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Heat conduction in one-dimensional lattices with on-site potential

A. V. Savin* and O. V. Gendelman†
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The process of heat conduction in one-dimensional lattices with on-site potential is studied by means of
numerical simulation. Using the discrete Frenkel-Kontorova,f4, and sinh-Gordon models we demonstrate that
contrary to previously expressed opinions the sole anharmonicity of the on-site potential is insufficient to
ensure the normal heat conductivity in these systems. The character of the heat conduction is determined by the
spectrum of nonlinear excitations peculiar for every given model and therefore depends on the concrete
potential shape and the temperature of the lattice. The reason is that the peculiarities of the nonlinear excita-
tions and their interactions prescribe the energy scattering mechanism in each model. For sine-Gordon andf4

models, phonons are scattered at a dynamical lattice of topological solitons; for sinh-Gordon and forf4 in a
different parameter regime the phonons are scattered at localized high-frequency breathers~in the case off4

the scattering mechanism switches with the growth of the temperature!.

DOI: 10.1103/PhysRevE.67.041205 PACS number~s!: 44.10.1i, 05.45.2a, 05.60.2k, 05.70.Ln
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I. INTRODUCTION

Heat conductivity in one-dimensional~1D! lattices is a
well known classical problem related to the microsco
foundation of Fourier’s law. The problem started from t
famous work of Fermi, Pasta, and Ulam~FPU! @1#, where an
abnormal process of heat transfer was detected for the
time. Nonintegrability of the system is a necessary condit
for normal heat conductivity. As it was demonstrated
cently for the FPU lattice@2–4#, disordered harmonic chai
@5–7#, diatomic 1D gas of colliding particles@8–11#, and the
diatomic Toda lattice@12#, the nonintegrability is not suffi-
cient in order to get normal heat conductivity. It leads to
linear distribution of temperature along the chain for sm
gradient, but the value of heat flux is proportional to 1/Na,
where 0,a,1 andN is the number of particles in the chain
Thus, the coefficient of heat conductivity diverges in t
thermodynamic limitN→`. Analytical estimations@4# have
demonstrated that any chain possessing an acoustic ph
branch should have infinite heat conductivity in the limit
low temperatures.

From the other side, there are some artificial systems w
on-site potential having normal heat conductivity@13,14#.
The heat conductivity of the Frenkel-Kontorova chain w
first considered in Ref.@15#. Finite heat conductivity for cer-
tain parameters was obtained for Frenkel-Kontorova ch
@16#, for the chain with sinh-Gordon on-site potential@17#,
and for the chain withf4 on-site potential@18,19#. These
models are not invariant with respect to translation and
momentum is not conserved. It was supposed that the on
potential is extremely significant for normal heat conduct
@18# and that the anharmonicity of the on-site potential
sufficient to ensure the validity of Fourier’s law@20#. A re-
cent detailed review of the problem is presented in Ref.@21#.

The behavior of the heat conduction of the Frenk
Kontorova model for all parameters and temperatures is

*Email address: asavin@center.chph.ras.ru
†Email address: ovgend@center.chph.ras.ru
1063-651X/2003/67~4!/041205~12!/$20.00 67 0412
rst
n
-

ll

on

th

s

in

e
ite

-
ot

known. Chains with zero average pressure were dem
strated to have normal heat conductivity@22–24#. In papers
@23,24# the transition from abnormal to normal heat condu
tivity has been detected at a certain temperature.

There are no detailed investigations similar to the on
mentioned above and concerning the properties of the ch
with on-site potential in the whole temperature range. As
was mentioned above, our knowledge is incomplete conc
ing even the most popular and paradigmatic discrete Fren
Kontorova chain. This lattice is of special interest as
counterpart in the continuous limit is the famous sin
Gordon system~having, of course, divergent heat conducti
ity!.

A question of special interest is also the mechanism
phonon~or soliton! scattering which gives rise to finite hea
conductivity. For the chain with periodic nearest-neighb
interaction it was demonstrated@23,24# that the transition to
normal heat conductivity corresponds to abrupt growth
concentration of rotation solitons~rotobreathers!, demon-
strating certain similarity with phase transition. Namely, t
transition temperature corresponds to region of maxim
heat capacity of the lattice. Similarly, it is reasonable to
vestigate whether such relationship between the heat ca
ity and the heat conductivity is peculiar also for other mod
of the nonlinear chains.

The paper is devoted to the detailed simulation of discr
lattices with on-site nonlinearity and quadratic potential
nearest-neighbor interaction and investigation of their h
conductivity. The lattices are Frenkel-Kontorova, sin
Gordon, and discretef4. For every case the dependence
the heat conductivity on the temperature and on the par
eters of the lattice will be explored, and concrete element
excitations responsible for the change of regimes will be
vealed.

II. DESCRIPTION OF THE MODEL

Let us consider a one-dimensional atomic chain arran
along thex axis. All particles are of equal massM, and the
nearest-neighbor interaction is described by a harmonic
©2003 The American Physical Society05-1
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tential with rigidity K. Then the Hamiltonian of the lattice
will take a form

H5(
n

H 1

2
Mẋn

21
1

2
K~xn112xn!21U~xn!J , ~1!

where the dot denotes the differentiation with respect to t
t, xn is the displacement of thenth particle from its equilib-
rium position, andU(x) is an on-site potential.

