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Influence of spatiotemporally correlated noise on structure formation in excitable media

H. Busch* and F. Kaiser
Institute of Applied Physics, Darmstadt University of Technology, 64289 Darmstadt, Germany

~Received 29 October 2002; published 25 April 2003!

We discuss the influence of additive, spatiotemporally correlated~i.e., colored! noise on pattern formation in
a two-dimensional network of excitable systems. The signature of spatiotemporal stochastic resonance~STSR!
is analyzed using cross-correlation and information theoretic measures. It is found that the STSR behavior is
affected by both the spatial and temporal correlations of the noise due to an interplay with the length scales of
the deterministic network. Increasing the spatiotemporal noise correlation shifts the occurrence of STSR to
smaller values of the noise variance. Additionally, if the spatial correlation of the noise exceeds that of the
network, the excitation patterns disappear in favor of cloudy structures, directly rendering the underlying
spatial noise field.
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I. INTRODUCTION

Spatiotemporal pattern formation has been in the focu
interest for a long time already. Often these patterns em
abruptly, when a critical value of a~slowly drifting! control
parameter is passed~see, e.g., Refs.@1,2#!. Noise-induced
spatiotemporal pattern formation, also known as spatiot
poral stochastic resonance~STSR!, was first investigated by
Jung and Mayer-Kress in an excitable cellular-automata-
system@3#. STSR is a phenomenon, wherein spatial exc
tion patterns, such as target or spiral waves, are induce
fluctuations acting upon the system, showing an optimal
herence at some intermediate noise intensity. In recent ye
there have been investigations verifying the existence
such an effect in two-@4–7# and three-dimensional@8,9#
models, including chemical@5,6,10# and biological@11# sys-
tems. Except for Ref.@7#, all of the above mentioned phe
nomena are reported to occur in subexcitable media,
waves traveling through the system are not supported w
out any external~deterministic or stochastic! driving.

In most models of biological systems, fluctuations are
cluded using white noise. The term ‘‘white’’ refers to the fa
that the noise amplitudes are uncorrelated in both space
time. However, for many systems spatiotemporally cor
lated, i.e., colored, noise yields a more appropriate appr
mation of the actual fluctuations present. Temporally colo
noise may provide a more accurate description, if there is
incomplete separation of stochastic and deterministic t
scales@12#. Spatially colored noise may be relevant for bi
logical systems, if they are exposed to a combination of b
internal and external fluctuations with the former acting
cally and the latter acting nonlocally over the whole syst
@13,14#. Recently, interesting effects in subexcitable me
such as lifetime prolongation of spatial structures in Ref.@8#
and wave train propagation@15# have been discussed, all o
which are shown to be optimal at an intermediate range
spatiotemporal noise color. Due to its importance for
modeling of biological systems, it is interesting to study t
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dependence of STSR on noise color, e.g., to test for the
bustness of the phenomenon.

Currently, there exist no standard set of observables
extracting the signature of STSR in extended media, wh
has led to a huge amount of quantification attempts, in m
cases applicable for a single model or experiment, only. F
quent analysis tools have been driving the system wit
solitary wave@3#, characterizing the spatiotemporal dynam
ics through the propagation distance of waves entering
noisy subexcitable medium@6,10# or cluster-size analysis o
active sites in space and/or time@7,16#. For example it is
observed in experiments of the photosensitive Belous
Zhabotinsky reaction@5# and in tissues of glial cells@11#, that
optimal noise-induced pattern formation is associated wit
power-law distribution of the cluster sizes of active sites.

Recently, Goychuk and Ha¨nggi @17# have proposed a uni
fying quantification of temporal stochastic resonance~SR!
using information theoretic measures that identify the eff
of SR with an increased rate of information gain. In analo
to Goychuk and Ha¨nggi, we identify STSR with an increas
of spatial information gain. Therefore we use analysis too
which are capable of interpreting the data in terms of lo
nearest-neighbor interactions. For this we employ t
complementary analysis methods, a linear cross-correla
measure and the mutual information@18#, the latter being
capable of measuring nonlinear dependencies as well. In
@19# a method similar to the cross correlation used in t
paper, has been proposed and tested to find STSR in
tiotemporal data sets when the noise intensity is not kno
experimentally.

