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Heat conduction in one-dimensional lattices with on-site potential
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The process of heat conduction in one-dimensional lattices with on-site potential is studied by means of
numerical simulation. Using the discrete Frenkel-Kontorag4, and sinh-Gordon models we demonstrate that
contrary to previously expressed opinions the sole anharmonicity of the on-site potential is insufficient to
ensure the normal heat conductivity in these systems. The character of the heat conduction is determined by the
spectrum of nonlinear excitations peculiar for every given model and therefore depends on the concrete
potential shape and the temperature of the lattice. The reason is that the peculiarities of the nonlinear excita-
tions and their interactions prescribe the energy scattering mechanism in each model. For sine-Gottfon and
models, phonons are scattered at a dynamical lattice of topological solitons; for sinh-Gordon afdrfax
different parameter regime the phonons are scattered at localized high-frequency bi@athersase ofp*
the scattering mechanism switches with the growth of the tempeyature
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[. INTRODUCTION known. Chains with zero average pressure were demon-
strated to have normal heat conductiVi2—24. In papers
Heat conductivity in one-dimension&lD) lattices is a  [23,24] the transition from abnormal to normal heat conduc-
well known classical problem related to the microscopictivity has been detected at a certain temperature.
foundation of Fourier's law. The problem started from the There are no detailed investigations similar to the ones
famous work of Fermi, Pasta, and UlAfPU) [1], where an mentioned above and concerning the properties of the chains
abnormal process of heat transfer was detected for the firgtith on-site potential in the whole temperature range. As it
time. Nonintegrability of the system is a necessary conditiorwas mentioned above, our knowledge is incomplete concern-
for normal heat conductivity. As it was demonstrated re-ing even the most popular and paradigmatic discrete Frenkel-
cently for the FPU lattic¢2—4], disordered harmonic chain Kontorova chain. This lattice is of special interest as its
[5—7], diatomic 1D gas of colliding particlg8—11], and the  counterpart in the continuous limit is the famous sine-
diatomic Toda latticd 12], the nonintegrability is not suffi- Gordon systenthaving, of course, divergent heat conductiv-
cient in order to get normal heat conductivity. It leads to aity).
linear distribution of temperature along the chain for small A question of special interest is also the mechanism of
gradient, but the value of heat flux is proportional ttdl1/  phonon(or soliton scattering which gives rise to finite heat
where 0< @<1 andN is the number of particles in the chain. conductivity. For the chain with periodic nearest-neighbor
Thus, the coefficient of heat conductivity diverges in theinteraction it was demonstrat¢@3,24] that the transition to
thermodynamic limitN— <. Analytical estimation§4] have ~ normal heat conductivity corresponds to abrupt growth of
demonstrated that any chain possessing an acoustic phoné@ncentration of rotation solitongrotobreathers demon-
branch should have infinite heat conductivity in the limit of strating certain similarity with phase transition. Namely, the
low temperatures. transition temperature corresponds to region of maximum
From the other side, there are some artificial systems witfieat capacity of the lattice. Similarly, it is reasonable to in-
on-site potential having normal heat conductivjty3,14.  vestigate whether such relationship between the heat capac-
The heat conductivity of the Frenkel-Kontorova chain wasity and the heat conductivity is peculiar also for other models
first considered in Ref15]. Finite heat conductivity for cer- of the nonlinear chains.
tain parameters was obtained for Frenkel-Kontorova chain The paper is devoted to the detailed simulation of discrete
[16], for the chain with sinh-Gordon on-site potentjal7], lattices with on-site nonlinearity and quadratic potential of
and for the chain with¢* on-site potentia[18,19. These nearest-neighbor interaction and investigation of their heat
models are not invariant with respect to translation and th&¢onductivity. The lattices are Frenkel-Kontorova, sinh-
momentum is not conserved. It was supposed that the on-siféordon, and discretg*. For every case the dependence of
potential is extremely significant for normal heat conductionthe heat conductivity on the temperature and on the param-
[18] and that the anharmonicity of the on-site potential iseters of the lattice will be explored, and concrete elementary
sufficient to ensure the validity of Fourier’s |aj20]. A re-  excitations responsible for the change of regimes will be re-
cent detailed review of the problem is presented in R&f].  vealed.
The behavior of the heat conduction of the Frenkel-
Kontorova model for all parameters and temperatures is not Il. DESCRIPTION OF THE MODEL
Let us consider a one-dimensional atomic chain arranged
*Email address: asavin@center.chph.ras.ru along thex axis. All particles are of equal mass, and the
"Email address: ovgend@center.chph.ras.ru nearest-neighbor interaction is described by a harmonic po-
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tential with rigidity K. Then the Hamiltonian of the lattice I<n<N, N, <n<N +N N +N<n<N +N+N_
will take a form (a)
OIMHOIIOMIOIOIOHONMOMIOHIONIOMIOIIOIICIONIO

1 . 1
H=3 EMx§+§K<xn+1—xn>2+U<xn>], M

(b)
where the dot denotes the differentiation with respect to time % g _— E
-

t, X,, is the displacement of theth particle from its equilib- =
rium position, andJ(x) is an on-site potential. Viw)

