interacting systems, in general, and fgy the reduced r-particle  probability  density

those having attractive interaction components, in particularlf(n)(rl-rz, .. .y), for n<N, is defined by 2]
seems to be extremely difficult if not impossible. ) —

A general formalism for obtaining the first as well as P (ry,fo, .o n)
higher-order NND functions particularly for an interacting NI v v o
many-body system would thus be of considerable interest. = —J' J e BUN(T1.r2, - .TN)
Efforts have been made by several auth@$—33 to ad- (N=m)!ZyJo 0
dress this issue in recent past. As in the first NN dd$ethe AT sy T, @

nth-NND functions(for n>1) are also expected to be re-
lated to then-particle correlation function for the many-body . : L —
systems. In the low density limit the-particle correlation The posmona.tl vector of Fheth par.t|cle is represented ?S
function, p(n)(r—1 r—z o ﬂ) (for n>1) may be expressed and then-particle correlation functiog™(r;,r,, ... r,) is

as the product of the pair correlation functions. With suchdefined as

considerations Mazuf31] attempted to evaluate theth Ve — T —

NND under low density condition. An approximate scheme, PNz, o ) =p"g (Ml ). (2)
more appropriate for low density, to take care of the ex-

cluded volume effect of then(— 1) neighbors in the interior In the above equatiop is the bulk number density of the

: . ; system with volumé&/ andZ,, the configurational integral is
on thenth NN was used and illustrated particularly in the y N g 9

context of hard sphere system. However, the question thrﬂ'ven by

still remains to be answered is the following : How to find a v v - = _
general formalism for obtainingth-NND functions(with n ZN:f f e AUNILT2 TGy d Ty - dry . (3)
=1,2,3 ..., etc) that can be conveniently used for an inter- 0 0
acting fluid system with more realistic interparticle interac-

itvo™(r. 1, TYdrd*r,- - -dr.
tion and is not restricted to the hard sphere system alone?T.he quantityp (.r.l'rZ’ . Tn)d’rad"r ) d rn therefore
With a view to answer the question posed above, wdlives the probability of simultaneously finding the center of

present here, a general, hierarchical formalism which unde® particle in volume element’r; aboutr;, the center of a
certain reasonable approximations become quite accurate feecond particle in volume elemedtr, aboutr, etc. up to
the interacting single component fluid systems. It is showrinding the nth particle in volume elemend’r,, aboutr ,
that, given the pair correlation function for a fluidbtained  jrrespective of the positions of the rest of thdn) par-

experimentally, theoretically, or by simulation studie;ie  ticles. For an uncorrelated systemp™=p" and the
nth-NND functions become easily computable for all n-particle correlation functiorg™(r1.r,, . .. r) becomes

(1I’2t"3 T etlc.) at Ia_r%e{hrzla\lnlgg off detljsny. lThe hlerlirch_lcal unity. Let us now, for example, consider a configuration of a
relation involves (—1)th- unction alone uniike I 4 sphere system whengarticles are placed so that a few

Ref. [31]_whert_=3 all lower-order NND fun_ctions up '”’:_1 among them overlap. Such overlaps in the excluded volume
are required simultaneously. The formalism also provides a .

way to resolve the pair correlation function of the fluid in regions for the hard spheres would leadXg(r .5, . ..In)

terms of all higher-order NND functions. The present ap—In thﬁ iﬂtegral ibove to be almost infinitely large and thus
proach bypasses difficulties encountered in other approach@f”(r1,r2, - - . ) will be virtually zero for such a configu-
in an interesting and subtle way while keeping the formalisntation. Therefore, the excluded volume effect is incorporated
quite general and simple with closed form hierarchical soluin the definition ofp(r,,r,, ... r,) through the interpar-

tions amenable for easy computation leading to significangjcle potentialU(r,r, . . .ry). Itis also to be noted in Eq.
insights about the fluidof interacting particles not restricted (1) that the other +1) to N particles, the positions of

to hard spheres alopstructure. Representative comparisonhich are integrated or averaged out, will also influence the
of the predictions from the present formalism with 5|mula-value of p™(ry.r5, ... 1) in a mean field sense for the

tion Qata[obtained for Lennard-Jondt.J) s_ysten], as will similar reason.
be discussed later, shows very encouraging results.

