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Electrokinetic flows in a microdomain

A. Kwang-Hua Chu
Department of Physics, Northwest Normal University, Gansu, Lanzhou 730070, People’s Republic of China

~Received 4 December 2002; published 29 April 2003!

The discrete kinetic approach and diffuse-reflection type boundary conditions are adopted to solve the
transport problem for many charged particles flowing along a microslab~or channel of a wide constriction
within a confined slender microdomain!. The preliminary results show that there are selected orientations
related to the nontrivial velocity-slip fields for a range of Knudsen numbers if there is a nonboundary-driven
forcing along the streamwise direction. As the Knudsen number increases, the value of this selected orientation
decreases and the cross-stream velocity profile becomes relatively flat. Our results qualitatively resemble those
reported by Burgreen and Nakache or Paulet al.
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I. INTRODUCTION

Investigation of electrokinetically driven flows could b
dated back to early 1920s@1# ~Debye and Hu¨ckel!. In fact,
Reuss discovered that, in 1808, flow through capillary e
ments can be induced by the application of an electric fie
Later on, Wiedermann~say, 1852!, Quinke ~1859!, Helm-
holtz ~1879!, Smoluchowski~1903!, Freundlich~1909!, and
Gouy ~1910! put forward the subsequent progresses in t
field. The ionic distribution in solutions of low ionic energ
was determined in Ref.@1# by means of a linear simplifica
tion of the exponential Boltzmann ion energy distributio
Later contributions could be traced in Ref.@2#. Interests are
mostly focused on the macroscopic flow field.

Meanwhile, the one-dimensional long-time transport
dilute charges in a semiconductor had been investigated
the continuous kinetic theory@3#, which excluded the short
range interactions between charges. This problem was
mulated in a classical picture of the electronic gas by part
collisions and any quantum effects~say, the Pauli exclusion
principle! were not taken into account. They actually on
considered the quasiparticles@3#. Meanwhile, similar~sta-
tionary state! problems for many neutral particles flowing
microdomains were successfully studied by the discrete
netic theory@4#. To study the case of many charged partic
where the body force or the action of the electric field is
paramount importance, we shall apply our verified a
proaches reported before@4# to this problem, especially in
microscopic view. Considering a flow of a gas of interacti
~charged! particles through awide constriction in a one-
dimensional channel of which this sort is a common part
modern semiconductor devices, the quantum effects migh
neglected~a complication, which is important for all realisti
devices, is that when the wavelength of electrons is com
rable with the width of constriction, then quantum mechan
should be used!.

Note that, motion of two neutral molecules in a specula
reflecting box has been analyzed for two-dimensional~2D!
case and the system of these two molecules were show
be as chaotic@5#. Similar problems related to elastic refle
tion with certain boundaries had been raised by Sinai si
early 1970s@6#. For a number of particles, if there are n
interaction forces in between, the collisions~say, binary
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only! between particles are complicated enough so that
terministic description of their motion is essentially difficu
boundary effects excluded. One problem is the determina
of the stationary state~still away from equilibrium! once a
well-defined entropy concept could be utilized. Recent
tempts, for example, are to use dynamical ensembles
many particle systems@7#.

Although some of the basic problems~many neutral or
charged particles flowing hydrodynamically within confine
simple geometry! could bead hoc solved for the cases o
hard-sphere gases by semianalytic ways~partly using nu-
merical integration after asymptotic expansions!, most of
them were investigated by carrying out computer simu
tions, either the Monte Carlo or molecular dynamics me
ods. The difficulty lie in the mathematical treatments of t
nonlinear Boltzmann equation~which treats the motion of
dilute particles rather well and is in both partial-differenti
and integral forms! with the associated physical bounda
conditions. Due to the mathematical complexity of the co
sion integral, it is a very hard task to obtain explicit resul
especially for states far from equilibrium.