The dimensionless variables are introduced @as \VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA
=2mXxy/a (a is the equilibrium distance between the par-
ticles) for the displacementr=t\K/M for the time andH
=47%H/Ka? for the energy. Hamiltoniafil) takes the form

FIG. 1. Model of the chain oN,+N+N_ particles with left
N, particles attached to thE=T, thermostat and righl_ par-
ticles attached to th&=T_ thermostat. Boundary conditions cor-

1 1 respond to freda) and fixed(b) end particles. The potenti&(u)
H= E Eur'12.|_§(un+1_ Un)2+V(Un)} , 2) corresponds to the discrete Frenkel-Kontorova model.
n

) , _ . harmonic, therefore the equilibrium length of the chain does
Where_z the prime de_notes the d|ﬁ§rent|qt|on with regpect ot depend on the temperature. It implies that the boundary
the dimensionless time and_the glmensmnless On-sité po- ¢onditions at the ends of the lattice have no noticeable effect
tential is introduced a¥/(u,) =47°U(au,/2m)/Ka®. Natu- o the process of heat conduction and both the conditions of
ral dzefmmon 2for the d!men3|onless temperature Ts free [Fig. 1(a)] and fixed end particlegFig. 1(b)] may be
=4m°kg®/Ka®, wherekg is Boltzmann constant, aél i ;sed. Numerical simulations wittN. =40 have demon-
the temperature in common units. strated that there is no dependence on the choice of boundary
We are going to consider four widely used models for.,ngitions. We will use the condition of free ends with
on-site potential: harmonic potential — 40 for all simulations. -
1 The majority of papers devoted to heat conduction
V(u)= Ewguz, ©) [2,3,16,18 use deterministic NosEoover thermostaf25]
with N, =N_=1. However, this thermostat has been de-
signed for the description of the thermalized system in the

sine-Gordon potential o . . ;
P state of equilibrium and is not universally suitable for the

V(u)=e[1+cogu)], (4)  description of nonequilibrium processes. Therefore we
choose the well-known stochastic Langevin thermostat. De-
¢* potential tailed comparison of these two thermostats is presented in
B ) ) section 3 of the Appendix.
V(u)=2el(u/m)"—1]", (5 Let us consider the chain with free ends<{(i<N+N,

+N_) with N.. particles at both ends attached to Langevin
thermostats. The dynamics of the system is described by

V(u)= w3 cosiu)—1]. (6)  equations

and sinh-Gordon potential

Parametee>0 determines the value of potential barrier be- Up=Un+1—Un—F(Uy) = yup+ &y,
tween neighboring wells and its inverge- 1/e characterizes

the cooperativity of dynamics of chain’s particles. Potentials n=1,

(4) and (5) have the same distance between neighboring

wells equal to Zr and equal value of the potential barries.2 Un=Upy1—2Up+ Uy 1 —F(Up)—yu,+ &,
The parametew, in (3) and(6) corresponds to the minimal

frequency of harmonic vibrations of the lattice. n=2,...N,,

Ill. METHODS FOR COMPUTATION OF THE HEAT U= Un41— 2Un+Uny_ 1 — F(Up), @)
CONDUCTION COEFFICIENT

The goal is to simulate the process of heat conduction in a N=N+1...N.+N,

finite chain containing\ particles. For this purpose the left
side of the chainr{<0) has to be connected to a thermostat
with temperaturel ;. , and the right sider(>N) to a ther-

uﬁ:un+1_2un+un—1_ F(un) — 'Yurlw_’_g; )

mostat with temperatur&_ (T, >T_). For the purpose of n=N,+N+1,... N, +N+N_—1,
the simulation we consider the chain Nf, + N+N_ par-

ticles, where the firsN_ particles are attached to the ther- Up=Un_1—Upn—F(uy)—yup+ &,
mostatT, , an the lastN_ particles to the thermostai_

(Fig. 1). The potential of the nearest-neighbor interaction is n=N,+N+N_,
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whereF(u)=dU(u)/du, the damping coefficieny=1/7,, x10°
7, IS the characteristic relaxation time of the particles at- 1of
tached to the thermostag, is the random external force
corresponding to Gaussian white noise normalized as

(&3 (1) =(&5 (T (12))=0, =S s

(& (TD) & (12)) = 29T 80 8( 72— 7).

Details of numerical realization of the Langevin thermostat
and random forces are presented in the Appendix. I ) ) . I

At every moment the dimensionless temperature of the 1 100 200 300 400
nth particlet,(7)=u/2(7). In order to determine the value o 1 (HE ' ' ' |
of the local heat fluyj, the energy distribution among the
particles of the chain is considered:

(@)

h L E(u’2+u’ 2)+V(uy) + V(U 1)+ (Up1—Up)?
n 2 2 n n+1 n n+1 n+1 n .

tS)
By differentiating Eq.(8) with respect to timer we get

1.9

1 1 100 200 300 400
hrqzz{ur'\[urr&F(Un)]+ur,1+1[uﬁ+1+F(Un+1)]} n
FIG. 2. Distribution of the local heat flu¥, (a) and local tem-
peratureT, (b) in the chain with periodic on-site potenti&d), €
=1, N=320,N.=40, T, =2.1, T_=1.9. Time of averaging
=10". Fragments of the chain interacting with the thermostats are
embedded in gray.