A brief review of then-particle distribution function is
presented in Sec. Il. The formalism to obtain thi&-NND lll. NEIGHBOR DISTRIBUTIONS FOR INTERACTING
functions for av-dimensional system of identical interacting PARTICLES
particles with number density is presented in Sec. Ill. Vari- A. nth-nearest-neighbor distribution
ous relevant quantities derived from the formalism are also ) — ] ]
described in the section. In Sec. IV the details of molecular The nth-NND function, W(n,r) of a »-dimensional sys-
dynamics simulation and computational methodologies arém with N identical particles is defined such that, given a
presented. Results obtained for the LJ fluid are discussed i¢ference particle present at the origiki(n,r)d’r gives the
Sec. V followed by our concluding remarks in Sec. VI. probability of finding itsnth NN (for n=1,2,3 ..., etc) in
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the volume elemend’r betweenr andr +d’r. Our defini- fication. In a similar spirit as the earlier approaches for the
tion of the NN is consistent with the earlier works on the first NND [19,20], the condition of excluding thath and
NND functions and it is considered that there must be onéigher-order neighbors from the interior of volurfi{r) is

and only onenth neighbor as pointed out in R¢B1]. Con-  splely taken care of by introducingy(n,r) itself in the right-

sequently, it can be shown that all the NND fun_c_tions Ar®and side of Eq(4) and the equation folV(n,r) is rewritten
strictly normalized, and may therefore be specifically re-as

ferred to as normalized NNIDNNND) functions. However,

for the rest of the paper the name NND will be used instead o

of NNND to keep it short and simple for convenience. W(n,r)d”r

In the present formalism, it is to be noted that the nearest _
neighbors of a particle in the fluid are assumed never to be _em v
. . 1 W(n,7)d"r
degenerate, that is, these neighbors are never located at ex- 0
_1 [om o) — = =

p 1Jo "'fo pl (K arpe - rng,r)

actly the same distance from the center of the particle. De-
generate neighbors may definitely arise, for example, as a
limiting case like the close packed or jammed situation of a
hard sphere system. Present formalism does not, however,
address di_rectly to such a situation which gssentially repre- X d’rd"r - - -d”f_n—l}dﬂ- (5)
sents a solid phase wherein a reference particle is expected to

have m (say equidistant neighbors witlm>1 in contact

with the particle. Use of NND functions defined above for

such a situation requires careful interpretation nofsuch
neighbors. For example, in case of a fluid, if the centemnmo

X

The first factor in the above expression, which introduces
f nonlinearity explicitly into the problem, by definition ensures

such neighbors beyond the { 1)th neighbor of a reference the absen_ce of theth nglghbor[and t_hu_s rest of the_l\{
particle becomes exactly degenerate, which is extremely un- "~ 1) higher-order neighbors albavithin the spherical
likely in a fluid, those neighbors may be arbitrarily labeled asvolume () around the central particle. The second term
nth neighbor, 6+ 1)th neighbor, up tor{+m— 1)th neigh-  Now gives the conditional probability of finding the centers
bor without any loss of generality. However, further discus-of the particles 1 to rf—1) within the spherical volume
sions related to such degenerate neighbor situation is specifi}(r) around a reference particle at the origin and title
cally excluded from this paper to focus mainly on the generaharticle within the volume elemerd’r betweenr andr
nature of the formalism proposed here. _ +d"r, irrespective of the positions of the rest of tHé-{n

The probability, W(n,r)d"r, defined above is now ex- 1) particles. Here we have ignored any explicit depen-
pressed as a conditional probability that out of possibNe (' dence of the second factor on the spatial positions of higher-
—1) neighbor particles of a reference particle in the systemgrder neighbors and then ¢ 1)-particle correlation function
(n—1) particles remain in the interior of spherical volume js influenced by the higher neighbors in a mean field sense.
Q(r) of radiusr around the reference particle placed at theFor the spherically symmetric homogeneous system with

center, thenth particle remains within volume elemedtr  bulk number densityp and with p@(r)=p2g‘@(r), from

betweenr andr+d*r and the remainingN—n—1) par- Eq. (5) the expression for the first NNDV(1,r) becomes
ticles occupy the rest of the volume. Therefore, the probabil-
ity, in general, can be written formally as

- o) — Q) —
W(n,r)d”r=p*1f0 (r)d”rlmfo (r)d”rn_l

()

W<1BdVr_=(1— W<15dv?){pg<2><r_>d%—}. (6)

v _ v _ The factorpg(z)(r_) here may be also referred to as the local
X[f L P f e density [2]. The above equation for the first NND can be
@' @' exactly solved and will be discussed later in Sec. I B.