Following this line of thought, the structure of our pap
is as follows: first we introduce the model system, and
noise generation algorithm~Sec. II!. We briefly describe the
tools for analyzing the data, and then we apply them to ti
series consisting only of noise as a first test~Sec. III!. Next,
we systematically investigate the influence of spatial a
temporal noise color and strength on the formation of coh
ent spatial structures in our model system~Sec. IV!. The
systematics of these results are discussed in Sec. V.

II. THE MODEL

The system under consideration is a FitzHugh-Nagum
like excitable medium, first proposed by Barkleyet al. @20#,
©2003 The American Physical Society05-1
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having piecewise linear nullclines. The equations read

]u

]t
5

1

e
f ~u,v !1Dc¹

2u;
]v
]t

5g~u,v !. ~1!

The dynamical variablesu andv denote the fast activato
and slow inhibitor dynamics, respectively, their time sca
being separated through the small, positive parametere. The
model has been extensively investigated in the literature.
choice of suitable deterministic functions forf (u,v) and
g(u,v), Eqs. ~1! show typical excitation patterns such
spiral and scroll waves in two and three dimensions@20,21#,
respectively, and even spiral turbulence@22#. Under the in-
fluence of suitable parametric noise, the system exhibits
ral chaos@7# and STSR@23#. Due to its rich dynamical fea
tures, the Barkley system@Eq. ~1!# has been used to mode
neuronal excitation@24#, CO diffusion on a catalytic surfac
@25#, and noise-induced waves in a photosensitive Belous
Zhabotinsky reaction@5#.

Here, we choosef (u,v) andg(u,v) as

f ~u,v !5u~12u!~u2uthr!, ~2!

g~u,v !5u2v1j~r ,t !; uthr5a~v1b!. ~3!

The local dynamics in the absence of noise are gover
by a stable fixed point at the origin with the functionuthr
determining the bifurcation point and thus the system’s
citability.

The diffusion term in Eq.~1! is numerically integrated on
a squareN3N grid with free boundary conditions. We em
ploy nearest-neighbor coupling for evaluating the Laplac
operator

¹2ui j 5
1

6Dh2
~ui 21,j 211ui 21,j 111ui 11,j 211ui 11,j 11

14ui 21,j14ui 11,j14ui , j 2114ui , j 11220ui , j !,

~4!

where we used a spatial discretizationr5(x,y)5Dh( i , j ) of
the continuous variabler with a spatial gridding ofDh
50.5s.u. ~space units! and the indicesi , j running fromi , j
51•••N5128.

The role of the additive noise termj(r ,t) is to modulate
the system’s excitability thresholduthr via the inhibitor vari-
ablev. The spatiotemporally correlated noise fieldj(r ,t) is
generated by convolving spatially incoherent, tempora
correlated Gaussian noisez(r ,t) with a correlation function
C(r ) that is periodic in space and radially symmetric arou
the origin. For the sake of free boundary conditions for
Barkley system, we choose a period ofL52Nh for C(r ). In
the case of spatial discretization the noise algorithm read

j i j ~ t !5S 1

2ND 2

(
n,m51

2N

z i j ~ t !Cn2 i ,m2 j , ~5!

wherez i j (t) is temporally correlated noise generated throu
an Ornstein-Uhlenbeck process
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1

t
@z i j ~ t !1h i j ~ t !#, ~6!

t denotes the temporal correlation andh i j is Gaussian noise
of the intensitys2, d correlated both in space and time,

^h i j ~ t !h i 8 j 8~ t8!&5s2d i i 8d j j 8d~ t2t8!. ~7!

The discrete correlation functionCij is given by

Cij5
2

pl2
exp2S 2Dh2~ i 21 j 2!

l2 D , ~8!

with l controlling the spatial decay ofCi j and thus deter-
mining the spatial correlation of the noise field.

Summarizing, the above algorithm yields colored no
with zero mean and the following spatiotemporal correlatio

^j ij~ t !j i8j8~ t8!&5Dexp2S Dh2@~ i 2 i 8!21~ j 2 j 8!2#

l2

1
ut2t8u

t D , ~9!

where D5s2/t corresponds to the variance of the nois
which we will refer to as noise strength in the following, an
s2 denoting the noise intensity. Consequently, the noise fi
j ij is exponentially correlated in time and Gaussian cor
lated in space with decay constantst andl, respectively.