+(un+l_un)(url1+1_ul,1)‘

Taking into account Eq.7), we obtain

1
hrﬂzz[ur’Hl(un%—Z_Un)_ué(unﬁ—l_un—l)]- 9
the heat flux is constantl{=J) and the temperature profile
Taking into account the continuity conditidm,=j,—j,_1 is I|n_ear. Th(_a coefﬂmlent of the heat condyctwny can be de-
termined using the information concerning the inner frag-

we get the expression for the energy flyx=—u/(Un1 ment of the chain:

—Up_1)/2.
System of equationé/) has been integrated numerically. K(NY=I(N=D)/(Ty +1=Tn_ 1), (12)
We used the values of=0.1, N.=40, N=10, 20, 40, 80, * +
160, 320, 640, and initial conditions corresponding to th
ground state of the chain. After the time=10° has elapsed,
the end particles achieved thermal equilibrium with the ther- k(N)
mostat and stationary heat flux has been formed. Afterwards, Th= J n+b
the dynamics of systerf¥) has been simulated at the time
scale of orderr=10". The average temperature of the par-tg the inner fragment of the chain.

Cor (with less errorsby fitting a linear function

R The limit value
1(7 .
To=(ta(7)),= lim ;f up?(s)ds, (10) K_l\lllm x(N) (13)
T—00 0 — 0
and average value of the heat flux, will correspond to the coefficient of the heat conductivity at

temperaturel = (T, +T_)/2. The question regarding the fi-
1(7 niteness of the heat conductivity is reduced to the existence
In=(In(7)),= lim ;f in(9)ds, (1D of finite limit (13).
o0 An alternative way to compute the heat conductivitys

were computed for the fragment of the chain between thé’y means of the well known Green-Kubo form{izs]:

thermostats.
If the temperature gradiemlkT=T, —T_ is small, this x=lim JT"m 1 (J(s)-J(0))ds (14)
method avoids the temperature jumps at the ends of the free o JONLNT? '

fragment of the chaih27]. Characteristic distributions of the
heat fluxJ, and local temperatur@, are demonstrated at whereN is the number of particles in a chain with periodic
Fig. 2. At the inner fragment of the chad, <n=<N,+N boundary conditions,
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N
J<T>=n§11n(r>

is the total heat flux, and the averagiftg is performed over

all thermalized states of the chain. Consequently, the finite-
ness of the heat conductivity is related to the convergence of

the integral

f:C(T)dT, (15

with

C(7)=lim #(J(T)'J(O)).

N—oo

Numerically the above autocorrelation function may be
found only for finite chain

1
Cn(m)= ﬁ@(s)‘](s— 7))s- (16)

For large enough values of the correlation functiorCy(7)
is believed to approximate the functi@{t) with acceptable
accuracy. In order to get stable results the vallze4000 is

PHYSICAL REVIEW E 67, 041205 (2003

0.04}
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n

FIG. 3. Distribution of local heat flud, (a) and local tempera-
ture T, (b) in the chain with harmonic on-site potentié8), w,
=1, N=160, N.=40, T, =21, T_=1.9, averaging timer
=10". The fragments of the chain interaction with the thermostats

usually sufficient. More details concerning the computationare embedded in gray. Thin ling4,3) are obtained by using the
of the autocorrelation function are presented in section 2 oNoseHoover thermostat withr,=1, and thick(2,4) by using the

the Appendix.

The methods for computing the heat conductivity coeffi-
cient based on relationships3) and(14) are complementary
and allow mutual verification of the results.

IV. HARMONIC ON-SITE POTENTIAL

The chain with harmonic on-site potenti@) is described

Langevin thermostat with, = 10.

the heat conductivity on the reduced temperaflireT/e.

The behavior of the chain also depends on the coopera-
tiveness parametey=1/e. The more the cooperativeness,
the less is the density of the soliton superlattice and the pho-
non scattering effects are less significant. The ligyt
(e—0) corresponds to the completely integrable continuum

by linear equations and therefore is completely integrablegiye-Gordon equation.

The energy transport is performed by noninteracting phono
modes. The heat flut does not depend on the chain length
N, but only on the temperature differendel’. Linear ther-
mal profile is not formed. At the inner part of the chain the
temperature is nearly constaft,=(T,+T_)/2 (Fig. 3.
Therefore according to Eq12), the heat conductivity coef-

N Generally, three limits of discrete Frenkel-Kontorova sys-
tem correspond to the completely integrable systemd: at
—0 the system reduces to the harmonic chain with harmonic
on-site potential; al - to an isolated harmonic chain; at
g—o to the continuous sine-Gordon equation. All these

ficient diverges. Correspondingly, the average correlatiodiMit systems have diverging heat conductivity. The behavior

function C(7) is constant and integrdl5) diverges.

V. PERIODIC ON-SITE POTENTIAL

of the system in the vicinity of these limits is a natural ques-
tion to be addressed.

