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Electrokinetic flows in a microdomain
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The discrete kinetic approach and diffuse-reflection type boundary conditions are adopted to solve the
transport problem for many charged particles flowing along a micragalehannel of a wide constriction
within a confined slender microdomairiThe preliminary results show that there are selected orientations
related to the nontrivial velocity-slip fields for a range of Knudsen numbers if there is a nonboundary-driven
forcing along the streamwise direction. As the Knudsen number increases, the value of this selected orientation
decreases and the cross-stream velocity profile becomes relatively flat. Our results qualitatively resemble those
reported by Burgreen and Nakache or Petuél.
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[. INTRODUCTION only) between particles are complicated enough so that de-
terministic description of their motion is essentially difficult,

Investigation of electrokinetically driven flows could be boundary effects excluded. One problem is the determination
dated back to early 192Q4] (Debye and Huokel). In fact, of the stationary statéstill away from equilibrium once a
Reuss discovered that, in 1808, flow through capillary elewell-defined entropy concept could be utilized. Recent at-
ments can be induced by the application of an electric fieldtempts, for example, are to use dynamical ensembles for
Later on, Wiedermanrgsay, 1852, Quinke (1859, Helm-  many particle system].
holtz (1879, Smoluchowski(1903, Freundlich(1909, and Although some of the basic problenisiany neutral or
Gouy (1910 put forward the subsequent progresses in thischarged particles flowing hydrodynamically within confined
field. The ionic distribution in solutions of low ionic energy simple geometry could bead hocsolved for the cases of
was determined in Refl] by means of a linear simplifica- hard-sphere gases by semianalytic wagartly using nu-
tion of the exponential Boltzmann ion energy distribution. merical integration after asymptotic expansignsiost of
Later contributions could be traced in RE2]. Interests are them were investigated by carrying out computer simula-
mostly focused on the macroscopic flow field. tions, either the Monte Carlo or molecular dynamics meth-

Meanwhile, the one-dimensional long-time transport ofods. The difficulty lie in the mathematical treatments of the
dilute charges in a semiconductor had been investigated byonlinear Boltzmann equatiotwhich treats the motion of
the continuous kinetic theo], which excluded the short- dilute particles rather well and is in both partial-differential
range interactions between charges. This problem was fomnd integral formpswith the associated physical boundary
mulated in a classical picture of the electronic gas by particleonditions. Due to the mathematical complexity of the colli-
collisions and any quantum effedtsay, the Pauli exclusion sion integral, it is a very hard task to obtain explicit results,
principle) were not taken into account. They actually only especially for states far from equilibrium.
considered the quasiparticl¢8]. Meanwhile, similar(sta- As far as the author knows, even the molecular dynamics
tionary statg problems for many neutral particles flowing in or the Monte Carlo methods can obtad hocsatisfactory
microdomains were successfully studied by the discrete kiresults for this problem with larger collision frequency or
netic theory{4]. To study the case of many charged particlesrarefaction parametdmhich corresponds to larger Knudsen
where the body force or the action of the electric field is ofnumberK,,, defined as the mean-free path of the gases di-
paramount importance, we shall apply our verified ap-vided by the characteristic length of the physical probhlem
proaches reported befofd] to this problem, especially in The computational cost is still too large. One of the reasons
microscopic view. Considering a flow of a gas of interactingis that till now we only have thélimited) equilibrium state
(chargedl particles through awide constriction in a one- as the starting point or reference state for physical or math-
dimensional channel of which this sort is a common part ofematical problem§3—8]. But the clues given by the equilib-
modern semiconductor devices, the quantum effects might beum state to the solving of the evolutional or nonequilibrium
neglecteda complication, which is important for all realistic (even a little far from equilibriurnstate, e.g., the stationary
devices, is that when the wavelength of electrons is compaer steady flon{nonboundary-driven floyy which is reached
rable with the width of constriction, then quantum mechanicswhen the external constant forcing is locally balanced by the
should be used dissipative wall shear, are very limited.