_ _ — For higher-order neighbor§.e., n>1), finding a closed
XpMN(ry, oo rpog ey 'er)dVd- (4)  form exact solution even for E@5) for an interacting system
becomes very complicated for involving many particle cor-
relation functions. We therefore reformulate the equation into
A particle being chosen at the origin for a homogeneousn exactly solvable hierarchical equation fak(n,r),
system is reflected through the facter! and all the dis- wherein the second factor in E() is further rewritten, in a
tances are measured with respect to its position at the origisimilar spirit as before, in terms of then{1)th NND,
The lower limit of Q' (r) ensures the exclusion of volumes W(n—1y), and the pair correlation function. In the final
Q(r) andd’r from being occupied by any of thea¢-1) to  Proposition of the present formalism, the probability that the
(N—1) particles. Obviously, any function of interest for a Nth NN to a reference particle kept at origin, occurs between

bulk system of interacting particles involvigparticle cor-  r andr +d"r, is thus equated with the product of three fac-
relation function is not of much use without further simpli- tors as follows,
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Q) —

1- W(n, r)dﬂ
0

x( Q“_)wm—leV?)(p‘1p<2><r_>dVr_).
0

W(n,r)d’r=

@)

In the above equation, the first factor ensures thantio

neighbor exists interior to [having volumeQ(r)], and the
second factor ensures that the—{1)th neig@or(and thus

all lower order neighboysloes exist interior to. In the third

PHYSICAL REVIEW E67, 041208 (2003

i( W(n,r) )__( w(n,r)
dr\[F(n—1r)]pg(r))  \[F(n—1r)]pg(r)
XF(n—1r)pg(r)4mr?, (9)

where
A
F(n,)\)ZJ W(n,r)4mrr?dr. (10
0

Hence, on integration Eq9) gives

W(n,r)=pg(r)F(n—=1yr)

factor, the termp ~1p®)(r)d*r, is used as the probability of
finding a particle(which eventually becomes theh neigh-
bor within a volume element ofi’r in a v-dimensional

space at a distangefrom the central reference particle irre- gjnce according to Eq8), the term within the bracket in the
spective of the positions of the rest of the particles. left-hand side of Eq(9) becomes unity as—0. Equation
In the present formalism, the excluded volume effect get§11) represents the exact hierarchical solution of tith
incorporated hierarchically through the functigi®(r), ~ NND in terms of —1)th NND and theg(r). For the first
which would be replaced ngQ(Z)(r_)_ g(z)(r_) being the pair  NND the solution becomes even simpler as shown below.
correlation function, its oscillating nature as obtained either
from experiments or from theory, or from simulation studies B. First nearest-neighbor distribution
of interacting fluid systems, a'Teady reflects. the exclude_d The probability that the NNto be referred to as the first
volume effect due to the finite size of the particles and their _ . — —
interactions in the fluid. Therefore, althoughparticle cor- NN) 0 @ particle, kept at origin, occurs betweerand r
relation function for k=m=(n—1) is not explicitly utilized ~ +d’r is denoted byW(1r)d"r. This probability must be
at the outset in the formalism of tmth-NN distribution, the ~ clearly equal to the probability that no particle exists interior
higher-order correlation gets incorporated hierarchically intao r times the probability that a particle does exist between
the formalism through the nontrivial nonlinear dependenceynd r+d’r. Accordingly, for spherically symmetric par-
of W(n,r) ong®(r) andW(n—1r) alone. The basic input ticles, W(1,r) must satisfy the relation, as can also be ob-
being the pair correlation functiog®(r) which gets suit- tained from Eq(6),
ably modified as the density or the temperature changes for a
system, the proposed formalism for obtainM{n,r) hier-
archically is expected to be very accurate for thermodynamic
systems at arbltrary' densities a_nd .tempera'Fures.. For this hIErom the above equation one can derive
erarchical nature, this approach is likely to give rise to a very

XEX[{—Jorpg(T)F(n—l,T)47TT2dT , (11

W(l,l’)Z(l—frW(l,T)4WT2dT)pg(r). (12
0

good upper bound estimate for tmeh-NND functions as d (W(1y) W(1r) ,
g®(r) is influenced by the many-body effect in a mean field a(—pg(r) = _(—pg(r) )pg(l‘)47'rl‘ : 13
sense(cf. Sec. ). The representative comparison of the re-
sults with the simulation data also show good agreement. Hence, on integrating,
For a homogeneous system of spherically symmetric
identical particles, the pair correlation function depends only _ . fr 2
on the magnitude of the interparticle separatinnThe su- W(L,r)=pg(r) ex 0P9(7)47TT dr|, (14)

perscript ofg‘®(r) and the bar over will be ignored for _

notational simplicity in the subsequent discussions and it willSince according to Eq12), W(1,r) —pg(r) asr—0. There-

also be referred to as the radial distribution functi@Dr).  fore, Eq.(14) gives the expression for the first NND for an

By replacing the volume element’r by 4mr2dr for the interacting fIwcj. Representatlve comparison betweep this re-

three-dimensional system, EG) becomes sult and the simulation data for Lennard-Jones fluid shows