Let us start fromg=1 (e=1, T=T) and investigate the
sequence«(N) as N grows (N=10, 20, 40, 80, 160, 320,

Characteristic features of dynamics of the chain with pe-640) and different values off. As it is may be suggested

riodic on-site potentia(4) depend on the values of the tem-
perature. As the temperature is smak e, the on-site po-
tential may be approximated by harmonic single-well
potential(3) with wy= \e. The heat transport is governed by
weakly interacting phonons. At the temperature e the

from Fig. 4 at small T=0.2) and large T=200) tempera-
tures the heat conductivity coefficier{N) grows asN¢, at
T=20 as IN, and atT=3 converges to finite value
=18.5. Therefore it may be concluded thaffat 3 the chain
has finite heat conductivity. The data related to the other

chaotic superlattice of topological solitons is formed and thevalues of the temperature do not allow to draw any conclu-
transport properties change drastically. At very high temperasions about the behavior of the heat conductivity at larger
turesT> e the chain is effectively detached from the site andvalues of N. Generally speaking, it may happen that for
again weakly interacting phonons govern the heat transportonger chains<(N) will attain certain finite value. Computa-
Therefore it is reasonable to investigate the dependence ¢ibnal tools we use do not allow to investigate higher values
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FIG. 6. Autocorrelation function€(7) in the chain with peri-
odic on-site potential4), e=1, T=0.2 (curve ) and T=200
(curve 2.

=77.4. It is reasonable to compare this value with the result
for k(N) presented in Fig. 4curve 4. Maximum value of
x(640)=75.9 and no trend towards any finite limit @{N)
may be detected. Therefore the likely result is divergence. In
order to verify this result the simulation for larger values of
N (1280, 2560, 5120, 10 240s required, which is beyond
our computational possibilities.

The problem forT=0.2 andT=200 is even more diffi-

FIG. 4. Dependence of the logarithm of the heat conductivitycult. The autocorrelation function is presented in Fig. 6. The

coefficient Ink(N) (a) and «(N) (b) on the logarithm of the inner
fragment length IN (N, =N_=40) for the chain with periodic
on-site potentia4), e=1, T=0.2 (markers 1, T=200 (markers

2), T=3 (markers 3, andT=20 (markers 4. The markers denote

decrease of the function is very slow and no unambiguous
conclusion concerning its character may be drawn out. While
extrapolatingc(7) for 7>8000 by exponent, the Green-
Kubo formula yieldsk=1016 for T=0.2 andx=2252 for

the computed values and the lines correspond to the best linegr=200. In order to get additional information more detailed

approximations.

of N. Still, it is possible to get additional information from
the behavior of the autocorrelation functi@{7) at r— .
Numerical simulation demonstrates that for 3 the au-
tocorrelation function decreases exponenti@iig. 5, curve
1). Integral(15) converges and the Green-Kubo formula)
gives k=17.5, in good correspondence wii18.5 ob-
tained from direct simulation of the heat flux. At=20 the
autocorrelation function at time scale<G=800 also de-
creases exponentiallfFig. 5, curve 2. If this trend persists
also for 7>800, the Green-Kubo formula will givex

In C(z)

0 200 400 600 800
T

FIG. 5. Exponential decrease of the autocorrelation functiona

C(7) in the chain with periodic on-site potentied), e=1, T=3
(curve 3 andT=20 (curve 2 (semilogarithmic coordinatgs

simulation is required. Still, from the other side, fdr
=200 at N=640 the logarithm of the heat conductivity
In k(N)=7.9>In(2252)=7.7, and the dependence H(N)
(Fig. 4, curve 2 does not demonstrate any trend towards
convergence. Therefore the most likely result in this case is
also the divergence of the heat conductivity.

Let us consider the sequeng¢N) (N=10, 20, 40, 80,
160, 320, 64p at other values of the cooperativeness. The
results are summarized in Fig. 7. The space of parameters

(g,T) is divided in two zones denoted by different colors. In
the first(gray) zone the sequence(N) convergeqd «(160)
~ k(320)~ k(640)], and in the secon@vhite) zone the se-
guence grows monotonously. Then, in the first zone Frenkel-
Kontorova model has finite heat conductivity, and in the sec-
ond zone the heat conductivity is either divergent or finite
but very high.

The first zone is limited by certain finite value giffor all
g above someyy>1 no convergence ok(N) was found.
The explanation is that for growing the behavior of the
system should be determined by the continuum limit de-
scribed by integrable sine-Gordon equation. At any figed
<(go for N=<640 the heat conductivity converges only for

some finite temperature intervakOr,<T<T,<. As the
cooperativeness decreasas—{0), the upper boundary of

this interval tends to infinity T,— ), and the lower bound-
ry tends to zeroT(,—0) proportionally tog.

The dependence of on the reduced temperatufie is
presented in Fig. 8. Within the intervgl ,, T},] there exists
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15

FIG. 7. The zone in the space of parametaysij, where for
finite chains of lengtiN<640 with on-site potentia(4) the heat  «
conductivity converges$(a), gray zong and diverged (b), white
zong. Curve 1 divides these two zones. Interval 2 corresponds to
the parameters used in R¢L6]. For finite chains K<640) with
on-site potential¢* (5) finite heat conductivity is detected only
above line 3.

a critical valueT,, corresponding to the minimum of heat 0 5 10 T s 20
conductivity.