Note that, motion of two neutral molecules in a specularly In this paper, we plan to investigate the above-mentioned
reflecting box has been analyzed for two-dimensidi2al) issues(which should be resolved, as the problems related to
case and the system of these two molecules were shown tonumber of charged particles that are driven by nonbound-
be as chaoti¢5]. Similar problems related to elastic reflec- ary forcing flowing in microdomains will be common in
tion with certain boundaries had been raised by Sinai sincearly 200049]) by the verified discrete kinetic modet,10—
early 19709[6]. For a number of particles, if there are no 12]. This model was well developed and applied to many
interaction forces in between, the collisioiisay, binary mathematical and physical problems since 19p03-17.
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The main idea of this approach is to use a set of fitie [3]; L; andG; are the loss and the gain of the particietie

discrete velocities (of particleg instead of continuous ones {5 collisions. In case of binary collisions an exact balance
in the kinetic theory but to keep the space continuous withmay he obtained, and is expressed with the transitional prob-
out discretization. We thus can simplify the solving proce-gpjlities and the number densities. This model has the struc-
dures for the test-case problems without touching the essefyre of a system of semilinear partial differential equations of

tial mathematical and physical difficulties. The boundaryhyperholic type. The above equation could also be written as
conditions we shall use are the discrete type of the diffuse

reflection condition$13]. The verifications of this model for
many neutral particles have been done by comparison with
previous experiments and/or other theoretical/numerical
works [4,10-13. We will focus on these results: preferred
orientations selected from a set of limited admissible colli- R _ J
sions for many charged particles driven by a nonboundary :22 I;E JgE (1,3, 'IT)AI:NH’
unit forcing finally reaching into a stationary stgié,14]. e

These kinds of Knudsen-number-dependent orientations for . ) _— .
nonboundary-driven many-charged particles system hav\ﬁlhere!_l’ P here_, by deflnlt_lon, am collision (r
seldom been reported befdré,12]. Our preliminary results 22.) |nvo.lves rparticles. I,=(iy, . ol ’.)' and Jy
using a semiclassical approach show that as the mean-fre:e(Jl’ - dr) are wo e'e”?e“t? CE, , which IS the set of
path or Knudsen number increases, the value of this select t arranged numbel(son5|der|_ng the combinations instead
orientation decreases and the cross-stream velocity profif@ the orde.r.they appe)ara.lfen in the sef1, 30 Py )
becomes relatively flat. Our results resemble qualitatively A “transitional” probability denoted byA, " is associated
those electrokinetic flows reported by Paul, Garguilo, ando eachr collision I,—J,. In the case of binary collisions,

J J
ENi‘f‘Ui'VNi‘F ’)/le
I

Rakestraw[2,15]. this term(also is called as th&ransition rate$ is referred to
the collisions (;,u;) < (u,,u), i,j,kl=1,...p; and
Il. DISCRETE KINETIC FORMULATIONS the number of paired outputs corresponding to a given

paired input is denoted by. N, denotes the product

L . ) ) NN, ---N; . 61,3, ,1,)=4(i,3,)— 4(i,l,) is the algebraic
Considering a simple monatomic gas of particles with 't 2 e .
massm and cross-sectional area the first sten of the mod- number of particles created through the collision—J, .
eling procedures consists in g?scretizin thg velocit direc—é(i’lr) 's (positive or zerpthe number of indicespresent in
tiong i?] a finite number of unit vectoig I?zl 0 ();ne ther set. If only nonlinear binary collisions are considered,
or more moduli are then associated to each direction. ThgOnSIderIng the evolution d¥;, we have