As far as the author knows, even the molecular dynam
or the Monte Carlo methods can obtainad hocsatisfactory
results for this problem with larger collision frequency
rarefaction parameter~which corresponds to larger Knudse
numberKn , defined as the mean-free path of the gases
vided by the characteristic length of the physical problem!.
The computational cost is still too large. One of the reas
is that till now we only have the~limited! equilibrium state
as the starting point or reference state for physical or ma
ematical problems@3–8#. But the clues given by the equilib
rium state to the solving of the evolutional or nonequilibriu
~even a little far from equilibrium! state, e.g., the stationar
or steady flow~nonboundary-driven flow!, which is reached
when the external constant forcing is locally balanced by
dissipative wall shear, are very limited.

In this paper, we plan to investigate the above-mention
issues~which should be resolved, as the problems related
a number of charged particles that are driven by nonbou
ary forcing flowing in microdomains will be common i
early 2000s@9#! by the verified discrete kinetic model@4,10–
12#. This model was well developed and applied to ma
mathematical and physical problems since 1960s@10–12#.
©2003 The American Physical Society06-1
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A. KWANG-HUA CHU PHYSICAL REVIEW E 67, 041106 ~2003!
The main idea of this approach is to use a set of finite~or
discrete! velocities~of particles! instead of continuous one
in the kinetic theory but to keep the space continuous w
out discretization. We thus can simplify the solving proc
dures for the test-case problems without touching the es
tial mathematical and physical difficulties. The bounda
conditions we shall use are the discrete type of the diff
reflection conditions@13#. The verifications of this model fo
many neutral particles have been done by comparison
previous experiments and/or other theoretical/numer
works @4,10–12#. We will focus on these results: preferre
orientations selected from a set of limited admissible co
sions for many charged particles driven by a nonbound
unit forcing finally reaching into a stationary state@4,14#.
These kinds of Knudsen-number-dependent orientations
nonboundary-driven many-charged particles system h
seldom been reported before@4,12#. Our preliminary results
using a semiclassical approach show that as the mean
path or Knudsen number increases, the value of this sele
orientation decreases and the cross-stream velocity pr
becomes relatively flat. Our results resemble qualitativ
those electrokinetic flows reported by Paul, Garguilo, a
Rakestraw,@2,15#.

II. DISCRETE KINETIC FORMULATIONS

A. Discrete velocity models

Considering a simple monatomic gas of particles w
massm and cross-sectional areas, the first step of the mod
eling procedures consists in discretizing the velocity dir
tions in a finite number of unit vectorsik , k51, . . . ,p. One
or more moduli are then associated to each direction.
ratio of the moduli has, however, to be properly chos
so that collisions between particles with differe
velocity moduli are possible. For one velocity moduli ca
ui5cik , k51, . . . ,p; c[c(x,t), in general. Normallyc is
determined by the equilibrium distribution.

The charged particles~hard-sphere! move in the whole
space and collide by simple elastic collisions locally
space. The mathematical model is an evolutional equa
for the number densitiesNi(x,t) linked to the finite set of
velocitiesui . We write a balance equation for the numb
density of particlesi in the form

F ]

]t
1ui•“1g•

]

]ui
GNi5Gi2Li , here “[

]

]x
,

whereg5eE/m ~a vector quantity!, e is the electric charge
of a carrier,m is its mass,E is a constant electric field her
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@3#; Li andGi are the loss and the gain of the particlesi due
to collisions. In case of binary collisions an exact balan
may be obtained, and is expressed with the transitional p
abilities and the number densities. This model has the st
ture of a system of semilinear partial differential equations
hyperbolic type. The above equation could also be written

]

]t
Ni1ui•“Ni1g•

]

]ui
Ni

5(
r 52

R

(
I rPEr

(
JrPEr

d~ i ,Jr ,I r !AI r

JrNI r
,

where i 51, . . . ,p; here, by definition, anr collision (r
>2) involves r particles. I r5( i 1 , . . . ,i r), and Jr
5( j 1 , . . . ,j r) are two elements ofEr , which is the set ofr
not arranged numbers~considering the combinations instea
of the order they appear! taken in the set$1, . . . ,p%.