In order to reveal the mechanism of the heat conduction it FIG. 9. The dependence of the dimensionless heat capzoity
is reasonable to explore the behavior of heat capatity the reduced temperatufe=T/e (a) for the chain with periodic
=(H)/NT ((H) is the average energy of cycli-atomic  on-site potential4) and (b) for the chain with¢* potential(5) for
chain at the temperaturg) on the reduced temperatuiie ~ €=10 (curves 1,6, e=5 (curves 2,7, e=3 (curves 3,8 e=1
(Fig. 9). The heat capacity of classic harmonic chain is unity,(curves 4,9, and e=0.5 (curves 5,10 Dashed curve 11 gives a
therefore the deviation of this value from unity characterizesimilar dependence for the chain with on-site sinh-Gordon potential
the significance of nonlinear effects. The lattice considered®). for wo=1.
has negative anharmonicity and thereforel for all tem-

peratures. The heat capacity tends to unityTasO andT —o and has a single maximum at a certain tempera?fgce

This value fairly well coincides with the temperatufe,,
which corresponds to the minimum of the heat conductivity.
Moreover, the increase and decrease of the heat capacity
is clearly correlated with the decrease and increase of the
heat conductivity. This fact suggests that the same physical
effects are responsible for both processes. For zero tempera-
ture the heat capacity is equal to unity. We suppose that the
increase of the heat capacity at higher temperatures is related
to thermal activation of topological solitonlike excitations
(kinks and antikinkp that represent additional degrees of
freedom for this system. As a result the dynamical superlat-
tice of solitons appears. The density of this superlattice ap-

proaches its maximum at the temperattffg,. Further
growth of the temperature results in the decrease of the num-
ber of degrees of freedom, which is manifested as effective

; , detaching of the chain from the on-site potential. Therefore

0 5 - 10 15 the heat capacity decreases and tends to unity as the tempera-

T ture grows.
FIG. 8. Dependence of the heat conductivity coefficienin the These correlations between the behavior of the heat ca-

reduced temperatufB=T/ e for the chain with periodic on-site po- Pacity and the heat conductivity and especially the fair coin-
tential (4) for e=3 (curve 1), e=5 (curve 2, ande=10 (curve 3. cidence ofT,, and T, allow us to suppose that the heat trans-
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In C(t)

50 100 150 200
T

FIG. 11. Exponential decrease of the autocorrelation function
C(7) in the chain with on-site potentig* (5), e=1, T=20 (curve
1), T=10 (curve 2, T=5 (curve 3, andT=3 (curve 4. [Semi-

FIG. 10. Zones in the space of parameteysT(), where for the  logarithmic coordinates [B(7) versusr.]
finite chainsN=<640 with periodic on-site potentia#t) and period
|=2m2 the heat conductivity is norméla), gray] and abnormal related to the presence of the topological kinks at any tem-
[(b), white]. The dashed line denotes the same boundary for thgyerature. The appearance of normal heat conduction in the
commensurate Frenkel-Kontorova modet+@ ). current framework occurs at lower temperature since less

o _ . . solitons should be thermally activated in order to achieve

fer is limited mainly by phonon scattering on the soliton convergence. On the other hand, the kink superlattice facili-
superlattice. The effectiveness of this scattering depends Qfes effective detachment of the lattice from the on-site po-
the den§|ty of the superlattice as well as on the ability ,Oftential (the average coupling energy in the ground state is
single kinks to scatter phonons. In the strongly cooperatlvqess and therefore the upper boundary for the normal heat

regimeg=>g, the interaction between kinks and phonons isconqyction is also achieved at lower temperatures.
nearly elastigclose to the case of complete integrabiliagnd

therefore the heat conductivity has the trend to grow, prob-
ably to infinity. For lower cooperativeness the soliton- VI. HEAT CONDUCTIVITY OF THE CHAIN WITH

phonon interaction is less elastic and the finite rafigg T;] DOUBLE-WELL ON-SITE POTENTIAL
of converging heat conductivity appears. For the caseb of  Let us consider the heat conductivity of the chain with a
<T, andT>T,,, we could not see convergence of the heat¢* on-site potential5). For this case«(N) seems to con-

conductivity. The suggested reason for this effect is that thgerge when7r>'~l'0=3g/2 (T>1.5), see Fig. 7.

soliton superlattice effectively disappears. In order to investigate the behavior in the temperature
Let us consider now an incommensurate FrenkelyanqeT T, let us consider the temperature dependence of

Kontorova chain where the period of the chain is different

from the period of the on-site potential. The dimensionless

on-site potential is a periodic functio@) with period 2,

and the chain has peridd=27qg. Then functionF(u,) in -2t

Eq. (7) will take the form

d
F(un)zﬁU(unﬂLnl). _at

In C(t)

For the sake of simulation we choose=1/27=2. It is

well known[29] that such a lattice in its ground state already

has a soliton superlattice of nonzero density. Therefore the

convergence of the heat conductivity is expected to be facili- . . ‘ .

tated as compared to the commensurate case. 0 2 4 6 8
Figure 10 demonstrates the zone in the space of param- Int

eters §,T) wherex(N) seems to converge. For the sake of F|G. 12. Power-law decrease of the autocorrelation function
comparison the boundary for the commensurate case is alg§ 7) in the chain with¢* on-site potential5), e=1, T=1 (curve
presented I(=2). The result is that no qualitative change 1), and T=0.5 (curve 2. [Double logarithmic coordinates {&7)

of the behavior occurs. The only difference is that the zoneersus In.] The angle coefficientr determines the decrease rate.
with normal heat conductivity moves down. This effect isForT=1, a=1.2; forT=0.5, =1.02.
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()