ratio of the moduli has, however, to be properly chosen,

A. Discrete velocity models

so that collisions between particles with different aN; 9
velocity moduli are possible. For one velocity moduli case, W'HJVVNF" v mNi
ui=ciy, k=1, ... p; c=c(x,t), in general. Normallyc is '
determined by the equilibrium distribution. P -
The charged particleghard-spheremove in the whole =]21 (kzl) (A}),NKN,—AE'NiNJ—), i=1...p,

space and collide by simple elastic collisions locally in

space. The mathematical model is an evolutional equation o o

for the number densitiedl;(x,t) linked to the finite set of Where k1) are admissible sets of collisions. We may then
velocitiesu; . We write a balance equation for the number define the right-hand side of above equation as

density of particles in the form

1 .
J 9 J Qi(N)=5 2 (ALNN—ASINN;)
—tu- —IN:=G:—L; =_ 2 ij NN
pr +u-V+y a0, N;=G;—L;, hereV X Kl
where y=eE/m (a vector quantity, e is the electric charge withieA={1,... p}, and the summation is taken over all

of a carrier,m is its massE is a constant electric field here j,k,| € A, whereA}, are non-negative constants satisfying

All=AJ=A}l, indistinguishability of the particles in collision,
A:(il(ui +Uu;—u,—u)=0, conservation of momentum in the collision,
Al=AY', microreversibility condition.
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The conditions defined for the discrete velocity above regases are in equilibrium with the wallthe wall locally
quire that elastic, binary collisions, such that momentum andhehaves as a thermostat,” i.e., the gases reflect after they
energy are preserved)+u;=ug+u;, |u|?+|u|?=|ul?>  have been in thermodynamic equilibrium with the wall tem-
+|u|?, are possible for &i,j,k,1<p. peraturg satisfiesN;(r,t) = v;(r,t)N,;(r,t), where y; ex-

The collision operator is now simply obtained by joining presses the accomodation of the discrete gas to the wall
Al to the corresponding transition probability densitis ~ quantities, andN,; is the discrete equilibrium densities for
throughAikj'=S|ui—uj| a:‘j', where, the i-direction set of particles; that is, we have

P .
aikj'BO, kél aik]-'=1, Yi,j=1,...p, |Uj'n|ij:% Bijlui-n|Ny;i, jeR, B;=0,

with S being the effective collisional cross section. If all > Bij=1, 2
g (p=2q) outputs are assumed to be equally probable, then jeR

Kl _ ieankl
ajj =1/q for all k andl, otherwiseajj=0. with 1={i,(u;—u,)-n<0} related to the impinging set of

The termSju;—uj|dt is the volume spanned by the par- particles,R={j, (u;—u,,) -n>0} related to the emerging set

Ficle wi'th Ui in the relative motion w.r.t. the particle witln of particles,n is the outer normaly,, is the wall velocity.
in the time intervadt. Therefore S|u;—uj|N; is the number

of j particles involved by the collision in unit time.
Collisions which satisfy the conservation and reversibility _
conditions which have been stated above are definetias Now, for the four-velocity model we use herey;

C. Derivation of the governing equation

missible collision =c(a,B), Up=c(=B,a), uz=—c(a,B), Us=c(B,~a),
The discrete kinetic equatiori4,10—13 then assume the a=cos@), S=sin(); ¢ is the angle between theaxis and
following form: the u, direction, c is the reference velocity modul(ig,10—
12]. To obtain the macroscopically hydrodynamical field,
dN; dN; dN; dN; IN; which is useful for comparison with previous experimental
Tt U Tx Yy TG0 T Y an data, we let n=N;+N,+N3+N,, nu=c(aN;— AN,
X Y —aNgz+ BN,), nu=c(BN;+ aN,— BN;— aN,), which are
2¢s the total number density, thre andy-direction momentum
=—> (NjNj1q—NiNj, o) or flux (per unit mask respectivelyu andv are then the- and
q ’];1 y-direction mean velocitiegg=n m is the macroscopic den-
pog i sity, wherem is the mass of the particle.
c