B very good agreement and will be discussed later. For spa-

tially uncorrelated systemg(r) being unity, Eq.(14) leads
to Hertz's solution[19,20 for Poisson distributed points
(also for randomly distributed fully penetrable spheneih
number density. Equation(14) for the first NND function

(8) is also similar as that obtained in Refs,31] for hard
spheres except that instead af#pg(r) they involvedcon-
ditional pair distribution functionG(r). Use of analytic ex-
pressions of such functions obtained for hard sphere systems

r
W(n,r)= 1—f W(n,7)4mr?dr
0

;
X fW(n—l,T)47T7'2dT pg(r).
0

From the above equation we derive
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[4,29] under various approximation schemes led to veryThe integral in the exponent above, in the thermodynamic
good agreement with the Monte Carlo simulation results foldimit, will be infinitely large asr—o, sinceg(7) andF(n
the first NND functions. To the best of our knowledge, how- —1,7) have non-negative finite values in the rangeO.
ever, we have not come across any comparative study tdhus, from Eq.(16),
show how the results of first NND function obtained using
appropriately the RDF obtained from the computer simula- I=—e"+e’=1.
tion of hard sphere model system differs from that obtained o i )
using analytical expression for tenditional pair distribu- The above res_ult indicates, as_mennoned earlier, that the
tion function. Preliminary studief34] using Percus-Yevick Nth-NND functions are normalized for all values of
RDF for hard sphere model, which is not quite accurate af- 1:2:3 - - -»(N—=1). Also note that having as the upper
higher densities, calculated/(1r) according to Eq.(14) lImit instead of infinity, from Eq.(15) I=F(n,7), and Eq.
matched quite well particularly at lower densities with the (16) leads toF(n,7)=1-Y(n—1,7), relatingF(n,7) with
results of Torquato and Lge9] using theconditional pair F(n—1,7).
distribution function expression obtained from the Carnahan-
Sterling approximation. We intend to undertake shortly such D. Average nth-nearest-neighbor distance
comparative studies for hard sphere model system by obtain- The general definition for the averagéh-NN distance is
ing reliable RDF functions at arbitrary densities using mo-5g follows,
lecular dynamics simulation.

In the present formalism Eq&l1) and(14) therefore give o )
us the complete solution of theth NND in terms of hierar- (rn)= jo rW(n,r)4mr=dr, (18)
chy of equations. It is also to be noted that Etd) can be
obtained from Eq(11) by substitutingF(Or)=1 in it, re-  \which can be rewritten as
flecting the presence of the central reference particle. In view
of this, Eqg.(11) may be considered to give the complete o d
solution of the problentfor all n) in the present formalism. (rn)= J; —r(a[Y(n—l,r)]]dr, (19
The first NND,W(1y) is obtained from Eq(14) using the
knowledge ofg(r) obtained either from experimental, theo- whereY(n—1y) is defined in Eq(17). By doing integration
retical, or computer simulation studies. All otheth-NND by parts we get
functions, W(n,r) for n=2,3,4...,(N—1) are obtained
from the knowledge ofy(r) and only the numerically al-
ready obtainabl&/(n—1,r) function alone instead of requir-
ing simultaneously all theN(m,r) functions with 1=m
=<(n—1) as required according to the earlier work of Mazur The first term in the above equation becomes zero as in the

(rn)z—rY(n—l,r)lg"JrfoxY(n—l,r)dr. (20

[31]. thermodynamic limit the exponent iv(n—1r) [cf. Eq.
(17)] will diverge asr—. Therefore, we obtain the final
C. Normalization check for W(n,r) expression as
The probability of finding theth NN within the sphere of o
radius r around a particle kept at the center is given by (rn>=J Y(n—1r)dr. (21
0

F(n,r) [cf. Eq.(10)]. According to the definition ofV(n,r),
the functionF(n,r) should become unity for anp<(N

: . . Th ve expression shows that the av NN dis-
—1) asr—«. This can be tested by evaluating the following e above expression shows that the averatpeNN dis

tance completely depends on the—(1)th-NND function

integral, and the RDFg(r).
w The difference between the successive mean nearest-
IzJ W(n,r)4zr?dr. (15 neighbor distances can now be written as
0
Above integral can be rewritten as (rnH)—(rn):J [Y(n,r)=Y(n—=21,r)]dr
0

> [d
szo —(a[Y(n—l,r)])dr, =f0 drY(n,r)[l—exr{—J’opg(r)

where Considering the definitions of thenth-NND functions
[W(n,r)] andF(n,r) [cf. Eq. (10)], it is expected that the

