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Free energies from integral equation theories: Enforcing path independence
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A variational formalism is constructed for deriving the chemical potential and the Helmholtz free energy in
various statistical-mechanical integral equation theories of fluids. Nonzero bridge functions extending the
scope of the theories beyond the hypernetted chain approximation can be classified as to whether or not they
imply path dependence of the free energy. Classes of bridge functions free of the path dependence problem are
derived, based on which a route is devised toward direct computation of free energies from the simulation of
a single state.
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Integral equation theories of fluids, particularly of the lig- =h—c, i.e., B=B(t), or of a “renormalized” ICFB(t* =t

uid state of matter, have received increased interest in recent gy, ) whereu, is a “suitably chosen” long-range part of

years through their application not only to simple liquids butine total potentialsee, e.g.[5-7)).

also to, e.g., complex species in solution, interfacial phenom- - one of the most important properties of integral equation

ena, etc. A commonly used integral equation for the determitheories within the HNC approximation is the fact that the

nation of liquid structure is the one-dimensioriaD) “ref-  eycess chemical potential and the excess Helmholtz free

erence interaction site mode(RISM) or site-site Ornstein-  energyA are given in closed forf8,9] since the correspond-

Zernike (OZ) equation of molecular fluidpl] ing coupling parameter integral, given here prototypically for
h=wecow+ wocs(ph) (1) a molecule interacting via site-site pair potentials with a

' single component, homogeneous environment,

It relates the total correlation functidm= (h,,(r)) (the ra-

dial distribution function isg=h+1) to the direct correla- 1

tion functionc=(c,,(r)), w=(w,,(r)) are the intramolecu- M=PE er dN[h,(r,\) +1]

lar correlations,p is the density,«,y represent molecular ay 0

sites, ande denotes convolution. For a solvated molecule

(solute sitesw, solvent sitesy) in infinite dilution one has in ) ) . .
the 1D case can be written as an exact differential that simultaneously

implies independence of the path prescribed by the coupling
parametein. A is given for a one-component system by the
PNay= D @uar®Cory®Xyry (2)  right-hand side of Eq(5) multiplied by N/2, N being the
a'y’ number of particles. For nonzero bridge functions this is gen-
and for the 3D RISM equations, where a multisite solute ierally not the case, a fact that has been noticed only margin-

treated as a single anisotropic body3], ally in the literature. Apparently Kjellander and Sarnjan]
g pic bady3| were the first who discovered the path dependence for com-

mon bridge functions applied to simple liquids; later &&]
ph,=2> ¢ oxyr,y (3 argued on topological grounds that the linear scaling path,
Y i.e.,,B(t(N))=B(\ty), is the “correct” one due to the formal
with the solvent susceptibility=pe-+ p2h. The atomic OZ equivalenc_e of thg exact ex_pression and the linear scaling
equation follows from Eq(1) ash=c+ce(ph) in the ex- _result for simple bridge functions. In the case of a renor_mal-
tended atom limit; the molecular OZ relation has basically arfZ€d ICF, Lee and co-workef$,7] assumed the renormaliz-
analogous form but is defined over a different domain in-N9 long-range potential to be constant ugonntegration.
cluding molecular orientations!]. These equations must be Although motivated topologically, an inconsistency is intro-
supplied with a closure relatiof8 is the inverse temperature duced in this way since at=0 the bridge function would

AUg,(1,N)

an o ©

andu the pair potential not vanish as it should in the absence of any interactions.
Choudhury and GhosH12] let both the ICF and the renor-
Nay=exp— BU,,+hy,—CuytBy,)—1, (4) malizing potential scale linearly, without further motivation.
The path dependence is conserved in any case.
which introduces the bridge functioB. Despite the well- For a reliable and unambiguous theory, enforcing path