A ‘‘transitional’’ probability denoted byAI r

Jr is associated

to eachr collision I r→Jr . In the case of binary collisions
this term~also is called as thetransition rates! is referred to
the collisions (ui ,uj )↔(uk ,ul), i , j ,k,l 51, . . . ,p; and
the number of paired outputs corresponding to a giv
paired input is denoted byq. NI r

denotes the produc

Ni 1
Ni 2

•••Ni r
. d( i ,Jr ,I r)5d( i ,Jr)2d( i ,I r) is the algebraic

number of particlesi created through the collisionI r→Jr .
d( i ,I r) is ~positive or zero! the number of indicesi present in
the r set. If only nonlinear binary collisions are considere
considering the evolution ofNi , we have

]Ni

]t
1ui•“Ni1g•

]

]ui
Ni

5(
j 51

p

(
(k,l )

~Akl
i j NkNl2Ai j

klNiNj !, i 51, . . . ,p,

where (k,l ) are admissible sets of collisions. We may th
define the right-hand side of above equation as

Qi~N!5
1

2 (
j ,k,l

~Akl
i j NkNl2Ai j

klNiNj !,

with i PL5$1, . . . ,p%, and the summation is taken over a
j ,k,l PL, whereAkl

i j are non-negative constants satisfying
Akl
j i 5Akl

i j 5Alk
i j , indistinguishability of the particles in collision,

Akl
i j ~ui1uj2uk2ul !50, conservation of momentum in the collision,

Akl
i j 5Ai j

kl , microreversibility condition.
6-2
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ELECTROKINETIC FLOWS IN A MICRODOMAIN PHYSICAL REVIEW E67, 041106 ~2003!
The conditions defined for the discrete velocity above
quire that elastic, binary collisions, such that momentum
energy are preserved,ui1uj5uk1ul , uui u21uuj u25uuku2

1uul u2, are possible for 1< i , j ,k,l<p.
The collision operator is now simply obtained by joinin

Ai j
kl to the corresponding transition probability densitiesai j

kl

throughAi j
kl5Suui2uj u ai j

kl , where,

ai j
kl>0, (

k,l 51

p

ai j
kl51, ; i , j 51, . . . ,p,

with S being the effective collisional cross section. If a
q (p52q) outputs are assumed to be equally probable, t

ai j
kl51/q for all k and l, otherwiseai j

kl50.
The termSuui2uj udt is the volume spanned by the pa

ticle with ui in the relative motion w.r.t. the particle withuj
in the time intervaldt. Therefore,Suui2uj uNj is the number
of j particles involved by the collision in unit time.

Collisions which satisfy the conservation and reversibil
conditions which have been stated above are defined asad-
missible collision.

The discrete kinetic equations@4,10–12# then assume the
following form:

]Ni

]t
1ui x

]Ni

]x
1ui y

]Ni

]y
1gx

]Ni

]ui x

1gy

]Ni

]ui y

5
2cS

q (
j 51
j Þ i

q

~NjNj 1q2NiNi 1q! or

5
2cS

q (
l 51

q21

~Ni 1 lNi 1 l 1q2NiNi 1q!, i 51, . . . ,2q,

~1!

where ui x
5c cos@u1(i21)p/q#, ui y

5c sin@u1(i21)p/q#, u

is the orientation starting from the positivex axis to theu1
direction, whereNi5Ni 12q are unknown functions, andc is
a reference velocity modulus.

According to Refs.@10–12#, for the 2q-velocity model,
that is, q>3, there are morecollision invariants than the
physical ones or conservation laws, which correspond to
number of macroscopic variables~in 2D, they are only four,
i.e., one mass, two momenta, one energy!. That is to say,
there arespuriousinvariants or macroscopic variables forq
>3 models. These models have been verified in Refs.@4,10–
12# by checking the thermodynamics or equilibrium state
q52,3,4 models.