Fourier transforming Eq.~9! yields at the continuum limit
the power spectral density (P) in the temporal (v) and spa-
tial (k) frequency domain

P~v,k!5D
2Aptl

11~tv!2
e2l2k2/4. ~10!

Equation~5! is simulated through multiplication ofCi j and
z i j in Fourier space. For the particular choice forCi j , being
a Gauss function, symmetric in space, its Fourier transfo
remains real, thus reducing the number of multiplications
the complex Fourier space. Furthermore, to make the a
rithm computationally more efficient, we iterated Eq.~6! di-
rectly in Fourier space@26#.

Starting from random initial conditions, Eq.~1! has been
numerically integrated using an implicit integration schem
and an explicit Euler method withDt50.007t.u. ~time
units! for theu andv variable, respectively@21#. Throughout
this paper we use the following set of paramete
(e,a,b,Dc)5(0.05,1.18,0.076,1). They are adjusted to yie
the network in a subexcitable state, i.e., the formation a
preservation of spatial patterns is only possible in the pr
ence of noise.

III. ANALYSIS TOOLS

In this paper we try to discern the noise’s parame
ranges, in which the Barkley system exhibits the most coh
ent spatial pattern. The formation of those structures is o
5-2
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mal, if stochastic forcing and local interactions make nea
neighbors oscillate at some fixed phase difference. Henc
seems natural to employ tools that are efficient in analyz
nearest-neighbor relationships in space and time, name
linear spatial cross-correlation measureS and the pointwise
mutual informationI.

We compute the cross correlationS for the v variable as
the space and time averaged nearest-neighbor distance
elements, normalized by the total spatial amplitude varian

Defining the spatial variance at timet as

Var~ t !5
1

N2 (
i j

~v i j 2 v̄ !2, ~11!

where v̄5N22( i j v i j , and defining the purely spatial auto
covariance of nearest neighbors as

Cov~ t !5
1

N2 (
i j

1

uNi j u
(

bPNi j

~v i j 2 v̄ !~b2 v̄ !, ~12!

with b consisting of alluNi j u54 elements of a von Neuman
neighborhoodNi j at each lattice sitev i j , S is given by

S5 K Cov~ t !

Var~ t ! L
T

, ~13!

where the brackets,.T denote averaging over the tot
integration timeT. If the network is completely synchronize
in space and time,S takes up a maximal value of one. Th
choice of the neighborhood type was mainly done for co
putational ease. Using different neighborhoods forb did not
change the results qualitatively.

The mutual informationI is calculated by mapping th
continuous variablesv i j on a binary state spaceSP$0,1%
using a fixed threshold valuev th ,

ṽ i j 5H 1, v i j >v th

0, v i j ,v th .
~14!

This leads to the following expression forI,

I 5K (
klPS

pkl
i jb lnS pkl

i jb

pk
i j pl

bD L
Ni j

, ~15!

where the brackets,.Ni j
stand for averaging over the~von

Neumann! neighborsb of all network elements.pk
i j ,pl

b de-

note the state space densities of some network elemenṽ i j

and its respective neighbors, withpkl
i jb denoting their joint

probability.
The mutual information yields the symmetric amount

deterministic dependence of two processes.I vanishes, if the
processes are stochastically independent and obtains
positive value in case of even nonlinear dependenc
Hence, I is a natural way to quantify the deviation from
independence of two processes. Throughout the paper we
a fixed threshold value ofv th50.7, which lies well above the
noisy fixed point amplitudes ofv ~for not too large noise
04110
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strengths and space color!. Albeit changingv th between 0.5
and 1.0 did not change the results forI significantly.

Before studying the noise-induced structures in Eq.~1!,
we apply these tools to a surrogate data test by using n
generated via Eq.~5!. Figures 1~a! and 1~b! show the time
averaged cross-correlation measureS and the mutual infor-
mationI for various spatial correlationsl as a function of the
noise strengthD and the temporal noise colort. Being mea-
sures for spatial coherence, bothS and I increase withl
without showing any dependence ont, as it should be. The
normalization ofS yields this quantity independent of th
noise strengthD. S saturates atl2'2, i.e., no further in-
crease can be observed at higher spatial noise correla
The state space discretization used forI on the other hand,
induces another threshold for the noise strength (D'0.1),
below which I remains zero for all noise parameters, a
above whichI rises to a maximal value that is determined
l. Consequently, the above analysis tools are capable
sorting out spatial correlations, irrespective of other no
parameters.