The dimensionless variables are introduced asun
52pxn /a (a is the equilibrium distance between the pa
ticles! for the displacement,t5tAK/M for the time andH
54p2H/Ka2 for the energy. Hamiltonian~1! takes the form

H5(
n

H 1

2
un8

21
1

2
~un112un!21V~un!J , ~2!

where the prime denotes the differentiation with respec
the dimensionless timet and the dimensionless on-site p
tential is introduced asV(un)54p2U(aun/2p)/Ka2. Natu-
ral definition for the dimensionless temperature isT
54p2kBQ/Ka2, wherekB is Boltzmann constant, andQ is
the temperature in common units.

We are going to consider four widely used models
on-site potential: harmonic potential

V~u!5
1

2
v0

2u2, ~3!

sine-Gordon potential

V~u!5e@11cos~u!#, ~4!

f4 potential

V~u!52e@~u/p!221#2, ~5!

and sinh-Gordon potential

V~u!5v0
2@cosh~u!21#. ~6!

Parametere.0 determines the value of potential barrier b
tween neighboring wells and its inverseg51/e characterizes
the cooperativity of dynamics of chain’s particles. Potenti
~4! and ~5! have the same distance between neighbor
wells equal to 2p and equal value of the potential barrier 2e.
The parameterv0 in ~3! and~6! corresponds to the minima
frequency of harmonic vibrations of the lattice.

III. METHODS FOR COMPUTATION OF THE HEAT
CONDUCTION COEFFICIENT

The goal is to simulate the process of heat conduction
finite chain containingN particles. For this purpose the le
side of the chain (n<0) has to be connected to a thermos
with temperatureT1 , and the right side (n.N) to a ther-
mostat with temperatureT2 (T1.T2). For the purpose of
the simulation we consider the chain ofN11N1N2 par-
ticles, where the firstN1 particles are attached to the the
mostatT1 , an the lastN2 particles to the thermostatT2

~Fig. 1!. The potential of the nearest-neighbor interaction
04120
e

o

r

-

s
g

a

t

s

harmonic, therefore the equilibrium length of the chain do
not depend on the temperature. It implies that the bound
conditions at the ends of the lattice have no noticeable ef
on the process of heat conduction and both the condition
free @Fig. 1~a!# and fixed end particles@Fig. 1~b!# may be
used. Numerical simulations withN6540 have demon-
strated that there is no dependence on the choice of boun
conditions. We will use the condition of free ends withN6

540 for all simulations.
The majority of papers devoted to heat conducti

@2,3,16,18# use deterministic Nose´-Hoover thermostat@25#
with N15N251. However, this thermostat has been d
signed for the description of the thermalized system in
state of equilibrium and is not universally suitable for t
description of nonequilibrium processes. Therefore
choose the well-known stochastic Langevin thermostat.
tailed comparison of these two thermostats is presente
section 3 of the Appendix.

Let us consider the chain with free ends (1,n,N1N1

1N2) with N6 particles at both ends attached to Langev
thermostats. The dynamics of the system is described
equations

un95un112un2F~un!2gun81jn
1 ,

n51,

un95un1122un1un212F~un!2gun81jn
1 ,

n52, . . . ,N1 ,

un95un1122un1un212F~un!, ~7!

n5N111, . . . ,N11N,

un95un1122un1un212F~un!2gun81jn
2 ,

n5N11N11, . . . ,N11N1N221,

un95un212un2F~un!2gun81jn
2 ,

n5N11N1N2 ,

FIG. 1. Model of the chain ofN11N1N2 particles with left
N1 particles attached to theT5T1 thermostat and rightN2 par-
ticles attached to theT5T2 thermostat. Boundary conditions co
respond to free~a! and fixed~b! end particles. The potentialV(u)
corresponds to the discrete Frenkel-Kontorova model.
5-2
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whereF(u)5dU(u)/du, the damping coefficientg51/t r ,
t r is the characteristic relaxation time of the particles
tached to the thermostat,jn

6 is the random external forc
corresponding to Gaussian white noise normalized as

^jn
6~t!&5^jn

6~t1!jk
7~t2!&50,

^jn
6~t1!jk

6~t2!&52gT6dnkd~t22t1!.

Details of numerical realization of the Langevin thermos
and random forces are presented in the Appendix.

At every moment the dimensionless temperature of
nth particle tn(t)5un8

2(t). In order to determine the valu
of the local heat fluxj n the energy distribution among th
particles of the chain is considered:

hn5
1

2 F1

2
~un8

21un118 2!1V~un!1V~un11!1~un112un!2G .
~8!

By differentiating Eq.~8! with respect to timet we get

hn85
1

2
$un8@un91F~un!#1un118 @un119 1F~un11!#%

1~un112un!~un118 2un8!.

Taking into account Eq.~7!, we obtain

hn85
1

2
@un118 ~un122un!2un8~un112un21!#. ~9!