_ G 2 (Ni- N NN, =1 2 Based on the system Qf four equations obtaineq from Eq.
q & e Tiitas vt (1) and these macroscopic variables, we can use linear com-
binations of these equations, purely algebraic manipulations,

(D {0 derive the final governing equations we want to solve.

where u; =c cog 6+ (i—1)w/q], u; =csif6+(i—1)mlq], § ISt IELR=S(N2N;=NiN5), or R=(nzns—nyng), where
. X . . y . . n;=N;/ngy, and then use nondimensional variables

is the orientation starting from the positixeaxis to theu;

direction, whereN;=N;, 54 are unknown functions, antlis U=ulcy, V=uvlc,, Y=yld,

a reference velocity modulus.

According to Refs[10-17, for the 2g-velocity model, whered is the channel widthp, is related to the total dis-
that is,q=3, there are moreollision invariantsthan the crete number density and will be defined belay,could be
physical ones or conservation laws, which correspond to theelated to a referenced nonboundary-driven forcing speed
number of macroscopic variabléis 2D, they are only four, [4,14]. We can obtain
i.e., one mass, two momenta, one engrgihat is to say,

there arespuriousinvariants or macroscopic variables for _ cosf | Ny _sin@| dN,
=3 models. These models have been verified in Réf40— Sing~— v R, cosf+— EVE
. : o m y m y
12] by checking the thermodynamics or equilibrium state of &)
g=2,3,4 models.
, cosf | N3 sin@| dN4
B. Boundary conditions —| sinf£ oo = R, —|cosfx——|—=R,
m? | 9y m? | 9y
People normally use purely diffuse-reflection boundary (4)

conditions[3,4,11-13, which means properties of the re-

flected particles are independent of their properties before thiey adopting the change of variables technique reported in
impact, for this problem. In other words, the reemittedRef. [3] (by Baranger and Wilkins Here, the first sign is
stream has completely lost its memory of the incomingselected for the positive-charge carrier in the second term of
stream, except for the conservation of the number of parthe left-hand side of Eq$3) and(4). Note that the derivation
ticles. Moreover, we impose the following conditions: The of the second term in above equations is based on the as-
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sumption thaty, is not a constanfcf. [3] for the 14th refer-
ence set by Baranger and Wilkjns

We look for a solution depending on(the cross-stream
direction only, i.e., the case of many charged particles flow-
ing hydrodynamically only along direction (confined in a
slender channgwith y,=0, andy, equals to constang.
The system of equations above can thus be simplified to

Ny R 0N, R oNg R N, R 5
By awy By a O
or
o, R, R g R
Y  BK, Y oK, Y  BK,’
mn,; R
N aK,' ©

where the Knudsen numbé&t,=1/(dSn,). After using lin-
ear combinations, we have

an/ng

aY

d(nulc) B 2
ay  aB

apB

As U=cng(an;— Bn,— anz+ Bn,)/(ncy), so we also have

()

ncy dU 2 — 2dny 209ny
cno dY KpaB adY B aY

2 dng

a Y’

2 dn,

B aY

)

Integrating the above equation we obtain

2I’11=AU+K1, 2n4=BU+K4,

2n,=—-BU+K,, ©)
where A= a(ncy)/(cng) and B=B(ncy)/(cng). When the
reference state is selected as the fully developed &iadta-
tionary state with balancing between externally
nonboundary-driven unit forcing and dissipations due to con
fined boundarie$4]), or n=ny, c=c,, then we obtainA
=a, B=g.

As for the general boundary conditiop3], we use the
idea that the number density;=N,,,|; (the equilibrium-

2n3: —AU+ K3,

PHYSICAL REVIEW E 67, 041106 (2003

The equilibrium densitieqN,,; at the wall, as derived in
Ref.[11], are

Nyi= (n/4){1+(2/c?)u,- uj+(—1)'
X[(Uy- Uz)? = (Uy- U)®] (L)}
From these boundary conditions, witi=0, i.e., B(n;

—ng)=a(ns—n,), and n=n;+n,+n3+n,=1, we thus
getK1=K3, K2:K4, K1+K2:1 al’ld

|

D. Semianalytic solutions

11)

du o?— p?
dY  2K,apB

K;—K
G2 iR

az_IBZ

a+ B, aB#0.