IV. RESULTS

The influence of the spatiotemporal noise on the struct
formation in the network is depicted in the contour plots
Fig. 2. Figure 2~a! denotes the temporally almost white noi
case (t50.001), while Fig. 2~b! is an example using som
intermediate noise color (t50.05). First, note the optima
noise strength in Figs. 2~a! and 2~b! at which one perceives
the most coherent spatial structures, like fragmented sp
and target waves@e.g., in 2~a! for D510.0 andl250.1]. The
sole impact of increasedt is a shift of the optimal noise
strength for pattern formation towards smaller values@com-
pare the first two columns in Fig. 2a with the last two co
umns in Fig. 2~b!#. Changing the spatial noise correlatio
changes the appearance of the spatial structures themse
Increasingl reduces the small, irregular background fluctu
tions ~left columns! and reshapes the spatial patterns
cloudy structures@bottom rows in Figs. 2~a! and 2~b!#.

FIG. 1. The cross-correlation measureS ~a! and the mutual in-
formation I ~b! of the noise generated via Eq.~5! as a function of
the noise strengthD and temporal noise colort. The square of the
spatial correlationl varies in~a! and ~b! from ~1! l250.1, ~2! l2

50.3 , ~3! l250.5, ~4! l251.0 to~5! l255.0. An integration time
of T5700t.u. with a sampling rate of 14t.u.21 was used. Four
realizations of the noise have been performed, each time usi
different set of random numbers. Other parameters values are g
in Sec. II.
5-3
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The visual impression can be quantified by the cro
correlation measureSand the mutual informationI. Figure 3
showsI andS as a function of spatiotemporal noise corre
tion in the left~a!–~e! and right~f!–~j! column, respectively.
The temporal correlation of the noise increases from the
to the bottom row. A resonance-type behavior inD, indicat-
ing the signature of STSR, is detected by bothI andS at all
values oft. Moreover, the noise strength at which the op
mal noise-induced pattern formation is detected (Dopt), is
changed by both the temporal and spatial noise color~Fig.
4!.

Interestingly,S takes up the same values for small a
large noise strengthsD. This is a sign of the network dynam
ics in both cases being dominated by the stochastic forc
Obviously, the network permanently shows stochastic os

FIG. 2. Snapshots of the network for various noise strengthD
~columns! and spatial noise color~rows! for 2 values of temporal
correlations.~a! t50.001~b! t50.05. Shown are thev variables of
each grid point@Eq. ~1!#. The amplitudes are color coded in 20 ste
from 20.5 to 2.0. All snapshots have been taken after a transien
50 t.u. Other parameters values are given in Sec. II.
04110
-

-

p

g.
il-

lations at high noise strength. If the variance of the noise
small, the individual network oscillators are incapable of p
forming oscillations. Hence, each element undergoes fluc
tions around its stable fixed point, only. Because ofSbeing a
measure for the spatial coherence in the system, it thus
ders the spatial correlation lengthl of the underlying noise
field in both cases. The maximum ofS at intermediate noise
strengths then indicates an increase of spatial correlation

of

FIG. 3. The mutual informationI ~left column! and the cross-
correlation measureS ~right column! as a function of the noise
strengthD for various values of spatiotemporal noise color.t in-
creases from top to bottom,~a! and ~f! t50.001, ~b! and ~g! t
50.01, ~c! and ~h! t50.1, ~d! and ~i! t51.0 to ~e! and ~j! t
510.0. The spatial correlation in each plot increases from~1! l2

50.001 ~bottom! via ~2! l250.05, ~3! l250.3, ~4! l250.4, ~5!
l250.5, ~6! l251.0 to ~7! l253.0 ~top!. SandI have been calcu-
lated taking 2000 time series samples at a sampling rate of 0.31t.u.
Error bars denote the variance of the data points obtained in
druple. Varyingv th for calculation I did not change the results
qualitatively. For other parameter values cf. Sec. II.
5-4
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the network due to an interplay of the stochastic forcing a
the excitable dynamics, i.e., the occurrence of excitable
tern formation.