FIG. 13. Heat conductivityx versus reduced temperatuiie
=T/e for the chain with double-well on-site potentiéh), e=4
(curve 1), e=2 (curve 2, ande=1 (curve 3 and for the chain with

sinh-Gordon on-site potenti&h), wo=1 (dashed curve 4T=T). FIG. 14. Frequency spectrum of energy of vibrations in the
chain with double-well on-site potentigh) at temperaturest

the autocorrelation functio®(7). Forg=1 (e=1) this is  =0.4(a), T=10(b), andT=100(c); e=4. The dashed line denotes

shown in Fig. 11. Asr—oo the autocorrelation function de- the spectrum of harmonic chaiB) with wo=4/m .

creases exponentially. The decrease rate grows as the tem- _

perature increases and therefore the conclusion concernirggid for high temperature§ & 1) the process is governed by

finite heat conductivity af >T, is confirmed. At lower tem-  POSitive anharmonicity, bringing the heat capacity to the

peratures the decrease rate seems to satisfy a power |Emlue below unity. . . .

7 “_see Fig. 12. The degree decreases with the decrease Let us now consider the frequency distribution of vibra-

of the temperature. AT=1, a=1.2>1, therefore integral ti_o?/i of tgehchainhThe speqtrum Is Comr‘;;gei &13241%90
(15) converges and the heat conductivity is finite,Tat 0.5 =1/4) and three characteristic temperatu T :

we find @=1.02. Within the current accuracy this value cor- The spectrum of the chain with harmonic on-site potential

responds to the transition to the abnormal heat conduction. th) does not depend on the temperature and has the form

is extremely difficult to obtain reliable data for lower tem- >
peratures in order to substantiate this conclusion because of E(0)=20/m\(0’~ 0j)(0]— o), 17
huge computation time required. The reason is that the sys-
tem is rather close to the completely integrable case. Newhere the maximum frequency b§:4+ wé. For e=4,
numerical methods are needed to investigate this kind o&)o=4/7r\/2=2.546, w,=3.238. As it is demonstrated in
systems. Fig. 14(a), for temperaturd = 0.4 the spectrum of the chain
The dependence of the heat conductivityon reduced  with on-site * potential nearly coincides with the vibration
temperaturél is presented in Fig. 13. For low cooperative- SPectrum of a purely harmonic chgihi7). This means that at
ness (}<0.5) the heat conductivity shows a local minimum |oW temperatures only phonons contribute to the frequency

; = = : spectrum and other excitations do not play any significant
and local maximum(at T=T,), before decreasing monoto- T
m ) 9 role. ForT=10> € the distribution extends below the lower

nously to zero a§ — . The relative value of the maximum oundary of the propagation zone, [Fig. 14b)]. Such a
decreases as the cooperativeness grows, and it disappears, frequency component may be associated with intrinsic

a certalndcrmcaldvarl]geboéf.] or of the h ductivity. it vibrations of the solitons superlattice. For even higher tem-
To understand this behavior of the heat conductivity, It ISpe41,resT=100> € the spectrum crosses also the upper

again useful tg investigate the behavior of the heat capacity boundary of the propagation zong [Fig. 14c)]. Such ef-
[Fig. 9b)]. As T—0 the heat capacity— 1. As the tempera- fect may be attributed only to excitation of high-frequency
ture grows, the Deat capacity grows, achieves its maximum Yiscrete breathers. Therefore, for low temperatifesT,

the temperaturd, and then decreases monotonously to a= (.59 the dynamics of the system is close to that of a har-
value less than unity. The val(e is situated near the maxi- monic chain. The heat transport is governed by weakly inter-
mum point of the heat conductivit¥;. Such behavior is acting phonons and heat conductivity may be divergent. For
related to the peculiarities ap* potential. At low tempera- higher temperatures the heat conductivity converges. In the
tures the main effect is due to negative anharmonicity neaintermediate rang&,<T<T, the effective phonon scatter-
the ground statétherefore the heat capacity exceeds unity ing mechanism is due to the superlattice of topological kinks,
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The heat conductivity decreases monotonously and for
—oo exponentially tends to zer@d-ig. 13, curve 4 Positive
anharmonism of the potential leads to monotonous decrease
of the heat capacityFig. 9, curve 11 The frequency spec-
trum of vibrations moves towards the upper boundary of the
propagation zone with growth of the temperature. These
facts allow us to conclude that the high-frequency discrete
breathers provide effective phonon scattering in this model
and facilitate the convergence of the heat conductivity.
Growing concentration of these breathers with the growth of

InC(t)

7t ] the temperature leads to monotonous decrease of the heat
. ‘ . ‘ conductivity coefficient.
0 2 oo 8 Chain with on-site potential
FIG. 15. Exponential decrease of the autocorrelation function V(u)=pu?/4 (18

C(7) in the chain with sinh-Gordon on-site potenti&), wy,=1,

T=10 (curve 9, T=7 (curve 2, andT=5 (curve 3. [Semiloga-  (POsitive ¢* mode) also has finite heat conductivifg8,19.
rithmic coordinates Ii€(7) versusr. ] Potential(18), as well as sinh-Gordon on-site potentidl, is

a single-well symmetric function with positive anharmonism.
Therefore the mechanism of the phonon scattering is also
gelated to the discrete breathers ar(d@)\,0 for T—c. For

2 the heat conductivity(T)~T~+35[19].

and for high temperaturéb>T, due to high-frequency dis-
crete breathers. Interplay of these two different mechanism
of phonon scattering explains also the dependence of the heBf
conductivity on the cooperativeness of the syst&ig. 13.