known conceptual difficulties of the RISM equations within independencés, of course, of foremost importance. To this
the hypernetted chaiiHNC) approximation for whichB  end a general formalism is needed that is capable of discrimi-
=0, we can use such an expression at least formally as mating between path-independent and path-dependent inte-
corrective device toward exact correlation functions. Almostgral equation theories of various kinds. The present article is
all nonzero bridge functions known in the literature are typi-aimed at filling this gap. We start by rephrasing the sufficient
cally functions of the indirect correlation functiofiCF) t  condition for path independence, namely, the existence of an
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exact differential, in terms of a variational stationarity prin- For the Helmholtz free energy we would write
ciple. The path-independent excess chemical pote(iad

analogously the free energy oz A0C pC ac .
=pb—| 1+ |- —
Q™ =pt 1-p8 P

2N

1 gu (1 1 JF(r,\)

M= fo dx —- = fo d"f driL(r,\)= fo d"f dr—=— " (cf. [8]), given here only for the OZ equation that is needed

(6) later; the first term of the Lagrangian is to be multiplied by
1/2.

is given as a functional of a functioR of the coupling pa- As a proof of concept showing that the isoperimetric con-

rameter and some spatial coordinates. If the integral equastraint is indeed sufficient we can now rederive the known

tions (1)—(3) or the atomic and molecular OZ equations de-1D RISM/HNC result foru [9]. The Euler-Lagrange equa-

fine the integrandk can be found in closed form within the tions in this case aréor functional derivatives of & space

HNC approximation[8,9]. In other cases we can at least integral with respect to space functions sdé,14])

demand for the existence of E(f) that the variation van-

ishes, op U, 9C,
sh :pﬁ_ pay_ ap a)\y+vay: 0, (8)
Su=0, 7 7
. op ah,

as can be seen from the corresponding Euler-Lagrange equa- =gp—2—1y =0
; oC e O\ ay =
tion [13] ay

) aL d aL I

e - =0 =PurlNay+ 1) =4, =0,

SF(r,\)  dF(r,N) o\ dF,(r,\) Otay

with F, indicating the partial derivative with respect 0 ou dhy,
For the general integrand in E¢5), where an explicif is 5uay=_:8pay(hay+ D=p——=0

not immediately recognizable, we have to treat the defini-

tions governing the interrelation d¢f andu in the form of  Solving for the unknown Lagrange parameters yields
constraints that are added to a general Lagrangian. In this

manner, Eq(7) can be satisfied by equating the functional o1 INay ho 411
derivatives taken independently with respecthto,t,uwith Pay=—8 "p IN (Ray+1)75,
zero. The constrained chemical potential functional reads,
prototypically for the 1D case, . dh,,,
V=B PN
1 AUg,(T,N\)
“:f de drY, pLNay(r ) +1]—=— B
0 qg=-p"%
As it should,q is independent ok andr; the same is ob-
+p”(r’)\)P“ﬁU”(r’)\)V”] tained for the free energy. Upon insertion into £§) and
L noting from Eq.(2) thatc andh scale in the same way with
L 3f d)‘f dk Q(K ), \, we obtain the well-known result
(2m)° Jo
1 1
—n— 2
where from Eq.(4) and the definition of pNC=p 1Pa2y dr(EhaF Cay™ §hwcm G

P ay=€Xp(— BUay+ ey Bay) =Ny 1, In summary, sufficient conditions for the existence of an ex-

act differential are therefore th&h) the constrained varia-

Vay=Nay=Cay~lay, tions of u or A vanish nontrivially, yielding(b) a Lagrange
and the integral equations are covered by an “isoperimetric’parameteq that is independent of spatial coordinates and the
[13] or integral constraint: from Eq2) (see alsd9]) coupling parameter. , _ _

Turning now to nonzero bridge functions various cases
ae ., ., ae R can be examined with the present formalism. For the com-
Q'P= Z , éay% ?vm'f(yy'—zy afyphaw monly used formB,,,=B,,(t,,) we get
a,a’y,y a,

_ _p-1
where the carets denote Fourier transforms. With a similar 4= =B (1+Bg, /o),

functional for the 3D case and from E€}) we obtain so that the derivative should be constant for path indepen-