Taking into account the continuity conditionhn85 j n2 j n21

we get the expression for the energy flux:j n52un8(un11

2un21)/2.
System of equations~7! has been integrated numericall

We used the values ofg50.1, N6540, N510, 20, 40, 80,
160, 320, 640, and initial conditions corresponding to
ground state of the chain. After the timet5105 has elapsed
the end particles achieved thermal equilibrium with the th
mostat and stationary heat flux has been formed. Afterwa
the dynamics of system~7! has been simulated at the tim
scale of ordert5107. The average temperature of the pa
ticles,

Tn5^tn~t!&t5 lim
t→`

1

tE0

t

un8
2~s!ds, ~10!

and average value of the heat flux,

Jn5^ j n~t!&t5 lim
t→`

1

tE0

t

j n~s!ds, ~11!

were computed for the fragment of the chain between
thermostats.

If the temperature gradientDT5T12T2 is small, this
method avoids the temperature jumps at the ends of the
fragment of the chain@27#. Characteristic distributions of th
heat flux Jn and local temperatureTn are demonstrated a
Fig. 2. At the inner fragment of the chainN1,n<N11N
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the heat flux is constant (Jn5J) and the temperature profil
is linear. The coefficient of the heat conductivity can be d
termined using the information concerning the inner fra
ment of the chain:

k~N!5J~N21!/~TN1112TN11N!, ~12!

or ~with less errors! by fitting a linear function

Tn5
k~N!

J
n1b

to the inner fragment of the chain.
The limit value

k5 lim
N→`

k~N! ~13!

will correspond to the coefficient of the heat conductivity
temperatureT5(T11T2)/2. The question regarding the fi
niteness of the heat conductivity is reduced to the existe
of finite limit ~13!.

An alternative way to compute the heat conductivityk is
by means of the well known Green-Kubo formula@28#:

k5 lim
t→`

E
0

t

lim
N→`

1

NT2
^J~s!•J~0!&ds, ~14!

whereN is the number of particles in a chain with period
boundary conditions,

FIG. 2. Distribution of the local heat fluxJn ~a! and local tem-
peratureTn ~b! in the chain with periodic on-site potential~4!, e
51, N5320, N6540, T152.1, T251.9. Time of averagingt
5107. Fragments of the chain interacting with the thermostats
embedded in gray.
5-3
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J~t!5 (
n51

N

j n~t!

is the total heat flux, and the averaging^•& is performed over
all thermalized states of the chain. Consequently, the fin
ness of the heat conductivity is related to the convergenc
the integral

E
0

`

C~t!dt, ~15!

with

C~t!5 lim
N→`

1

NT2
^J~t!•J~0!&.

Numerically the above autocorrelation function may
found only for finite chain

CN~t!5
1

NT2
^J~s!J~s2t!&s . ~16!

For large enough values ofN the correlation functionCN(t)
is believed to approximate the functionC(t) with acceptable
accuracy. In order to get stable results the valueN54000 is
usually sufficient. More details concerning the computat
of the autocorrelation function are presented in section 2
the Appendix.

The methods for computing the heat conductivity coe
cient based on relationships~13! and~14! are complementary
and allow mutual verification of the results.

IV. HARMONIC ON-SITE POTENTIAL

The chain with harmonic on-site potential~3! is described
by linear equations and therefore is completely integra
The energy transport is performed by noninteracting pho
modes. The heat fluxJ does not depend on the chain leng
N, but only on the temperature differenceDT. Linear ther-
mal profile is not formed. At the inner part of the chain t
temperature is nearly constantTn5(T11T2)/2 ~Fig. 3!.
Therefore according to Eq.~12!, the heat conductivity coef
ficient diverges. Correspondingly, the average correla
function C(t) is constant and integral~15! diverges.

V. PERIODIC ON-SITE POTENTIAL

Characteristic features of dynamics of the chain with
riodic on-site potential~4! depend on the values of the tem
perature. As the temperature is smallT!e, the on-site po-
tential may be approximated by harmonic single-w
potential~3! with v05Ae. The heat transport is governed b
weakly interacting phonons. At the temperatureT;e the
chaotic superlattice of topological solitons is formed and
transport properties change drastically. At very high tempe
turesT@e the chain is effectively detached from the site a
again weakly interacting phonons govern the heat transp
Therefore it is reasonable to investigate the dependenc
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the heat conductivity on the reduced temperatureT̃5T/e.
The behavior of the chain also depends on the coop

tiveness parameterg51/e. The more the cooperativenes
the less is the density of the soliton superlattice and the p
non scattering effects are less significant. The limitg→`
(e→0) corresponds to the completely integrable continu
sine-Gordon equation.

Generally, three limits of discrete Frenkel-Kontorova sy
tem correspond to the completely integrable systems: aT̃
→0 the system reduces to the harmonic chain with harmo
on-site potential; atT̃→` to an isolated harmonic chain; a
g→` to the continuous sine-Gordon equation. All the
limit systems have diverging heat conductivity. The behav
of the system in the vicinity of these limits is a natural que
tion to be addressed.