. (@ probability of finding f—1) neighbors would be greater
than findingn neighbors within a radial distangearound a

which gives
X[F(n—1,7)—F(n,7)]4mr?dr

l==Y(n—1r)[5, (16)

Y(n— 1,r)=exp{ — frpg(T)F(n— 1,7)4mrdr
0
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reference particle for an interacting system. Thus one camodifying the size of the unit cells. The desired temperatures
argue(also may be easily confirmed for=1,2,3 ..., etc., were also suitably chosen so that the average temperatures
from the relation ofF(n,r) with F(n—1,7) mentioned in during the MD runs for the systems at different densities
Sec. IIC andF(0r)=1, mentioned in Sec. IlIBthat were comparable and at lower than the room temperature.
[F(n—1r)—F(n,r)]=0 (equality corresponds to the de-  For the computation of the relevant quantities, the results
generate situation, not considered hdoe any values ohat  of the preceding section were converted into corresponding
any value ofr. Y(n,r) being always a positive quantifgf. = nondimensional forms. The probability of finding thiéh NN

Eq. (17)], this inequality thus suggests from the above rela-within a spherical shell volume of#r2dr around a particle
tion that[{r,, 1) —(r,)]=0 for any value ofn. This nonde- at the origin is given byW(n,r) X 4zr?dr. In terms of a
creasing as well as nonlinedparticularly pronounced at nondimensional variabl&(=r/¢), this probability is rede-
higher densitiesdependence of the meanth-NN distances fined as P(n,x)dx with P(n,x)=oc>W(n,xo)4mwx2. The

on n is also demonstrated in the results obtained from thd>(n,x) functions are obtained from the expression of
simulation datacf. Sec. V. W(n,r) in Eq. (11) as follows,

— % 2 _
E. Average neighbor population in the spherical P(n,x)=p*4mx°g(x)®(n—1x)

neighborhood X 5
_ * —
It is to be noted thaE(n,r) as defined in Eq(10), gives xexp{ fop 9(n)@(n—1r)dwrdr) (23

the probability of finding central particles havingieighbors

within the spheres of radiusaround them. So the number of with p* =po® and the integratedth-NND function[cf. Eq.
particles havinghth NN within spheres of radius around  (10)],

them isNF(n,r), whereN is the total number of particles in

the bulk system. The fraction of particles havimgeighbors X

within sgheres of radiusr r?around themg ig thus P(n.x)= fo P(n,7)d7. (24
[F(n,r)/EN"'F(i,r)]. The average neighbor population

<nr>’ i.e., the average number of neighbors likely to be Results are discussed in the following section in terms of
present within a sphere of radinsaround any particle taken the nth-NND functions,P(n,x) calculated according to Eg.
as the central particle in a fluid is thus expressed for the first23). The probability of finding theith NN within the spheri-

time as the following quantity, cal volume of radiuxo around a central reference particle is
computed according to Eq24). The averagenth-NN dis-
N1og. F(n,r) tances are computed by rewriting E48) as
(np)= Zl ErEa— (22)
> F(i,r) <xn>=f xP(n,x)dx (25)
i=1 0

Density dependence of this quantity and its relevance paiso that (r,)=(X,)o. The average neighbor population
ticularly in the context of neighborhood shell structures will within a sphere of radiugo around an arbitrary reference

be discussed for the LJ fluid in Sec. V. particle[cf. Eq. (22)] is evaluated as
N—1
IV. SIMULATION AND COMPUTATIONAL DETAILS n-®(n,x)
(ny= 21 NI E— (26)
he
For some preliminary representative comparison between 2 ®(i,x)
the results obtained from the present formalism and that from i=1

the simulation directly, molecular dynami@éD) simulation . )

[3] of spherically symmetric interacting model system was FOr Some representative comparison #n,x) values
undertaken. All MD simulation studies reported here have/Vere also determined directly from the simulation data dur-
been carried out in the microcanonical ensemble with cubid"d MD run as follows,

boundary conditions. The particle-particle interaction was , ,
modeled as Lennard-Jonés)) potential,u(r)=4e[ (o/r)*? P(n.x)A= 1 D Ng,n(X,1) @7
—(a/r)®]. The LJ parameters and o corresponding to ar- ' 71 Ng(i)

gon (e=12kg and o=3.41A) were used and the particle

mass was taken to be 39.98r). A (5X5x5) cell was In the abovey is the number of MD time steps amdi(i) is
considered for each of the simulation run involving 500 par-the number of particles sampled at tite MD time step.
ticles. Time steps of 10 fs were used for integration. IntegraAmong theseNg(i) particlesNg ,(x,i) is the number of such
tions in the simulation were carried out using the velocitysampled particles in theth MD time step, each of which
verlet schemd3]. Simulations were carried out for a total having (W—1) neighbors within a sphere of radiysaround
period of 500 ps. The equilibrium periods were of 200 psthem also has at least one or more particles present within a
during which the velocities were scaled to obtain the desiredpherical shell of thickness between the spheres of radius
temperature. The densities were varied by appropriatelx andx+A. In our studiesNg(i) is same as the total number