98 dence, which cannot be satisfied except for the essentially
_7pﬁy_ unusable case dB being a linear function of. All these
I\ closuresB,,(t,,) do not lead to an exact differential and

ac.,
Q3D: 2 e'y&_):,AX'y‘y’_z
Y

v,y
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therefore imply path dependence. This result was found in a0.544 as derived from numerical coupling parameter inte-

different manner by Kjellander and Sarmi0] in the path  gration that is apparently path independent.

dependence analysis for simple fluids. A surprising result is obtained if the bridge expression is
If the bridge function is an independent function of the allowed to be an explicit function of the correlation functions

coupling parameter, another Euler-Lagrange equation is ne@nd potential. FoB(u,h,t) we have(subscripts are omitted

essary: for simplicity)
Su q=—pB Y(1+B/at)(1—oB/dBu) !
F = pay(hay+ 1) =0,
ay and forB(u,h,c)
whereby the variation becomes underdetermined and the q=—pB Y(1-dBldc)(1—dBldBu) "L,

chemical potential would trivially vanish. An exact differen-
tial therefore does not exist, entailing path dependence. Sudboth independent di. This meangj= — 81, implying path
bridge functions have been used by Bual. [15] and by independence forany function B(t—pBu), B(c+ Bu),
Kovalenko and Hiratd16] in studies of the hydration of B(h,t—Bu), B(h,c+ Bu), andB(h), constituting a princi-
apolar species. In Ref16] (and similarly in Ref[15]) the  pal result of this article, again valid for both chemical poten-
repulsive bridge correction tial and free energy. Since the particular function to be used
can vary widely as long as the relations betwé¢&enandu
re are maintained, it is in general not even possible to find a
Bay=In 7]1;[7 [0 exp(— Bugy)] closed form expression for and A. In other words, these
functions can lead to “hidden,” nonexplicit exact differen-

has been used for noble gases in water where the superscrift!s for the chemical potential and free energy. For instance,
“rep” indicates the repulsive ~ 2 term of the Lennard-Jones in the case oB(t—Bu), the other Lagrange parameters for
potential. Although this part is clearly related to the total# aré
potential, the way the splitting is done means additional in-
formation not provided by the theory itself. Consequently, if
the separate potential terrfend with them the part entering
the bridge functiohare scaled by 6u®" and A 2P, as in
[16], the hydration free energies of Ne, Ar, Kr, and Xe are
2.97, 1.90, 1.50, and 0.99 kcal md) respectively. If instead
A 1203 and A12u™P are chosen, we obtain 3.33, 3.01, 3.00,
and 2.99 kcal mol*. In these cases, fitting parametrized em-JB/JBu is a function of botht andu; furthermore, defining
pirical bridge functions in order to minimize the difference an arbitrary path for one quantity entails a specific path for
between integral equation prediction and experiment as ithe other that may be hard to extract from the closdie
Ref.[15] is, of course, a viable route, but one has to keep inSuch an explicit expression would be needed for a closed
mind that the coupling path chosen acts as another empiric&rm chemical potential obtained by insertipgnto Eg. (8)
parameter. and integrating. Despite the technical difficulties with these
The idea of the repulsive bridge correction has, of courseglasses of bridge functions implying path independence, the
a sound physical basis as outlined[it5,16], which can be renormalization ide§5] is given an important physical basis
exploited by splitting the total chemical potential into a re-for its interpretation.
pulsive part under the action of the scaled bridge function Developing model bridge functions satisfying path inde-
and an attractive component where the bridge correction igeéndence based on the results of the last paragraph is beyond
kept constant. The latter part is simply given by subtractinghe scope of this article. If the total free energy is subdivided
the HNC-type functionalg9) supplied with the correlation as A(u;+uy)=A;(u;)+AA,(u,), the first part being as-
functions derived from the full and only the repulsive poten-sumed to be known and the second part being path indepen-
tial. For the former,B=B[u] is a functional of the now dent, we can, however, immediately use documented func-
“full” repulsive potential. It appears hopeless to prove the tions of t* =t—u,, the ICF renormalized with the long-
existence of an exact differential for this complicated casg¢ange attractive potential,. In this way the free energy can
but there is some numerical evidence. Skipping details of th§e computed from a single simulation of the final state only.
derivation, if path independence were satisfied we would exIn addition to earlier attempts toward this end, like Baran-
pect yai's geometric approadi 7] and perturbative schemgs3],
a similar idea has been pursued by Matubayasi and Nakahara
w=(1+K)uHNC hrep crer] [19] using an energy representation of the integral equation
and the linear scaling idea for solving the coupling parameter
with the constanK being possibly only a function of tem- integral.
perature and density and the HNC-type functional of the re- In this work, a suitable renormalized bridge function is
pulsive potential correlation functiortg®? and c™”. Indeed, fitted to “exact” simulation data for the Lennard-Jones fluid
for purely repulsive noble gases in water we obtain a fairlyprovided by Llano-Restrepo and Chapmg20], yielding
constantK with values in the range between0.551 and AA, from path-independent coupling parameter integration;