Let us start fromg51 (e51, T̃5T) and investigate the
sequencek(N) as N grows (N510, 20, 40, 80, 160, 320
640! and different values ofT. As it is may be suggested
from Fig. 4 at small (T50.2) and large (T5200) tempera-
tures the heat conductivity coefficientk(N) grows asNa, at
T520 as lnN, and at T53 converges to finite valuek
518.5. Therefore it may be concluded that atT53 the chain
has finite heat conductivity. The data related to the ot
values of the temperature do not allow to draw any conc
sions about the behavior of the heat conductivity at lar
values of N. Generally speaking, it may happen that f
longer chainsk(N) will attain certain finite value. Computa
tional tools we use do not allow to investigate higher valu

FIG. 3. Distribution of local heat fluxJn ~a! and local tempera-
ture Tn ~b! in the chain with harmonic on-site potential~3!, v0

51, N5160, N6540, T152.1, T251.9, averaging timet
5107. The fragments of the chain interaction with the thermost
are embedded in gray. Thin lines~1,3! are obtained by using the
Nosé-Hoover thermostat witht r51, and thick~2,4! by using the
Langevin thermostat witht r510.
5-4
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of N. Still, it is possible to get additional information from
the behavior of the autocorrelation functionC(t) at t→`.

Numerical simulation demonstrates that forT53 the au-
tocorrelation function decreases exponentially~Fig. 5, curve
1!. Integral~15! converges and the Green-Kubo formula~14!
gives k517.5, in good correspondence withk518.5 ob-
tained from direct simulation of the heat flux. AtT520 the
autocorrelation function at time scale 0<t<800 also de-
creases exponentially~Fig. 5, curve 2!. If this trend persists
also for t.800, the Green-Kubo formula will givek

FIG. 4. Dependence of the logarithm of the heat conductiv
coefficient lnk(N) ~a! and k(N) ~b! on the logarithm of the inner
fragment length lnN (N15N2540) for the chain with periodic
on-site potential~4!, e51, T50.2 ~markers 1!, T5200 ~markers
2!, T53 ~markers 3!, andT520 ~markers 4!. The markers denote
the computed values and the lines correspond to the best li
approximations.

FIG. 5. Exponential decrease of the autocorrelation funct
C(t) in the chain with periodic on-site potential~4!, e51, T53
~curve 1! andT520 ~curve 2! ~semilogarithmic coordinates!.
04120
577.4. It is reasonable to compare this value with the re
for k(N) presented in Fig. 4~curve 4!. Maximum value of
k(640)575.9 and no trend towards any finite limit ofk(N)
may be detected. Therefore the likely result is divergence
order to verify this result the simulation for larger values
N ~1280, 2560, 5120, 10 240! is required, which is beyond
our computational possibilities.

The problem forT50.2 andT5200 is even more diffi-
cult. The autocorrelation function is presented in Fig. 6. T
decrease of the function is very slow and no unambigu
conclusion concerning its character may be drawn out. W
extrapolatingc(t) for t.8000 by exponent, the Green
Kubo formula yieldsk51016 for T50.2 andk52252 for
T5200. In order to get additional information more detail
simulation is required. Still, from the other side, forT
5200 at N5640 the logarithm of the heat conductivit
ln k(N)57.9. ln(2252)57.7, and the dependence lnk(N)
~Fig. 4, curve 2! does not demonstrate any trend towar
convergence. Therefore the most likely result in this cas
also the divergence of the heat conductivity.

Let us consider the sequencek(N) (N510, 20, 40, 80,
160, 320, 640! at other values of the cooperativeness. T
results are summarized in Fig. 7. The space of parame
(g,T̃) is divided in two zones denoted by different colors.
the first ~gray! zone the sequencek(N) converges@k(160)
'k(320)'k(640)#, and in the second~white! zone the se-
quence grows monotonously. Then, in the first zone Fren
Kontorova model has finite heat conductivity, and in the s
ond zone the heat conductivity is either divergent or fin
but very high.

The first zone is limited by certain finite value ofg: for all
g above someg0.1 no convergence ofk(N) was found.
The explanation is that for growingg the behavior of the
system should be determined by the continuum limit d
scribed by integrable sine-Gordon equation. At any fixedg
,g0 for N<640 the heat conductivity converges only f
some finite temperature interval 0,T̃b,T̃,T̃h,`. As the
cooperativeness decreases (g→0), the upper boundary o
this interval tends to infinity (T̃h→`), and the lower bound-
ary tends to zero (T̃b→0) proportionally tog.

The dependence ofk on the reduced temperatureT̃ is
presented in Fig. 8. Within the interval@ T̃b ,T̃h# there exists

y

ar

n

FIG. 6. Autocorrelation functionsC(t) in the chain with peri-
odic on-site potential~4!, e51, T50.2 ~curve 1! and T5200
~curve 2!.
5-5
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a critical valueT̃m corresponding to the minimum of hea
conductivity.

In order to reveal the mechanism of the heat conductio
is reasonable to explore the behavior of heat capacitc
5^H&/NT (^H& is the average energy of cyclicN-atomic
chain at the temperatureT) on the reduced temperatureT̃
~Fig. 9!. The heat capacity of classic harmonic chain is un
therefore the deviation of this value from unity characteriz
the significance of nonlinear effects. The lattice conside
has negative anharmonicity and thereforec.1 for all tem-
peratures. The heat capacity tends to unity asT̃→0 and T̃

FIG. 7. The zone in the space of parameters (g,T̃), where for
finite chains of lengthN<640 with on-site potential~4! the heat
conductivity converges@~a!, gray zone# and diverges@~b!, white
zone#. Curve 1 divides these two zones. Interval 2 correspond
the parameters used in Ref.@16#. For finite chains (N<640) with
on-site potentialf4 ~5! finite heat conductivity is detected onl
above line 3.

