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Influence of spatiotemporally correlated noise on structure formation in excitable media
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We discuss the influence of additive, spatiotemporally correlated colored noise on pattern formation in
a two-dimensional network of excitable systems. The signature of spatiotemporal stochastic re€®n8fte
is analyzed using cross-correlation and information theoretic measures. It is found that the STSR behavior is
affected by both the spatial and temporal correlations of the noise due to an interplay with the length scales of
the deterministic network. Increasing the spatiotemporal noise correlation shifts the occurrence of STSR to
smaller values of the noise variance. Additionally, if the spatial correlation of the noise exceeds that of the
network, the excitation patterns disappear in favor of cloudy structures, directly rendering the underlying
spatial noise field.
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I. INTRODUCTION dependence of STSR on noise color, e.g., to test for the ro-

bustness of the phenomenon.
Spatiotemporal pattern formation has been in the focus of Currently, there exist no standard set of observables for
interest for a long time already. Often these patterns emerg@xtracting the signature of STSR in extended media, which
abruptly, when a critical value of éslowly drifting) control ~ nas led to a huge amount of quantification attempts, in many

parameter is passe@ee, e.g., Refs1,2)). Noise-induced cases applicable for a single model or experiment, only. Fre-

guent analysis tools have been driving the system with a

spatiotemporal pattern formation, also known as Spat'Oteméolitary wave[3], characterizing the spatiotemporal dynam-

poral stochastic resonan¢8TSR), was first investigated by joq through the propagation distance of waves entering the
Jung and Mayer-Kress in an excitable ceIIuIar-automata-I|ke§]0iSy subexcitable mediufi6,10] or cluster-size analysis of
system[3]. STSR is a phenomenon, wherein spatial excitaactive sites in space and/or tini@,16]. For example it is
tion patterns, such as target or spiral waves, are induced kybserved in experiments of the photosensitive Belousov-
fluctuations acting upon the system, showing an optimal coZhabotinsky reactiofs] and in tissues of glial cellgl1], that
herence at some intermediate noise intensity. In recent yeargptimal noise-induced pattern formation is associated with a
there have been investigations Verifying the existence 0p0W€I’-|E\W distribution of the C|L_JSter sizes of active Sites_.
such an effect in two{4—7] and three-dimensiond,9] _Recently, Goychuk and htggi[17] have proposed a uni-
models, including chemicdb,6,10 and biological[11] sys-  [¥ing quantification of temporal stochastic resonars&
tems. Except for Ref(7], all of the above mentioned phe- YSiNg information theoretic measures that identify the effect

nomena. are reported to occur in subexcitable media. i eof SR with an increased rate of information gain. In analogy
f ph h th q r hto Goychuk and Haggi, we identify STSR with an increase
waves traveling through the system are not supported Withg gyatialinformation gain. Therefore we use analysis tools,

out any externa(deterministic or stochasidriving. which are capable of interpreting the data in terms of local
In most models of biological systems, fluctuations are in-nearest-neighbor interactions. For this we emp|0y two
cluded using white noise. The term “white” refers to the fact complementary analysis methods, a linear cross-correlation
that the noise amplitudes are uncorrelated in both space amdeasure and the mutual informati¢h8], the latter being
time. However, for many systems spatiotemporally correcapable of measuring nonlinear dependencies as well. In Ref.
lated, i.e., colored, noise yields a more appropriate approxi-19] @ method similar to the cross correlation used in this
mation of the actual fluctuations present. Temporally colored?@Per, has been proposed and tested to find STSR in spa-
noise may provide a more accurate description, if there is afiotemporal data sets when the noise intensity is not known
incomplete separation of stochastic and deterministic timgxperlme_ntally._ .
scaleq12]. Spatially colored noise may be relevant for bio- . Following th_|s line O.f thought, the structure of our paper
logical systems, if they are exposed to a combination of botf> &S follows: .f'rSt we !ntroduce the merI system, and the
internal and external fluctuations with the former acting |o-NOISe generation algorithigBec. 1). We briefly describe th?
cally and the latter acting nonlocally over the whole systemtoo!S for an{:\lyzmg the data,. and then we apply them to time
[13,14]. Recently, interesting effects in subexcitable media>¢"€S consusjung only of noise as a.flrst tesec. 110. Ngxt,
such as lifetime prolongation of spatial structures in R&¥. we systematlcally investigate the influence of_spatlal and
and wave train propagatidii5] have been discussed, all of temporal_ noise color ar_1d strength on the formation of coher-
which are shown to be optimal at an intermediate range of "t spatlal structures in our mod.el systeéB_ec. ). The
spatiotemporal noise color. Due to its importance for theSystematics of these results are discussed in Sec. V.
modeling of biological systems, it is interesting to study the Il THE MODEL
The system under consideration is a FitzHugh-Nagumo-
*Electronic address: Hauke.Busch@physik.tu-darmstadt.de like excitable medium, first proposed by Barkleyal. [20],
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having piecewise linear nullclines. The equations read _ 1
Gi()=—=[&;)+n7;(H], (6)
M (v Dva; 2= 1 '
ot = Hu)+ DV —-=g(u,v). ()

7 denotes the temporal correlation ang is Gaussian noise

of the intensityo?, § correlated both in space and time,
The dynamical variables andv denote the fast activator Yo P

and slow inhibitor dynamics, respectively, their time scales <17ij(t)77i/j/(t’))=025”,5”,6(t—t’). (7)
being separated through the small, positive parametéhe

model has been extensively investigated in the literature. Birhe discrete correlation functia® is given by

choice of suitable deterministic functions féfu,v) and

g(u,v), Egs. (1) show typical excitation patterns such as 2

spiral and scroll waves in two and three dimensif2,21], Cij:?eXp_
respectively, and even spiral turbulen@?2]. Under the in- ™
fluence of suitable parametric noise, the system exhibits sp
ral chaog 7] and STSR23]. Due to its rich dynamical fea-
tures, the Barkley systeiiEg. (1)] has been used to model g, marizing, the above algorithm yields colored noise

neuronal exgltap0|1j24], co dlffu_3|on ona cata!yuc surface with zero mean and the following spatiotemporal correlation,
[25], and noise-induced waves in a photosensitive Belousov-

2Ah%(i%+j?)

ol ®

Wwith A controlling the spatial decay df;; and thus deter-
mining the spatial correlation of the noise field.