(12

Assuming the symmetry principle holds for this kind of
nonboundary-driven flow, the remaining boundary conditions
are

du(0)
dy

2K,—1
at+pB’

0, U(Y=1/2=U=

where Uy is the velocity slip at the wall, the latter comes
from Egs.(2) and(10) [4]. U4 equals to zero here.

After direct integration of ordinary differential equation
(10), we obtain one family of solutions for certain 8, K,;
a,B being strongly linked to maximum admissible orienta-
tions (), (whereas the minimun# corresponds tdJ =0,
which is a trivial solution

U=Gtan{C—- G KY), (13
where
o2t Y a2
laz-p?] T 2aBKy

whereC depends on the specific gas-surface interface.
The principle to fixé from a nonlinear ordinary differen-
tial equation subjected to implicit boundary conditions
[3,4,13 is similar to that adopted in R€fL6]. Because of the
universality ofC (6, too) for general gas-solid interactions,
specific and physical test case should be adopted here. Once
we have the test case of a nonboundary-driven flow, for in-
stance, we take those ddteend of current density &) in
Ref.[3] into consideration since their continuous kinetic ap-

state densityat the wall fori=1,2,3,4, which means mol- proaches considering a kind of nonboundary-driven electron-
ecules are in equilibrium with the boundary just before theygas flows could be a guideline for our macroscopic velocity
reemit from the confined boundary, e.g., the wall. The derifield. For exampleC could be fixed once the specific gas and
vations of these kinds of equilibrium density can be found inthe solid boundarywalls) are known.
Refs.[11,17.

The diffuse-reflection boundary conditiof3,4,12,13
along one boundary becomes

III. RESULTS AND DISCUSSION

Equation (13) gives us nontrivial macroscopic velocity
fields corresponding to a range of admissible orientati@is (
based on the four-velocity model for admissible collisions:
which meandi) the equilibrium state at the wall dominates, {1,3} to {2,4} and confinedslab-wal) boundary conditions.
(i) no penetration occurs across the wall. But, we still have no clear idea how many charged particles

Nw2N1=NywiNa, BNi+aN;—BN3—aNy=0, (10)
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FIG. 1. Velocity fieldsU for different Knudsen number,, in FIG. 2. Velocity fieldsU for different Knudsen numbers,, in
full-width (d) channel.U, Y, andK,, are dimensionlessy=y/d. full-width (d) channel.U, Y, andK, are dimensionlessy=y/d.
K,=1/(dSn, n is the number densitys is the effective collision Kn=1/(dsm), n is the number densitys is the effective collision
cross section(Please cf. Ref[2] for qualitative comparison with ~ €f0SS section(Please cf. Ref]{2] for qualitative comparison with
our smallerK,, cases. our smallerK, cases.