The influence of increasing temporal noise correlationt is
a shift of Dopt towards smaller noise strength. This chan
can be understood from the impact of the noise on the in
vidual network oscillator. Close to their respective fix
point, the inhibitor variablev of each individual oscillator
from Eq.~1! is dissipative with a slow exponential decay~the
decay constant is of the order'1). Hence, the network el
ements act as a~temporal! low-pass frequency filter@27#. On
the other hand, increasingt, while keepingD, i.e., the total
noise energy, constant, biases the energy distribution of
noise towards smaller temporal frequencies@cf. Eq. ~10!#.
Consequently, the fluctuations have an ever greater impa
low noise strengthsD, causing the above described shift
Dopt.

Within a range of 0.01<t<1.0, Fig. 4~b! shows that the
position of Dopt as a function of the temporal correlatio
follows a power law, i.e.,Dopt(t)}t2a. The characteristic
exponenta'160.05 is almost independent of the spat
correlation. Consequently,sopt

2 5tDopt , the optimal STSR
noiseintensity, remains constant within this range oft. This
indicates that the oscillators perceive the colored noise
white, due to their characteristic time scales being mu
larger than the temporal correlation of the noise. The pow
law scaling becomes corrupted at large values oft. Then,
most energy of the noise is accumulated within the osci
tors’ limit cycle frequency ranges and a further increase ot
will not shift Dopt towards smaller values of the nois
strength, as observed in Figs. 3~f!–3~j!.

Also note how the variation oft changes the STSR be
havior of the network qualitatively. Due to the smoothin

FIG. 4. ~a! Contour plot of locations of the maxima (Dopt) ob-
tained from the cross-correlation measureS @Eq. ~13!# as a function
of t and l2. The contour levels increase logarithmically fromD
50.01~black! to D510.0~white!. ~b! Cross sections of the contou
plot in ~a! for constant values of the spatial correlation.l increases
from top to bottom withl250.001 ~crosses!, l250.3 ~asterisk!,
l250.4 ~diamonds!, l251.0 ~triangles!, andl253.0 ~squares!. ~c!
Cross sections of the contour plot in~a! for constant values of the
temporal correlation.t increases from top to bottom witht
50.001 ~crosses!, t50.01 ~asterisk!, t50.1 ~diamonds!, t51.0
~triangles!, andt510.0 ~squares!. For parameters cf. Fig. 3.
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effect of using smaller noise strengths for inducing patte
in the system, the error bars at the onset of the resonant
of S are diminished with increasing temporal noise corre
tion.

The variation of the spatial correlationl results in two
effects. Similar to the temporal noise color, increasingl
moves the position ofDopt towards smaller values ofD, re-
gardless of the value oft @Fig. 4~c!#. This behavior can be
explained on the network level. Excitations initiated at so
point are more likely to spread, if there is an accumulation
favorable noise perturbations within their immediate neig
borhood@5#. Spatial noise color will increase the susceptib
ity of local sites to excitation, as it renders them in a st
similar to the site, where the wave was initiated. Thus, lo
excitations are more likely to spread with increasing spa
noise correlation length, but in contrast to the findings
varying temporal noise correlation, there is no power-l
dependence ofDopt as a function ofl.

Furthermore, an increasing spatial correlation of the no
has a decremental effect on the overall occurrence of ST
This finding can be related to the interplay of the spa
scales present in the noise and in the deterministic netw
To achieve a certain degree of comparability, we fit a Ga
function to the front of a plane wave initiated through app
priate driving in the deterministic system. Usingv(r )}exp
2(r 2ld

22) as a simple fit for the inhibitor variable, one find
ld'1.

Depending onr 5l/ld , two different types of network
behavior can be distinguished. For 0<r<1 and r⇒1, the
absolute and relative maxima forS and I, respectively, be-
come wider, moving towards smaller values ofD as ex-
plained above. Local amplitude differences are decrease
the ‘‘ordering’’ effect of the spatial noise color, resulting i
an increase ofS with l @Figs. 3~e!–3~h!#. At r 51, pattern
formation occurs over a wide range of noise strengths,
noise and intrinsic network correlations support each othe
an optimal way. Forr .1 the shape of the spatial pattern
changes from the typical excitation shapes to cloudlike str
tures @Figs. 2~a! and 2~b!, bottom rows#. This transition is
detected by the mutual information, only.S remains virtually
unchanged for every value ofD or t, as a consequence of th
high degree of synchronization of nearest neighbors. The
lay in the rise ofI with the noise strengthD for l253 @Fig.
3~a!–3~c!# resembles the functional dependence of the m
tual information onD in the pure noise case~Fig. 1!, now
indicating that noise is dominating the dynamics of the s
tem. The change of the dynamical behavior in the networ
also accompanied by large error bars forI. As now patterns
render the spatial structure of the noise field rather than
underlying excitable network dynamics, the excitati
threshold of the individual oscillators become more or le
meaningless and one cannot distinguish between excited
quiescent states of thev i j ’s as clearly as before.