FIG. 8. Dependence of the heat conductivity coefficientk on the

reduced temperatureT̃5T/e for the chain with periodic on-site po
tential ~4! for e53 ~curve 1!, e55 ~curve 2!, ande510 ~curve 3!.
04120
it

,
s
d

→` and has a single maximum at a certain temperatureT̃c .

This value fairly well coincides with the temperatureT̃m ,
which corresponds to the minimum of the heat conductiv

Moreover, the increase and decrease of the heat cap
is clearly correlated with the decrease and increase of
heat conductivity. This fact suggests that the same phys
effects are responsible for both processes. For zero temp
ture the heat capacity is equal to unity. We suppose that
increase of the heat capacity at higher temperatures is re
to thermal activation of topological solitonlike excitation
~kinks and antikinks! that represent additional degrees
freedom for this system. As a result the dynamical super
tice of solitons appears. The density of this superlattice
proaches its maximum at the temperatureT̃m . Further
growth of the temperature results in the decrease of the n
ber of degrees of freedom, which is manifested as effec
detaching of the chain from the on-site potential. Theref
the heat capacity decreases and tends to unity as the tem
ture grows.

These correlations between the behavior of the heat
pacity and the heat conductivity and especially the fair co
cidence ofT̃m andT̃c allow us to suppose that the heat tran

to

FIG. 9. The dependence of the dimensionless heat capacityc on

the reduced temperatureT̃5T/e ~a! for the chain with periodic
on-site potential~4! and ~b! for the chain withf4 potential~5! for
e510 ~curves 1,6!, e55 ~curves 2,7!, e53 ~curves 3,8!, e51
~curves 4,9!, and e50.5 ~curves 5,10!. Dashed curve 11 gives a
similar dependence for the chain with on-site sinh-Gordon poten
~6!, for v051.
5-6
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fer is limited mainly by phonon scattering on the solito
superlattice. The effectiveness of this scattering depend
the density of the superlattice as well as on the ability
single kinks to scatter phonons. In the strongly coopera
regimeg.g0 the interaction between kinks and phonons
nearly elastic~close to the case of complete integrability! and
therefore the heat conductivity has the trend to grow, pr
ably to infinity. For lower cooperativeness the solito
phonon interaction is less elastic and the finite range@ T̃b ,T̃h#

of converging heat conductivity appears. For the cases oT̃

,T̃b and T̃.T̃h , we could not see convergence of the he
conductivity. The suggested reason for this effect is that
soliton superlattice effectively disappears.

Let us consider now an incommensurate Frenk
Kontorova chain where the period of the chain is differe
from the period of the on-site potential. The dimensionle
on-site potential is a periodic function~4! with period 2p,
and the chain has periodl 52pq. Then functionF(un) in
Eq. ~7! will take the form

F~un!5
d

du
U~un1nl !.

For the sake of simulation we chooseq5 l /2p5A2. It is
well known@29# that such a lattice in its ground state alrea
has a soliton superlattice of nonzero density. Therefore
convergence of the heat conductivity is expected to be fa
tated as compared to the commensurate case.

Figure 10 demonstrates the zone in the space of par
eters (g,T̃) wherek(N) seems to converge. For the sake
comparison the boundary for the commensurate case is
presented (l 52p). The result is that no qualitative chang
of the behavior occurs. The only difference is that the zo
with normal heat conductivity moves down. This effect

FIG. 10. Zones in the space of parameters (g,T̃), where for the
finite chainsN<640 with periodic on-site potential~4! and period
l 52pA2 the heat conductivity is normal@~a!, gray# and abnormal
@~b!, white#. The dashed line denotes the same boundary for
commensurate Frenkel-Kontorova model (l 52p).
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related to the presence of the topological kinks at any te
perature. The appearance of normal heat conduction in
current framework occurs at lower temperature since l
solitons should be thermally activated in order to achie
convergence. On the other hand, the kink superlattice fa
tates effective detachment of the lattice from the on-site
tential ~the average coupling energy in the ground state
less! and therefore the upper boundary for the normal h
conduction is also achieved at lower temperatures.

VI. HEAT CONDUCTIVITY OF THE CHAIN WITH
DOUBLE-WELL ON-SITE POTENTIAL

Let us consider the heat conductivity of the chain with
f4 on-site potential~5!. For this casek(N) seems to con-
verge whenT̃.T̃053g/2 (T.1.5), see Fig. 7.

In order to investigate the behavior in the temperat
rangeT̃,T̃0, let us consider the temperature dependence

e

FIG. 11. Exponential decrease of the autocorrelation funct
C(t) in the chain with on-site potentialf4 ~5!, e51, T520 ~curve
1!, T510 ~curve 2!, T55 ~curve 3!, and T53 ~curve 4!. @Semi-
logarithmic coordinates lnC(t) versust.#

FIG. 12. Power-law decrease of the autocorrelation funct
C(t) in the chain withf4 on-site potential~5!, e51, T51 ~curve
1!, andT50.5 ~curve 2!. @Double logarithmic coordinates lnC(t)
versus lnt.# The angle coefficienta determines the decrease rat
For T51, a51.2; for T50.5, a51.02.
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A. V. SAVIN AND O. V. GENDELMAN PHYSICAL REVIEW E 67, 041205 ~2003!
the autocorrelation functionC(t). For g51 (e51) this is
shown in Fig. 11. Ast→` the autocorrelation function de
creases exponentially. The decrease rate grows as the
perature increases and therefore the conclusion concer

finite heat conductivity atT̃.T̃0 is confirmed. At lower tem-
peratures the decrease rate seems to satisfy a power
t2a—see Fig. 12. The degreea decreases with the decrea
of the temperature. AtT51, a51.2.1, therefore integral
~15! converges and the heat conductivity is finite, atT50.5
we finda51.02. Within the current accuracy this value co
responds to the transition to the abnormal heat conductio
is extremely difficult to obtain reliable data for lower tem
peratures in order to substantiate this conclusion becaus
huge computation time required. The reason is that the
tem is rather close to the completely integrable case. N
numerical methods are needed to investigate this kind
systems.