B. Boundary conditions

People normally use purely diffuse-reflection bounda
conditions @3,4,11–13#, which means properties of the re
flected particles are independent of their properties before
impact, for this problem. In other words, the reemitt
stream has completely lost its memory of the incom
stream, except for the conservation of the number of p
ticles. Moreover, we impose the following conditions: T
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gases are in equilibrium with the wall~‘‘the wall locally
behaves as a thermostat,’’ i.e., the gases reflect after
have been in thermodynamic equilibrium with the wall tem
perature! satisfiesNi(r ,t)5g i(r ,t)Nwi(r ,t), where g i ex-
presses the accomodation of the discrete gas to the
quantities, andNwi is the discrete equilibrium densities fo
the i-direction set of particles; that is, we have

uuj•nuNw j5(
i PI

Bi j uui•nuNwi , j PR, Bi j >0,

(
j PR

Bi j 51, ~2!

with I 5$ i ,(uj2uw)•n,0% related to the impinging set o
particles,R5$ j ,(uj2uw)•n.0% related to the emerging se
of particles,n is the outer normal,uw is the wall velocity.

C. Derivation of the governing equation

Now, for the four-velocity model we use here,u1
5c(a,b), u25c(2b,a), u352c(a,b), u45c(b,2a),
a5cos(u), b5sin(u); u is the angle between thex axis and
the u1 direction,c is the reference velocity modulus@4,10–
12#. To obtain the macroscopically hydrodynamical fie
which is useful for comparison with previous experimen
data, we let n5N11N21N31N4 , nu5c(aN12bN2
2aN31bN4), nv5c(bN11aN22bN32aN4), which are
the total number density, thex- and y-direction momentum
flux ~per unit mass!, respectively.u andv are then thex- and
y-direction mean velocities;r5n m is the macroscopic den
sity, wherem is the mass of the particle.

Based on the system of four equations obtained from
~1! and these macroscopic variables, we can use linear c
binations of these equations, purely algebraic manipulatio
to derive the final governing equations we want to sol
First, let R5S(N2N42N1N3), or R̄5(n2n42n1n3), where
ni5Ni /n0, and then use nondimensional variables

U5u/c0 , V5v/c0 , Y5y/d,

whered is the channel width,n0 is related to the total dis-
crete number density and will be defined below,c0 could be
related to a referenced nonboundary-driven forcing sp
@4,14#. We can obtain

S sinu6
cosu

m2 D ]N1

]y
5R, S cosu7

sinu

m2 D ]N2

]y
5R,

~3!

2S sinu6
cosu

m2 D ]N3

]y
5R, 2S cosu7

sinu

m2 D ]N4

]y
5R,

~4!

by adopting the change of variables technique reported
Ref. @3# ~by Baranger and Wilkins!. Here, the first sign is
selected for the positive-charge carrier in the second term
the left-hand side of Eqs.~3! and~4!. Note that the derivation
of the second term in above equations is based on the
6-3
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A. KWANG-HUA CHU PHYSICAL REVIEW E 67, 041106 ~2003!
sumption thatgx is not a constant~cf. @3# for the 14th refer-
ence set by Baranger and Wilkins!.

We look for a solution depending ony ~the cross-stream
direction! only, i.e., the case of many charged particles flo
ing hydrodynamically only alongx direction ~confined in a
slender channel! with gy50, andgx equals to constantg0.
The system of equations above can thus be simplified to

]N1

]y
5

R

b
,

]N2

]y
52

R

a
,

]N3

]y
52

R

b
,

]N4

]y
5

R

a
, ~5!

or

]n1

]Y
5

R̄

bKn
,

]n2

]Y
52

R̄

aKn
,

]n3

]Y
52

R̄

bKn
,

]n4

]Y
5

R̄

aKn
, ~6!

where the Knudsen numberKn51/(dSn0). After using lin-
ear combinations, we have

]n/n0

]Y
50 and

]~nu/c!

]y
5

2

ab
R. ~7!

As U5cn0(an12bn22an31bn4)/(nc0), so we also have

nc0

cn0

]U

]Y
5

2

Knab
R̄5

2

a

]n1

]Y
5

2

b

]n4

]Y

52
2

b

]n2

]Y
52

2

a

]n3

]Y
. ~8!

Integrating the above equation we obtain

2n15AU1K1 , 2n45BU1K4 ,

2n252BU1K2 , 2n352AU1K3 , ~9!

where A5a(nc0)/(cn0) and B5b(nc0)/(cn0). When the
reference state is selected as the fully developed state~a sta-
tionary state with balancing between externa
nonboundary-driven unit forcing and dissipations due to c
fined boundaries@4#!, or n5n0 , c5c0, then we obtainA
5a, B5b.