The minimum and maximum of the heat conductivity disap- VIll. CONCLUSION
pear with growth of the cooperativeness since the soliton
mechanism of scattering becomes less effedtie soliton-
phonon interaction is closer to elastiand simultaneously
the excitation of the discrete breathers becomes easier.

The investigation presented above demonstrates that the
conductivity of any concrete model of chains with on-site
potentials depends on peculiar nonlinear excitations, which
determine the process of the heat transfer and phonon scat-
tering. Two typical mechanisms of the phonon scattering
VII. HEAT CONDUCTIVITY OF THE CHAIN WITH were revealed in the paper—thermalized soliton superlattice
sinh-GORDON ON-SITE POTENTIAL (discrete sine-Gordon ang* model3 and discrete high-
frequency breathers¢(* and sinh-Gordon modélsPhonon

The heat conductivity of this system has been investigate cattering mechanism may switch with the change of the

in Ref.[17], and we want to elucidate the detailed phys'caltemperature 4* mode).

tinz;d\:\i?rlsnz)ss.it-i:/r:ee ;nnr;zlrtﬁc?r?izeitm(ﬁT)r:Z ;S'Egel:;g\?)" 2:;1'0 For the discrete Frenkel-Kontorova model the zone of the
P Y- q converging heat conductivity for given chain length is lim-

verges for high tempera?ures; fqr low t.emPerat“.“?s the acClsag by low and high temperatures and by high cooperative-
racy of current experiment is again insufficient. This

observation is supported by the fact that the autocorrelation - The numerical possibilities available till date do not
) PP y allow us to establish unambiguously the character of the heat
function C(7) at high temperatures for—«~ decreases ex-

onentially(Fig. 15, and for low temperatures by a power conductivity outside the zone designated at Fig. 7. Still there
|F;W (Fig i/G) 9. L9, P yap is a reason to suggest that an infinite chain has diverging heat

conductivity for certain parameters, although the zone corre-
sponding to finite heat conductivity will be larger than com-
puted above. The same is relevant for two other models con-
sidered. Still, the transition from an exponential to power-
law-like decrease rate of the autocorrelation function is
observed in every case. This observation supports the sug-
gestions related to the switches of physical mechanisms re-
sponsible for the character of the heat transport.

In C(t)
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APPENDIX
_ o . {un(7),Up" (D}n=y (A3)
1. Numerical realization of the Langevin thermostat

System of equations describing the dynamics of the chaigorresponding to the thermalized state at temperafure
attached to thermostatg) has been integrated numerically ~ Afterwards, the dynamics of isolated thermalized chain
by standard fourth-order Runge-Kutta method with constanwvas simulated. For this purpose systéi2) was integrated
step of integration\ 7. Numerical realization of-functionis ~ with zero dampingy=0 and zero external forcg,=0).
performed asd(7)=0 for |7|>A7/2 and 5(7)=1/Ar for ~ Thermalized statdA3) was used as initial condition. The
|7|<A, i.e., the step of integration corresponds to the corsesult was the dependence of the general heatJflom time
relation time of the random forces. That is why in order to7. Afterwards with the help of Eq(16) the autocorrelation
get correct description of the Langevin thermostat we mustunction Cy(7) was computed for given thermalized state of
guarantee that the relaxation timg>A 7. In order to fulfil  the chain. The autocorrelation function depends significantly
this condition the relaxation time was chosenrgs 10, and 0N concrete realization of the thermalized chain. That is why
the step of integration for different valuesMfwas chosen as in order to improve the accuracy this procedure was per-
A=0.05, 0.025, 0.0125. formed 1§-10 times with independent initial realizations

For every step of integration the random for@ﬁswere of the thermalized state. Finally, the shape of the correlation
taken to be constant. They were computed as independeﬂ}[nction was computed as average over all these realizations.
realizations of the random value normally distributed with It is worth mentioning that the alternative way of computa-
zero averagd£)=0 and dispersioq£2)=2T. /7,A7. For  tion (performing of one very large simulatiprwould not
generating the random valug program packageUFALL bring about any sufficient gain in the accuracy because of

[30] was used. growing integration errors.
The initial state for the integration of Eq&) was chosen In order to verify the independence of the correlation
to be equal to ground state of the chain: function on the chain length the appropriate calculations

were performed for different values df. Figure 16 demon-
U,=Ug, U,=0, n=12,.. . N, +N+N_, (A1) strates the functiorCy(7) for the chain with sinh-Gordon
on-site potential fowy=1, T=2, andN=500, 1000, 2000.
whereuy= 0 for on-site potential$3) and(6) anduy= 7 for It is clear that the autocorrelation function is nearly indepen-
potentials(4) and(5). It is convenient to control the accuracy dent ofN (the differences are noticeable only for large times
of the simulation through the behavior of a sequence of avand are reduced as the number of realizations used for aver-

erage local heat fluxes,}" " . If the choice of the aging grows. For the given set of parametes= 1000 pro-

n=N,+1" ; .
integration stepA 7 is correct then this sequence should beV'des sufficient accuracy.