The dependence of the heat conductivityk on reduced
temperatureT̃ is presented in Fig. 13. For low cooperativ
ness (g,0.5) the heat conductivity shows a local minimu
and local maximum~at T̃5T̃1), before decreasing monoto
nously to zero asT̃→`. The relative value of the maximum
decreases as the cooperativeness grows, and it disappea
a certain critical value ofe.

To understand this behavior of the heat conductivity, i
again useful to investigate the behavior of the heat capacc

@Fig. 9~b!#. As T̃→0 the heat capacityc→1. As the tempera-
ture grows, the heat capacity grows, achieves its maximum
the temperatureT̃c , and then decreases monotonously to
value less than unity. The valueT̃c is situated near the maxi
mum point of the heat conductivityT̃1. Such behavior is
related to the peculiarities off4 potential. At low tempera-
tures the main effect is due to negative anharmonicity n
the ground state~therefore the heat capacity exceeds uni!

FIG. 13. Heat conductivityk versus reduced temperatureT̃
5T/e for the chain with double-well on-site potential~5!, e54
~curve 1!, e52 ~curve 2!, ande51 ~curve 3! and for the chain with

sinh-Gordon on-site potential~6!, v051 ~dashed curve 4,T̃5T).
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and for high temperatures (T̃@1) the process is governed b
positive anharmonicity, bringing the heat capacity to t
value below unity.

Let us now consider the frequency distribution of vibr
tions of the chain. The spectrum is computed fore54 (g
51/4) and three characteristic temperaturesT50.4, 10, 100.
The spectrum of the chain with harmonic on-site poten
~3! does not depend on the temperature and has the form

E~v!52v/pA~v22v0
2!~v1

22v2!, ~17!

where the maximum frequency isv1
2541v0

2. For e54,
v054/pAe52.546, v153.238. As it is demonstrated in
Fig. 14~a!, for temperatureT50.4 the spectrum of the chai
with on-sitef4 potential nearly coincides with the vibratio
spectrum of a purely harmonic chain~17!. This means that a
low temperatures only phonons contribute to the freque
spectrum and other excitations do not play any signific
role. ForT510.e the distribution extends below the lowe
boundary of the propagation zonev0 @Fig. 14~b!#. Such a
low-frequency component may be associated with intrin
vibrations of the solitons superlattice. For even higher te
peraturesT5100@e the spectrum crosses also the upp
boundary of the propagation zonev1 @Fig. 14~c!#. Such ef-
fect may be attributed only to excitation of high-frequen
discrete breathers. Therefore, for low temperaturesT̃,T̃0
50.5g the dynamics of the system is close to that of a h
monic chain. The heat transport is governed by weakly in
acting phonons and heat conductivity may be divergent.
higher temperatures the heat conductivity converges. In
intermediate rangeT̃0,T̃,T̃1 the effective phonon scatter
ing mechanism is due to the superlattice of topological kin

FIG. 14. Frequency spectrum of energy of vibrations in t
chain with double-well on-site potential~5! at temperaturesT
50.4 ~a!, T510 ~b!, andT5100~c!; e54. The dashed line denote
the spectrum of harmonic chain~3! with v054/pAe.
5-8
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HEAT CONDUCTION IN ONE-DIMENSIONAL LATTICES . . . PHYSICAL REVIEW E 67, 041205 ~2003!
and for high temperaturesT̃.T̃1 due to high-frequency dis
crete breathers. Interplay of these two different mechani
of phonon scattering explains also the dependence of the
conductivity on the cooperativeness of the system~Fig. 13!.
The minimum and maximum of the heat conductivity disa
pear with growth of the cooperativeness since the sol
mechanism of scattering becomes less effective~the soliton-
phonon interaction is closer to elastic! and simultaneously
the excitation of the discrete breathers becomes easier.

VII. HEAT CONDUCTIVITY OF THE CHAIN WITH
sinh-GORDON ON-SITE POTENTIAL

The heat conductivity of this system has been investiga
in Ref. @17#, and we want to elucidate the detailed physic
mechanisms. The on-site potential~6! is a single-well func-
tion with positive anharmonicity. The sequencek(N) con-
verges for high temperatures; for low temperatures the a
racy of current experiment is again insufficient. Th
observation is supported by the fact that the autocorrela
function C(t) at high temperatures fort→` decreases ex
ponentially~Fig. 15!, and for low temperatures by a powe
law ~Fig. 16!.