As for the general boundary conditions@13#, we use the
idea that the number densityNi5Nwallu i ~the equilibrium-
state density! at the wall for i 51,2,3,4, which means mol
ecules are in equilibrium with the boundary just before th
reemit from the confined boundary, e.g., the wall. The de
vations of these kinds of equilibrium density can be found
Refs.@11,12#.

The diffuse-reflection boundary condition@3,4,12,13#
along one boundary becomes

Nw2N15Nw1N2 , bN11aN22bN32aN450, ~10!

which means~i! the equilibrium state at the wall dominate
~ii ! no penetration occurs across the wall.
04110
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The equilibrium densitiesNwi at the wall, as derived in
Ref. @11#, are

Nwi5~n/4!$11~2/c2!uw•ui1~21! i

3@~uw•u2!22~uw•u1!2#~1/c4!%. ~11!

From these boundary conditions, withV50, i.e., b(n1
2n3)5a(n42n2), and n5n11n21n31n451, we thus
get K15K3 , K25K4 , K11K251 and

dU

dY
5

a22b2

2Knab S u22
K12K2

a22b2 D , aÞb, abÞ0.

~12!

D. Semianalytic solutions

Assuming the symmetry principle holds for this kind
nonboundary-driven flow, the remaining boundary conditio
are

dU~0!

dY
50, U~Y51/2!5Us5

2K221

a1b
,

where Us is the velocity slip at the wall, the latter come
from Eqs.~2! and ~10! @4#. Uwall equals to zero here.

After direct integration of ordinary differential equatio
~10!, we obtain one family of solutions for certaina, b, Kn ;
a,b being strongly linked to maximum admissible orient
tions (u), ~whereas the minimumu corresponds toUs50,
which is a trivial solution!

U5G tanh~C2G KY!, ~13!

where

G5S 2K121

a22b2 D 1/2

, K5
a22b2

2abKn
,

whereC depends on the specific gas-surface interface.
The principle to fixu from a nonlinear ordinary differen

tial equation subjected to implicit boundary conditio
@3,4,13# is similar to that adopted in Ref.@16#. Because of the
universality ofC (u, too! for general gas-solid interactions
specific and physical test case should be adopted here. O
we have the test case of a nonboundary-driven flow, for
stance, we take those data~trend of current density vsKn) in
Ref. @3# into consideration since their continuous kinetic a
proaches considering a kind of nonboundary-driven electr
gas flows could be a guideline for our macroscopic veloc
field. For example,C could be fixed once the specific gas a
the solid boundary~walls! are known.

III. RESULTS AND DISCUSSION

Equation ~13! gives us nontrivial macroscopic velocit
fields corresponding to a range of admissible orientationsu)
based on the four-velocity model for admissible collision
$1,3% to $2,4% and confined~slab-wall! boundary conditions.
But, we still have no clear idea how many charged partic
6-4
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ELECTROKINETIC FLOWS IN A MICRODOMAIN PHYSICAL REVIEW E67, 041106 ~2003!
can be organized and flow into a stationary state@5,6# within
a slender confined channel since there are no quantita
measurements up to now, to the best of knowledge of
authors. In essence, there should be field effects in betw
for the many-body problem of charged particles during th
encounters. We adopt the hard-sphere gas assumption
and neglect the potential~force! contribution in the collision
sum~or integral! in Eq. ~1! @8,11,12#. It seems the field effec
~repulsive forces between like-charge particles! will enlarge
the mean-free path compared to that of many neutral
ticles during collisions. However, there will be screening
fects even they are possibly minor.

To fit our interests here, we present velocity fields
smaller and larger mean-free path orKn relevant to the range
of those nontrivial or maximum admissible orientations (u)
that can produce physically verified velocity fields. Maxim
of Ki are set to one andC is fixed for all results presente
here. Results show that the maximum admissibleu will de-
crease onceKn increases. For instance, the maximum adm
sible u equals to 0.1768, 0.0996, and 0.0562 forKn
50.5,1.0,2.0, respectively. This observation resembles
of many neutral particles@4#. These selected orientations fo
many charged particles subjected to hard-sphere collis
may also be due to the nonlinear coupling between
nonboundary-driven forcing and the confined boundary o
the entropy selected favors for the final stationary st
@7,13,16#.