can be organized and flow into a stationary s&té] within For smallerK,, cases, our velocity results qualitatively
a slender confined channel since there are no quantitativesemble those reported in REZ]. (Note that, in Ref[2], as
measurements up to now, to the best of knowledge of theeported by Burgreen and Nakache, electrokinetic flow in
authors. In essence, there should be field effects in betweejlrafine capillary slits were considered. Their results, how-
for the many-body problem of charged particles during theireyer, were not presented in terms of the Knudsen number so
encounters. We adopt the hard-sphere gas assumption hgryt we cannot directly compare ours with them; cf. Figs. 2
and neglect the potentigfiorce) contribution in the collision  gnd 3 of Burgreen and Nakache or Fig. 1 of Rice and White-
sum(or integra) in Eq. (1) [8,11,12. It seems the field effect nead[2].) But, we can verify our results especially for cases
(repulsive forces between like-charge partigledl enlarge ¢ K,~O(1) by comparison with the apparent velocity ob-
the mean-free path compared to that of many neutral paigined from images of electrokinetically driven flows using a
ticles during collisions. However, there will be screening ef'technique that employs an ultraviolet laser pulse to write a
fects even they are possibly minor. o pattern into the flow by uncaging a fluorescent dye by Paul,
To fit our interests here, we present velocity fields forGarquilo, and Rakestrafit5]. We only take the 99-ms image
smaller and larger mean-free pathkgy relevant to the range  (considering the upstream pagiresented in Fig. 5 of Ref.
of those nontrivial or maximum admissible orientatior§ ( [15] into account. Those data were obtained for a electroki-
that can produce physically verified velocity fields. Maxima petically driven flow through a 7%m capillary [15]. This

of K; are set to one an@ is fixed for all results presented rather-fit comparison shown in Fig. 4 confirms our approach.
here. Results show that the maximum admissibleill de-

crease onc&,, increases. For instance, the maximum admis-
sible # equals to 0.1768, 0.0996, and 0.0562 fir,
=0.5,1.0,2.0, respectively. This observation resembles tha
of many neutral particlegt]. These selected orientations for
many charged particles subjected to hard-sphere collision:
may also be due to the nonlinear coupling between the
nonboundary-driven forcing and the confined boundary once
the entropy selected favors for the final stationary states |
[7,13,18. '
We plot the velocity profildJ vsY for different Knudsen
numbers K,=0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 1.0, 1.35, 2.0,
3.0) in full-width channel in Figs. 1 and 2. Each curve in Fig. 024,
2 shows a plug-like scalar flow or implies a plug-like veloc- °
ity profile (the cross-stream profiles remain relatively flat,
especially for largeK,,) and is qualitatively the same as that
of electrokinetically driven flows reported in Rdfl5] (cf.
those images of Figs. 5 and 6 thenei®ther views of these
velocity fields(U) w.r.t. Y andK,, are presented in Fig. 3. FIG. 3. The overall view ot w.r.t. Y andK, in half channel.

0.2-]
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08

K=1.0
n

K =2.0
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K =3.0
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Ref. [15]

06

Velocity : U

x4 &b

04

0.2r

0 L L L L L L L L L
-05 -04 -03 -0.2 -0.1 0 0.1 0.2 03 04 05

Y

FIG. 4. Comparison with the apparent velocityaken in the
99-ms imageg reported by Paul, Garguilo and Rakestrfib] (cf.
Fig. 5 therein. We only compare the upstream-part détaage,
which is a electrokinetically driven flow through a 6w capillary.

In our illustrations, a¥,, is large enough, there will be

PHYSICAL REVIEW E 67, 041106 (2003

when particles interacting or colliding with the solid walls.
This observation, even though for cases of smdlgthere
exist nonzero velocities for our results, however, is difficult
to be found in Figs. 2 and 3 of Burgreen and Nakafhke
(especially for smallera, the ionic energy parameter
therein. The reason could be due to the macroscopic ap-
proach they adopted in Reff2], which cannot resolve the
near-wall microscopic effecfd7,18.

As this model had been verified previou§#y;10-173 and
the qualitative or quantitative comparison illustrated here
shows minor differences in between, we have confidence
about these results: There are preferred motions for many
charged particles flowing in a slender confined channel over
a range of collision frequencies or Knudsen numbers when
these charged particles are driven by a unifgaonstant
nonboundary-driven forcing. At least, our results of velocity
fields resemble those of electrokinetic flows reported in Refs.
[2,15] qualitatively or quantitatively for certain range of
Knudsen numbers. We hope in the future we can address
other complicated problem$19—-22 by modifying our
present approach.
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