FIG. 15. Exponential decrease of the autocorrelation func
C(t) in the chain with sinh-Gordon on-site potential~6!, v051,
T510 ~curve 1!, T57 ~curve 2!, andT55 ~curve 3!. @Semiloga-
rithmic coordinates lnC(t) versust.#

FIG. 16. Power-law decrease of the autocorrelation funct
C(t) in the chain with sinh-Gordon on-site potential~6!, v051,
T52. The solid line corresponds to the number of particlesN
5500, dotted line toN51000, and dashed-dotted line toN
52000.
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The heat conductivity decreases monotonously and foT
→` exponentially tends to zero~Fig. 13, curve 4!. Positive
anharmonism of the potential leads to monotonous decre
of the heat capacity~Fig. 9, curve 11!. The frequency spec
trum of vibrations moves towards the upper boundary of
propagation zone with growth of the temperature. The
facts allow us to conclude that the high-frequency discr
breathers provide effective phonon scattering in this mo
and facilitate the convergence of the heat conductiv
Growing concentration of these breathers with the growth
the temperature leads to monotonous decrease of the
conductivity coefficient.

Chain with on-site potential

V~u!5bu4/4 ~18!

~positivef4 model! also has finite heat conductivity@18,19#.
Potential~18!, as well as sinh-Gordon on-site potential~6!, is
a single-well symmetric function with positive anharmonis
Therefore the mechanism of the phonon scattering is a
related to the discrete breathers andk(T)↘0 for T→`. For
b52 the heat conductivityk(T);T21.35 @19#.

VIII. CONCLUSION

The investigation presented above demonstrates that
conductivity of any concrete model of chains with on-s
potentials depends on peculiar nonlinear excitations, wh
determine the process of the heat transfer and phonon
tering. Two typical mechanisms of the phonon scatter
were revealed in the paper—thermalized soliton superlat
~discrete sine-Gordon andf4 models! and discrete high-
frequency breathers (f4 and sinh-Gordon models!. Phonon
scattering mechanism may switch with the change of
temperature (f4 model!.

For the discrete Frenkel-Kontorova model the zone of
converging heat conductivity for given chain length is lim
ited by low and high temperatures and by high cooperati
ness. The numerical possibilities available till date do n
allow us to establish unambiguously the character of the h
conductivity outside the zone designated at Fig. 7. Still th
is a reason to suggest that an infinite chain has diverging
conductivity for certain parameters, although the zone co
sponding to finite heat conductivity will be larger than com
puted above. The same is relevant for two other models c
sidered. Still, the transition from an exponential to pow
law-like decrease rate of the autocorrelation function
observed in every case. This observation supports the
gestions related to the switches of physical mechanisms
sponsible for the character of the heat transport.
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APPENDIX

1. Numerical realization of the Langevin thermostat

System of equations describing the dynamics of the ch
attached to thermostats~7! has been integrated numerical
by standard fourth-order Runge-Kutta method with const
step of integrationDt. Numerical realization ofd-function is
performed asd(t)50 for utu.Dt/2 and d(t)51/Dt for
utu<Dt, i.e., the step of integration corresponds to the c
relation time of the random forces. That is why in order
get correct description of the Langevin thermostat we m
guarantee that the relaxation timet r@Dt. In order to fulfill
this condition the relaxation time was chosen ast r510, and
the step of integration for different values ofN was chosen as
D50.05, 0.025, 0.0125.

For every step of integration the random forcesjn
6 were

taken to be constant. They were computed as indepen
realizations of the random valuej, normally distributed with
zero averagêj&50 and dispersion̂j2&52T6 /t rDt. For
generating the random valuej, program packageZUFALL

@30# was used.
The initial state for the integration of Eqs.~7! was chosen

to be equal to ground state of the chain:

un5u0 , un850, n51,2, . . . ,N11N1N2 , ~A1!

whereu050 for on-site potentials~3! and~6! andu05p for
potentials~4! and~5!. It is convenient to control the accurac
of the simulation through the behavior of a sequence of
erage local heat fluxes$Jn%n5N111

N11N . If the choice of the

integration stepDt is correct then this sequence should
constant. If the local average heat flux changes from part
to particle then the integration step should be reduced.
growing chain lengthN the step of integration should be als
reduced in order to provide sufficient accuracy; the averag
time also grows~see Ref.@31#! and therefore the time o
simulation necessary for obtaining reliable results for largN
turns out to be extremely large.

2. Computation of the correlation function

In order to compute the autocorrelation function of t
heat fluxCN(t) the dynamics of cyclicN-particle chain was
simulated. The thermalized chain with temperatureT was
obtained by integrating Langevin system of equations,

un95un1122un1un212F~un!2gun81jn ,

n51,2, . . . ,N, ~A2!

where n1151 for n5N and n215N for n51, g50.1
~relaxation timet r510), jn represents white Gaussian noi
normalized as

^jn~t!&50, ^jn~t1!jk~t2!&52gTdnkd~t22t1!.
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System ~A2! has been integrated numerically with initia
conditions corresponding to the ground state of the ch
After time t510t r the chain approached equilibrium wit
the thermostat and the coordinates

$un~t!,un8~t!%n51
N ~A3!

corresponding to the thermalized state at temperatureT.
Afterwards, the dynamics of isolated thermalized cha

was simulated. For this purpose system~A2! was integrated
with zero dampingg50 and zero external forcejn[0).
Thermalized state~A3! was used as initial condition. Th
result was the dependence of the general heat fluxJ on time
t. Afterwards with the help of Eq.~16! the autocorrelation
functionCN(t) was computed for given thermalized state
the chain. The autocorrelation function depends significan
on concrete realization of the thermalized chain. That is w
in order to improve the accuracy this procedure was p
formed 103–104 times with independent initial realization
of the thermalized state. Finally, the shape of the correla
function was computed as average over all these realizati
It is worth mentioning that the alternative way of comput
tion ~performing of one very large simulation! would not
bring about any sufficient gain in the accuracy because
growing integration errors.