_, oh
v=—p L

—_p-1 @ —1/4 -1
p=—8""p - (h+1)"{(1-oBlopu) *.
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TABLE I. Helmholtz free energies from fitting to exact bridge are used in linear fits of the bridge parameféo the exact
functions, A/Ne, and from the analytic equation of state, bridge functions. With the resulting model function, the cou-
(A/Ng)eos, for various reduced densitips and temperature®*,  pling parameter integration is performed numerically with
optimal bridge parametef, and hard sphere diamets/o. ¢ and  the arbitrarily chosen relatiom(\) = u; + \u, by repeatedly
o correspond to well depth and contact distance of the Lennardsoh,ing the OZ equation fokh between 0 and 1, yielding
Jones potential. AA,. The effective hard-sphere diametkis needed in the
Carnahan-Starling equation f@; is determined from the

P I ¢ dus/o A/Ne (A/Ne)eos simple Barker-Henderson formuJ@4]

0.4 15 0.4483 0.9984 —1.186 —1.159

0.6 15 0.7811 0.9984 —1.441 —1.412 dps= fxdr[l—exp(—ﬁul)].

0.7 15 0.8960 0.9984 —1.394 —1.380 0

0.8 15 0.9899 0.9984 —1.143 -1.167

0.9 15  1.0578 09984 —0.589 —0.703 As a reference for the total free energy, the analytical equa-
0.8 1.0 09930 1.0139 -2.543 _2561 tion of state for the Lennard-Jones fluid of Johnsaral.

0.8 0.81 1.0083 1.0214 —3.128 _3144 [25] is chosen. The results are summarized in Table I, indi-
085 072 10742 10254 —3.454 _ 3488 cating an excellent performance of this simple strategy and

emphasizing the quality of path-independent bridge models.
In conclusion, several promising options for future devel-

A, is obtained from the Carnahan-Starling hard-sphere equg&Pments can be envisaged. The development of path-
tion of state[21]. The model bridge function used here is aindependent model bridge functions, on one hand, will be

renormalized and parametrized variant of the Verlet functiorfluite & challenging yet most important goal on the way to
[22] better self-contained theories of the liquid state. These at-

tempts will benefit from the various consistency conditions
4 1 found in the literaturé¢5,26]. On the other hand, semiempir-
B(t*) =~ >t v ical theori Id be developed b trizing k
25 1+4t*/5 ical theories could be developed by parametrizing known
renormalized bridge functions to represent the structural and
The total Lennard-Jones potential is subdivided into shortfree energy results of molecular simulations. The “direct”
and long-range parts according to Weeks, Chandler, andpproach to the computation of free energies from simula-
Andersen[23]. The OZ equation is solved with an “exact” tions of single states has the potential to reduce the compu-
closure for a variety of reduced densities and temperaturesational burden for the determination of liquid and solution
as given in[20]. The resulting indirect correlation functions state free energies by orders of magnitude.
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