We plot the velocity profileU vs Y for different Knudsen
numbers (Kn50.05, 0.1, 0.15, 0.2, 0.25, 0.5, 1.0, 1.35, 2
3.0! in full-width channel in Figs. 1 and 2. Each curve in Fi
2 shows a plug-like scalar flow or implies a plug-like velo
ity profile ~the cross-stream profiles remain relatively fl
especially for largerKn) and is qualitatively the same as th
of electrokinetically driven flows reported in Ref.@15# ~cf.
those images of Figs. 5 and 6 therein!. Other views of these
velocity fields~U! w.r.t. Y andKn are presented in Fig. 3.

FIG. 1. Velocity fieldsU for different Knudsen numbersKn in
full-width ~d! channel.U, Y, and Kn are dimensionless.Y5y/d.
Kn51/(dSn), n is the number density,S is the effective collision
cross section.~Please cf. Ref.@2# for qualitative comparison with
our smallerKn cases.!
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For smallerKn cases, our velocity results qualitative
resemble those reported in Ref.@2#. ~Note that, in Ref.@2#, as
reported by Burgreen and Nakache, electrokinetic flow
ultrafine capillary slits were considered. Their results, ho
ever, were not presented in terms of the Knudsen numbe
that we cannot directly compare ours with them; cf. Figs
and 3 of Burgreen and Nakache or Fig. 1 of Rice and Wh
head@2#.! But, we can verify our results especially for cas
of Kn;O(1) by comparison with the apparent velocity o
tained from images of electrokinetically driven flows using
technique that employs an ultraviolet laser pulse to writ
pattern into the flow by uncaging a fluorescent dye by Pa
Garguilo, and Rakestraw@15#. We only take the 99-ms imag
~considering the upstream part! presented in Fig. 5 of Ref
@15# into account. Those data were obtained for a electro
netically driven flow through a 75-mm capillary @15#. This
rather-fit comparison shown in Fig. 4 confirms our approa

FIG. 2. Velocity fieldsU for different Knudsen numbersKn in
full-width ~d! channel.U, Y, and Kn are dimensionless.Y5y/d.
Kn51/(dsn), n is the number density,s is the effective collision
cross section.~Please cf. Ref.@2# for qualitative comparison with
our smallerKn cases.!

FIG. 3. The overall view ofU w.r.t. Y andKn in half channel.
6-5
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In our illustrations, asKn is large enough, there will be
significant microscopic effects: nonzero slip velocities occ
ring along the boundaries@17,18#, which are due to the un
balanced momentum or energy transfer microscopic

FIG. 4. Comparison with the apparent velocity~taken in the
99-ms image! reported by Paul, Garguilo and Rakestraw@15# ~cf.
Fig. 5 therein!. We only compare the upstream-part data~image!,
which is a electrokinetically driven flow through a 75-mm capillary.
pl

g.
s.
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er

-
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when particles interacting or colliding with the solid wall
This observation, even though for cases of smallerKn there
exist nonzero velocities for our results, however, is diffic
to be found in Figs. 2 and 3 of Burgreen and Nakache@2#
~especially for smallera, the ionic energy paramete
therein!. The reason could be due to the macroscopic
proach they adopted in Ref.@2#, which cannot resolve the
near-wall microscopic effects@17,18#.

As this model had been verified previously@4,10–12# and
the qualitative or quantitative comparison illustrated he
shows minor differences in between, we have confide
about these results: There are preferred motions for m
charged particles flowing in a slender confined channel o
a range of collision frequencies or Knudsen numbers w
these charged particles are driven by a uniform~constant!
nonboundary-driven forcing. At least, our results of veloc
fields resemble those of electrokinetic flows reported in Re
@2,15# qualitatively or quantitatively for certain range o
Knudsen numbers. We hope in the future we can add
other complicated problems@19–22# by modifying our
present approach.
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