We want to stress, that the above discussion is valid
short temporal noise correlations, only. An increase in
temporal correlation of the noise has a non-negligible eff
on the average excitability threshold of the individual osc
lators in the network, which directly influences the oscill
tors’ pulse shapes. Thus, at larget, i.e.,t.1.0t.u., one can-
5-5



e
e

L
re

m
n
es
rs
le
an
b

e

ra

rre
a-
bl

he
s
-
ni
rn
m

no

on
or
th

ce,
ce-

ales
re-
e-
oral
nso
e
ex-
a-
n

ee-
tal

ers
e
el-
ise
sic
r
ri-
ho-
af
me-
-
ict
ible

tial
u-

nk

H. BUSCH AND F. KAISER PHYSICAL REVIEW E67, 041105 ~2003!
not assume the sameld for both the deterministic and th
stochastic case. From Figs. 3~a!–3~e!, one observes how th
decremental effect of spatial noise correlation on STSR
counteracted by an increase in the temporal noise color.
cal maxima inI, indicating the signature of STSR, which a
not present forl253 in Figs. 3~a!–3~c!, are restored for
large values oft @Fig. 3~e!#.

V. DISCUSSION

In conclusion, we investigated the influence of spatiote
poral noise color and noise strength on structure formatio
a network of coupled excitable systems using near
neighbor analysis tools. To our knowledge, this is the fi
time that STSR has been shown to occur in the Bark
system using additive spatiotemporal noise. Both spatial
temporal correlations have a favorable impact on STSR
causing a shift ofDopt towards smaller values of nois
strengths. This has been explained as occurring due to
interplay of the noise’s and the system’s spatiotempo
length scales.

The phenomenon of noise-induced pattern formation
robust with respect to a wide range of temporal noise co
lation parameterst, but it disappears, if the spatial correl
tion of the noise exceeds that of the underlying excita
system, i.e.,l.ld . In this situation, the behavior ofSandI
with varying D equal the pure noise case, hinting that t
dynamics of the network become noise dominated. A re
nancelike behavior with respect tol is observed, if the spa
tial length scales of the noise and the underlying determi
tic system interfere. Then, the formation of coherent patte
occurs over a wide range of noise strengths, starting at s
values ofD, already.

Several open questions remain. Interestingly, we did
find a change in the network dynamics with increasingt, as
we did for an increasing spatial noise correlation. Quite c
trary, in the parameter regimes investigated, the temp
noise correlation seems to have a stabilizing effect on
tt.

,

E
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excitable dynamics of the network and thus on STSR. Hen
further investigations should extend to investigating spa
time neighborhoods forS and I, thus gaining information on
the interdependence of the spatial and temporal length sc
of the noise and the underlying deterministic network. Mo
over, it would be worthwhile to develop an analytical fram
work for the dependence of STSR on additive spatiotemp
colored noise, as recently has been put forward by Alo
et al. @28# for the case of multiplicative noise. There, th
authors have shown that one is able to replace spatially
tended media, driven by spatiotemporally colored multiplic
tive noise, with an effective deterministic reaction-diffusio
equation, their analytical results being in very good agr
ment with numerical simulations, as well as experimen
data, for both the excitable and oscillatory regimes.

Investigating the influence of noise correlation paramet
on pattern formation may provide further insight into th
interpretation of data from biological time series and mod
ing. The combined influence of external and internal no
~e.g., fluctuating environment conditions versus intrin
thermal fluctuations! can result in new dynamical behavio
of the underlying deterministic system. In a recent expe
mental study it was observed that the dynamics of the p
tosynthetic efficiency in a circadian rhythm of a plant le
show spatiotemporal separation of the photosynthetic
tabolism activity@29#. Previous models of plant leaf dynam
ics with spatially extended excitable media could not pred
these patchy structures observed in experiment. It is poss
that the inclusion of spatiotemporally correlated~stochastic!
forces, e.g., entering the experiment through the spa
variation of the light intensity, could render the model sim
lations closer to the experimental data@30#.
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