In order to verify the independence of the correlati
function on the chain length the appropriate calculatio
were performed for different values ofN. Figure 16 demon-
strates the functionCN(t) for the chain with sinh-Gordon
on-site potential forv051, T52, andN5500, 1000, 2000.
It is clear that the autocorrelation function is nearly indepe
dent ofN ~the differences are noticeable only for large tim
and are reduced as the number of realizations used for a
aging grows!. For the given set of parametersN51000 pro-
vides sufficient accuracy.

3. Comparison of Langevin and Nose´-Hoover thermostats

Unlike the Langevin thermostat, the Nose´-Hoover ther-
mostat~NHT! @25# is not stochastic. Its dynamics is com
pletely determined by the initial conditions. It turned out
be good choice for simulations of FPU system@2,3# but its
deterministic nature can bring about artifacts in the behav
of the system. We compare this thermostat with the Lange
thermostat~LT! we use for the case of Frenkel-Kontorov
model.

Let us consider the chain with fixed ends (1,n,N
1N11N2) with N6 particles attached to NHT having th
temperatureT6 . The dynamics of the system is described

un95un1122un1un212F~un!2h1un8 ,

n52, . . . ,N1 ,

h18 5
1

t r
2 S 1

~N121!T1
(
n52

N1

un8
221D

un95un1122un1un212F~un!, ~A4!
5-10
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HEAT CONDUCTION IN ONE-DIMENSIONAL LATTICES . . . PHYSICAL REVIEW E 67, 041205 ~2003!
n5N111, . . . ,N11N,

un95un1122un1un212F~un!2h2un8 ,

n5N11N11, . . . ,N11N1N221,

h28 5
1

t r
2 S 1

~N221!T2
(

n5N11N11

N11N1N2

un8
221D ,

whereF(u)5dU(u)/du, andt r is the relaxation time of the
thermostat.

Usually the simulations of the heat conductivi
@2,3,16,18# taket r51, andN15N252 ~only end particles
are attached to the thermostatn52 and n5N11N1N2

21). But, as stated in Ref.@26#, such thermostats are no
enough random–they cover only a part of the phase sp
and correspond to strange attractors. In order to reduce
effect we attach to the thermostatN15N2540 particles
from every side of the chain.

The dynamics of system~A4! is also completely deter
ministic. It should be mentioned that it is impossible to u
the initial condition~A1! corresponding to ground state o
the system@it is stationary point of system~A4!#. We take the
initial condition

FIG. 17. Distribution of local heat fluxJn ~a! and and local
temperatureTn ~b! in the chain with periodic on-site potential~4!,
e51, N5160, N6540, T153.05, T252.95, averaging timet
5107. Gray zones denote the chain fragments embedded in
thermostats. Thick lines~1, 3! correspond to NHT (t r51), and thin
lines ~2, 4! to LT (t r510).
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un5u0 , un8~0!54S jn2
1

2DA~T11T2!/2, ~A5!

wherejn represents independent realizations of the rand
variable over the interval@0,1#.

We choosee51 (g51), T153.05, T252.95, N580
and integrate system~A4! numerically with initial condition
~A5!. The distribution of heat fluxesJn and local tempera-
turesTn is presented in Fig. 17~for the sake of comparison
we present also the results obtained by using LT, thin line!.
Within the left thermostat the heat flux grows linearly a
within the other thermostat it decreases linearly withn. At
central part of the chain the value of the heat flux does
depend onn. Linear temperature profile is formed and th
heat conductivity coefficient may be computed according
Eq. ~12!—k(N)518.4. Use of LT givesk(N)518.5 ~see
above!, i.e., the value ofk does not depend on the type of th
thermostat.

In addition, it is possible to conclude from Fig. 18 that t
frequency distribution of the energy of vibrations also do
not depend on the type of thermostat used. It means tha
the case of the temperatures close to the value of the po
tial barrier the choices of NHT or LT bring about equivale
results

The situation is strikingly different if the temperature
lower and the chain is closer to the linear case. The No
Hoover thermostat is not effective in this case. In order
illustrate this fact we use the model of harmonic chain. As
is clear from Fig. 3, NHT gives values of the heat flow su
stantially different from the correct values; at the same ti
the use of LT secures much better results. That is why in
present paper we used more complicated and consuming

It should be mentioned that sometimes due to its simp
ity NHT is used in combination with LT@32# ~LT is used for
the parameters of the model where NHT is not acceptab!.

he

FIG. 18. Frequency distribution of the energy of particle havi
numberN/2 in the chain with periodic on-site potential~4!, e51,
N5160, N6540, T153.05,T252.95. The thick line correspond
to use of NHT (t r51), and thin line to use of LT (t r510).
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