041208-6



nth-NEAREST-NEIGHBOR DISTRIBUTION . . . PHYSICAL REVIEW B7, 041208 (2003

3.0 @
- e

2.57

2.0

g(xo)

0.57

0.0

v T T T T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0
x(=r/c)

FIG. 1. Radial distribution functioiRDF) profiles g(xo) ob-
tained from the MD simulation of Lennard-Jones fluid against ra-
dial distancex(=r/c) at the densitiep* =0.8564(a), 0.6422(b) at
comparable temperaturd§K) =98.0762+ 2.3927(a) and 98.5407
+2.2084(b).

of particles used for the simulation. To get better accuracy in
the calculation ofP(n,x), = andNg(i) must be very large
and A must be chosen very small. For our estimation of
P(n,x) we have choseiA =0.0025.

For the discussion in the following section, the relevant
guantities in the above equations were computed using the
extended Simpson’s rul@5] for numerical integrations and T T T

the cubic spline interpolation meth¢de]. 06 08 X(L',%) 12 14
V. DISCUSSION FIG. 2. (a),(b) Representative comparison oth-NND func-

tions, P(n,x) vs x(=r/o) curves(solid lineg with corresponding

It is understood that the RDF profiles contain considerabl&imulation datasymbols for n=1,2,3 at densitiep* = 0.8564(a),
amount of microscopic information according to the classicab.6422(b) at corresponding comparable temperatures as in Fig. 1.
theory of fluid. It is also of great advantage that these profileghe corresponding RDE(xa) shifted by constant valug40.0 for
are obtainable experimentally, theoretically, or by suitable2(a) and 8.0 for 2b)] are also shown.
computer simulation studies. The RDF profiles obtained
from the MD simulation of the LJ fluid at two different den- agreements between the computeth,x) profiles and the
sities having comparable system temperatures are shown gimulation resultgshown forn=1,2,3) at both the densities
Fig. 1. In both the cases the sharp risegiiko) before studied is indicative of the reasonable assumptions incorpo-
x(=rl/o)=1.0 indicates softness of the LJ fluid. At lesserrated into our present formalism. The deviations between the
density the peak positions of thg(r) profiles appears at computedP(n,x) and the simulation data for higherval-
higher values ok and the peaks are broadened reflecting, inues, in particular, are not completely unexpected and may be
an average sense, more diffused structufasighborhood due to two reasons. One obvious reason being that such de-
shells”) around the particles in the fluid. However, further viations at highern as well as small deviations around
detailed insight in terms of nearest-neighbors around a refemaxima, for example, fon=3 in Figs. Za) and 2b) are
ence particle is not very apparent from these RDF profileslikely to narrow down with the simulation results obtained
For example, from the RDF profiles, it is virtually impossible from even larger system size and with longer MD simulation
to comment on the most probable position of the first NN ofrun with smallerA values[cf. Eq. (27)]. An elaborate simu-
a central reference particle in a fluid. This position, in gen-lation study on an even larger system, particularly to study
eral, should not be associated with the first maxima of thehe hard sphere neighbor distributions is intended in near
RDF profiles as will be demonstrated below. An importantfuture to have better insights into such neighbor distribution
emphasis of the present work is therefore, in a way, to reproblems. The other possible reason for the deviations for
solve the full microscopic structural information content of higher n values may be associated with the assumptions in
the RDF profiles into individual NND functions. the formalism leading to a certain degree of over estimation

Before discussing theth-NND function, P(n,x) in de-  and an attempt for further improvement of the formalism is
tail, some representative comparisons between these funbeing looked into. However, considering that the RDF of the
tions obtained according to the proposed formaljsm Eq.  interacting system is the only input into the proposed formal-
(23)] and the simulation studidsf. Eq. (27)] are shown in ism, the results reported here are also quite useful due to the
Figs. 2a) and 2b). Such analysis of higher-order neighbors simplicity of the approach and the agreement in the repre-
for an interacting system has been done here. Very goosdentative comparison between the formalism results and the
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FIG. 3. nth-NND functions,P(n,x) of the Lennard-Jones fluid ) ) )
plotted against radial distane&=r/o") at densityp* =0.8564 and FIG. 4. Relative comparison afith-NND functions, P(n,x)
temperaturel (K) =98.0762-0.2.3927 forn=1-50. Correspond- plotted against radial distancg=r/o) for n=1-5 at densities

ing RDF g(xo) shifted by a constant value 11.0, is also shown. P*=0.8564(solid lineg andp* =0.6422(dotted lines with respec-
tive temperatures as in Fig. 1. Corresponding Ri(o) profiles,

simulation data as seen in FiggaRand 2h). shifted by a constant value 10.0 are also shown.