constant. If the local average heat flux changes from particle _ _ ]
to particle then the integration step should be reduced. For 3. Comparison of Langevin and NoseHoover thermostats

growing chain IengtHN the step of integration should be also Unlike the Langevin thermostat, the Nek®over ther-
reduced in order to provide sufficient accuracy; the averagingnhostat (NHT) [25] is not stochastic. Its dynamics is com-
time also grows(see Ref[31]) and therefore the time of pletely determined by the initial conditions. It turned out to
simulation necessary for obtaining reliable results for Ia¥ge phe good choice for simulations of FPU systé3] but its

turns out to be extremely large. deterministic nature can bring about artifacts in the behavior
of the system. We compare this thermostat with the Langevin
2. Computation of the correlation function thermostat(LT) we use for the case of Frenkel-Kontorova
model.

In order to compute the autocorrelation function of the
heat fluxCy(7) the dynamics of cyclidN-particle chain was
simulated. The thermalized chain with temperattrevas
obtained by integrating Langevin system of equations,

Let us consider the chain with fixed ends<{h<N
+N,+N_) with N. particles attached to NHT having the
temperaturdl .. . The dynamics of the system is described by

”n__ _ _ _ ’
uﬁ:un+l_2un+unfl_l:(un)_'yur,1+§nu Un=Uns1 = 2UnF Un-1 F(Un) 7+

n=12,... N, (A2) n=2,...N,,
wheren+1=1 for n=N andn—1=N for n=1, y=0.1 1 1 iy '
(reIaxaFion timer, = 10), &, represents white Gaussian noise 7+= ? (N, -1)T, & u"—1
normalized as '
(Ea(m)=0, (&n(rD)&(72))=2yT (o= 71). Un=Un-1=2UnF Un—1 = F(Un), (Ad)
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x10°

[V

FIG. 18. Frequency distribution of the energy of particle having
numberN/2 in the chain with periodic on-site potenti@), e=1,
N=160,N. =40, T, =3.05,T_=2.95. The thick line corresponds
to use of NHT ¢,=1), and thin line to use of LT+ =10).

U= Uy, un10)=4<§w—%)dcrp+Ty2, (A5)

where &, represents independent realizations of the random
FIG. 17. Distribution of local heat flud,, (@ and and local ygriable over the intervdl0, 1].

temperaturel,, (b) in the chain with periodic on-site potentied), We choosee=1 (g=1), T,=3.05, T_=2.95, N=80

€=1, N=160, N. =40, T, =305, T_=2.95, averaging imer a4 jntegrate systettA4) numerically with initial condition
=10". Gray zones denote the chain fragments embedded in the,g, "1 gistribution of heat fluxes, and local tempera-
thermostats. Thick linegl, 3) correspond to NHT £,=1), and thin turesT, is presented in Fig. 17for thg sake of comparison
lines (2, 4) to LT (7,=10). n ’ . . i
we present also the results obtained by using LT, thin Jines
Within the left thermostat the heat flux grows linearly and
within the other thermostat it decreases linearly withAt
W=, 1— 20, + U 1= F(U) = 7! central part of the chain the value of the heat flux does not
nTrn+l n’¥n-1 n) = 7=t depend om. Linear temperature profile is formed and the
heat conductivity coefficient may be computed according to
Eq. (12—« (N)=18.4. Use of LT givesk(N)=18.5 (see

n=N,+1,... N.+N,

n=N,+N+1,... N, +N+N_—1,

1 1 N, +N+N_ above, i.e., the value ok does not depend on the type of the
7 == u'2—1 thermostat.
T2 VINC=DT nenTEiNer ' In addition, it is possible to conclude from Fig. 18 that the

frequency distribution of the energy of vibrations also does

whereF (u) =dU(u)/du, andr, is the relaxation time of the not depend on the type of thermostat used. It means that for
thermostat. the case of the temperatures close to the value of the poten-

Usually the simulations of the heat conductivity tial barrier the choices of NHT or LT bring about equivalent
[2,3,16,18 take7,=1, andN, =N_=2 (only end particles results
are attached to the thermostat=2 andn=N_,_+N-+N_ The situation is strikingly different if the temperature is
—1). But, as stated in Ref26], such thermostats are not lower and the chain is closer to the linear case. The Nose-
enough random-they cover only a part of the phase spaddoover thermostat is not effective in this case. In order to
and correspond to strange attractors. In order to reduce thiBustrate this fact we use the model of harmonic chain. As it
effect we attach to the thermostBt, =N_=40 particles is clear from Fig. 3, NHT gives values of the heat flow sub-
from every side of the chain. stantially different from the correct values; at the same time

The dynamics of systenfA4) is also completely deter- the use of LT secures much better results. That is why in the
ministic. It should be mentioned that it is impossible to usepresent paper we used more complicated and consuming LT.
the initial condition(Al) corresponding to ground state of It should be mentioned that sometimes due to its simplic-
the systeniit is stationary point of systerfA4)]. We take the ity NHT is used in combination with LT32] (LT is used for
initial condition the parameters of the model where NHT is not acceptable
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