The rest of the discussions in this section will be based on
the results for the LJ fluid computed from thn,x) pro-  pronounced excluded volume effect in the region where
files obtained following Eq(23). In Fig. 3, at the highest ninima ofg(r) occurs.
density considered, thB(n,x) functions forn=1-50 are The relative comparison of th@(n,x) profiles at two
plotted along with the RDFg(r) shifted vertically by a con- gensities shown in Fig. 4 indicate the dependence of the
stant amount for suitable visual comparison. Conventionallyneighborhood structures on the densities at comparable tem-
the first peak of the RDF is associated with the first neighboperatures. It is clear that compared to thxo) plots as
shell for any reference particle in a fluid and the first shell iSghown in the same figure, remarkable differences in the
considered to be extended up to the first minimum of thep(p x) profiles forn=1-5 leads to better insights about the
RDF. TheP(n,x) plots, however, indicate that the maximum pejghborhood structures in a fluid. The peaks at lower den-
of the first NN appears at a distance closer than the first peairy are smaller in height, relatively wider and shifted to
position of the corresponding RDF. This indicates that forhigher values ok indicating relatively more diffused neigh-
almost all the particles their first NN remains at a closerporhgod structures. Smaller separations of the successive
proximity than the distance at which the first peakgéf)  p(n x) peaks at the larger density reflect more compact
appears. The first minimum of the RDF appears at n&arly nejghborhood.
=1.50 for the densityp* =0.8564 (cf. Fig. 1. It is seen | Fig, 5, the probabilities of finding theth NN within a
from theP(n,x) plots in the figure that several neighbors aregpnere of radius (=xo), is plotted in terms of the inte-
present within that range and there tn,x) is maximum  grated nth-NND functions, ®(n,x) [cf. Eq. (24)] for two
for n=27. From simple spatial arrangement considerationgjifrerent densities. For both the densitieb(n,x)—1 at

this suggests that the conventional first neighbor shell igjgher values ofx for all n indicates strict normalization
likely to consist of more than the immediate neighbors. Such

neighbors are therefore not equivalent in terms of their prox-

imities with respect to the central reference particles and they 104

would behave differently physicochemically compared to,

for example, the first NN. The figure also shows that at o8-

aroundr=1.10, while many particles are surrounded by '

eight or less neighbors there is virtually no particle sur-

rounded by 12 or more neighbors. The significantly larger = 061

overlap betweeiP(1,x) andP(8,x) as compared to that be- 5

tweenP(1x) andP(12x), at the highest density considered 044 1

is also possibly an indication of the fact, as the voronoi

analysis suggested earligg7], that the bcc clusters are the 0.2 ;
probable nuclei for the crystallization of the soft spheres. The g 7 g
sharper and more symmetiR(n,x) profiles having smaller 0.0 "'1.0 - '1.1-’:‘”"1.2 s - .

width for smallern (5, say are because of the neighbors in
the immediate vicinity of the central particles which are
more strongly held. The smaller peak height with larger FiG. 5. Integratechth-NND functions,®(n,x) plotted against
width of the P(n,x) profiles for intermediate values of radial distancex(=r/o) for n=1-10 at densitiesp* =0.8564
indicate that the population of such neighbors are also relasolid lineg andp* = 0.6422(dotted line$ at respective comparable
tively smaller and distributed over a larger range due to morgéemperatures as in Fig. 1.

x(=r/c)
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FIG. 6. Averagenth-NN distance plotted againstfor two den-
sities p* = 0.8564 (squarep and p* =0.6422 (triangles at respec-
tive comparable temperatures as in Fig. 1.

FIG. 7. Average NN population within a sphere around a central
particle plotted against the radial distangé=r/o) at densities
p*=0.8564(a) and p* =0.6422(b) at respective comparable tem-
peratures as in Fig. 1. The points around which the slope of the
property. Thed(n,x) curves reaching unity more slowly for curves decreases is indicated pyfor (a)] andq [for (b)].
the lower density reflect relatively more diffused neighbor
structures. bor shell. Figure ), however, shows almost linear depen-

The averagenth-NN distances{X,) obtained according dence indicating that the neighbors around any central par-
to Eq. (25), for different values oh (showing their nonde- ticle are evenly distributed. The slope change at the pmpint
creasing dependence ar) at the two densities considered occurs at higher value ofand is also not so sharp indicating
are shown in Fig. 6. The points for the lower density show arthat the neighborhood shell structure is more diffused at the
almost linear dependence within the initial range indicat- lesser densities. From these consideratigng) may be a
ing that the successive neighbors are almost evenly distribmore suitable quantity for defining the shell boundaries
uted. The dependence is relatively nonlinear for the highewhich will be prominent particularly at higher densities.
density. This nonlinearity is likely to be more pronounced
W|th_further_ increase in density. More rlglq strl_Jcturedness_ln VI. CONCLUSION
the immediate vicinity of any central particle is reflected in
the slower variation of théX,,) for smallern values at the In the general formalism presented here, tith-NND
higher density. At further higher densities, close to the closefunction of an isotropic interacting fluid is expressed in terms
packing density, this region is likely to be like a plateau of pair correlation function and then(- 1)th-NND function
indicating almost equidistant and nearly equivalent neighalone. The resulting nonlinear relationship introduces
bors of the first shell in the immediate vicinity of any particle n-particle correlations into the problem in a hierarchical
taken as the central reference particle. manner. Similar approach may be of importance in other

These points are further illustrated in terms of anothefareas of interest too for handling higher-order correlations.
new quantity, the average neighbor populatiog) around  These NND functions apart from providing interesting de-
an arbitrary reference particle, calculated according to Ectailed insights about the neighborhood struct(met other-
(26). At x—0 limit both the numerator and the denominator wise directly availablgare also likely to make one appreci-
of Eq. (26) becomes zero giving rise to the limiting value of ate the RDF profiles of a fluid even better from microscopic
(ny) to be unity. So the deviation dfn,) from unity, i.e.,  structural point of view. The radial distribution functions be-
(ny—1 indicates the average neighbor population. The ploing relatively easily obtainable either from experiments, the-
of (n,) against the nondimensional radial distardée shown  oretical or simulation studies, the present formalism provides
in Fig. 7. Figure Ta) at the higher density is significantly a quite general closed form solution for the neighbor func-
nonlinear indicating prominent neighborhood shell structuretions which could be computed without much difficulties for
For example, the point at which the slope significantly de-interacting systems, and is likely to work for systems at ar-
creasegnearx=1.32 and(n,)=7.4), shown approximately bitrary densities and temperatures.
asp on Fig. 7a) qualitatively indicates that the neighbors  The comparative studies of thrgh-NND functions ob-
within x=<1.32 (say would behave differently physico- tained from the formalism match very well with the MD
chemically than those at>1.32. The value ofn,) at the  simulation data, particularly for smaller values rofndicat-
point indicates that most particles will be surrounded by sixing the approximations associated with the present formalism
to seven neighbors within that spherical radius of to be quite reasonable. From the results analyzed for the
=1.320. The first inflexion point observed in Fig(& for LJ-fluid system, it is observed that significant details of the
the higher density would be even sharper at further higheneighborhood structures are revealed by the neighbor distri-
density and may possibly be associated with the first neighbution functions which are not directly obtainable from the
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RDF profiles alone. For example, relevant information aboubf the NND functions may be of significant importance for
the microstructures may be obtained in terms of the averageetter understanding of various phenomena involving nucle-
nth-NN distances. These quantities apart from demonstratingtion and growth processes as well as in the formulation of
their nondecreasing dependence roalso show significant dynamic processes associated with the quenctiipageigh-
nonlinear variation witm particularly at higher densities. A boring particle collision and solvent relaxation of photoex-
newly defined quantity, the average neighbor populatiorcited molecules in a fluid.
number within a sphere of radiusaround a central particle
leads to important insights about the neighborh@stell” )
structures around a reference particle in a fluid, as discussed
in the preceding section. The author is greatly indebted to S. K. Rangarajan for
We intend to undertake extensive MD simulation study ofintroducing him to the field of theoretical research and his
particularly hard spheres and other interacting model system&luable comments on the problem. The author sincerely ac-
with even larger system size in near future to study the forknowledges S. Yashonath for introducing him to the field of
malism further. Extension of the present work for the multi- computer simulation studies and for immense support. Fi-
component systems as well as incorporating time depemancial support from the Department of Science and Tech-
dence into the formalism would be our next aim. The localnology, New Delhi, India(Grant No. HR/OY/C-05/96and
field distributions around a reference particle in a fluid beingthe DSA program of the Department of Chemistry, Jadavpur
significantly influenced by the NN patrticles, appropriate useUniversity is gratefully acknowledged.
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