Zhabotinsky reactiof5]. 2r i N2 (i iN2
Here, we choosé(u,v) andg(u,v) as <§ij(t)§iqr(t’))=Dexp—<Ah [(i—i ))\2+(J 171
f(u,v)=u(l—u)(U—Up,), 2 v
g(uw)=U—v+E&r,t);  Up=a(v+b). 3) t— ) ©)

The local dynamics in the absence of noise are governe\%here D=o
by a stable fixed point at the origin with the functiog,,
determining the bifurcation point and thus the system’s ex
citability.

The diffusion term in Eq(1) is numerically integrated on
a squareNx N grid with free boundary conditions. We em-
ploy nearest-neighbor coupling for evaluating the Laplaciar][h
operator

2|7 corresponds to the variance of the noise,
which we will refer to as noise strength in the following, and
‘o2 denoting the noise intensity. Consequently, the noise field
& is exponentially correlated in time and Gaussian corre-
lated in space with decay constantand\, respectively.
Fourier transforming Eq9) yields at the continuum limit

e power spectral density] in the temporal &) and spa-

tial (k) frequency domain

2

(Uj—qj—1FTUi—gjeatUipgj 1t Uisgja 2\ o \2K4

P(w,k)=D Tt (ra)? (10

A2 A A2t A 200 ), Equation(5) is simulated through multiplication of;; and
(4) gij in Fourier space. For the particular choice @y, being

a Gauss function, symmetric in space, its Fourier transform
remains real, thus reducing the number of multiplications in
the complex Fourier space. Furthermore, to make the algo-
rithm computationally more efficient, we iterated Kf) di-
rectly in Fourier spacg26].

Starting from random initial conditions, E¢l) has been
numerically integrated using an implicit integration scheme

. . ) and an explicit Euler method witiAt=0.007t.u. (time
generated by convolving spatially incoherent, temporallyunits) for theu andv variable, respectivel{21]. Throughout

cCorreIt?]tetd_ Ga“.ssg’?‘”_”o'%"é”) W('jth %_Cﬂrrelatmn f{u_ncﬂon dthis paper we use the following set of parameters
(r) nat is perodic In space and radially Symmetric aroun (e€,a,b,D.)=(0.05,1.18,0.076,1). They are adjusted to yield
€he network in a subexcitable state, i.e., the formation and

preservation of spatial patterns is only possible in the pres-
ence of noise.

where we used a spatial discretization(x,y)=Ah(i,j) of
the continuous variable with a spatial gridding ofAh
=0.5s.u. (space unitsand the indices,j running fromi,j
=1..-N=128.

The role of the additive noise terg(r,t) is to modulate
the system’s excitability threshold;,, via the inhibitor vari-
ablev. The spatiotemporally correlated noise figld,t) is

Barkley system, we choose a periodlof 2Nh for C(r). In
the case of spatial discretization the noise algorithm reads

2 2N
m) n;:l Gi(OChzimj (5) IIl. ANALYSIS TOOLS

&ij(H=
In this paper we try to discern the noise’s parameter

where(;; (t) is temporally correlated noise generated throughranges, in which the Barkley system exhibits the most coher-
an Ornstein-Uhlenbeck process ent spatial pattern. The formation of those structures is opti-
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mal, if stochastic forcing and local interactions make nearesi (a)

neighbors oscillate at some fixed phase difference. Hence,

seems natural to employ tools that are efficient in analyzing

nearest-neighbor relationships in space and time, namely,
linear spatial cross-correlation meas@and the pointwise
mutual informationl.

We compute the cross correlati&for thev variable as
the space and time averaged nearest-neighbor distance of

elements, normalized by the total spatial amplitude variance

Defining the spatial variance at tinteas

1 _
Var(t):mz (Uij_U)z, (11)
U]

Wherev_zN*ZEijuij , and defining the purely spatial auto-
covariance of nearest neighbors as

1

1 _ _
Cout)=—; Ej A bE (vij—v)(b—v), (12

E./\/”

with b consisting of all|\j;|=4 elements of a von Neumann
neighborhoodVj; at each lattice site;;, Sis given by

=

where the brackets<> denote averaging over the total
integration timeT. If the network is completely synchronized
in space and timeS takes up a maximal value of one. The
choice of the neighborhood type was mainly done for com
putational ease. Using different neighborhoodstalid not
change the results qualitatively.
The mutual informationl is calculated by mapping the

continuous variables;; on a binary state spacee{0,1}
using a fixed threshold valuey,,

Cout)
Var(t)

13

~ 1, vij=uvn
i = 14
UI] [O, Uij<vth' ( )
This leads to the following expression for
i p:<j|b
| = E plkllbln ij b ) (15)
kleX pk pl N

where the brackets: > N; stand for averaging over thgon
Neumann neighborsb of all network elementspikj ,plb de-

note the state space densities of some network eIanpnt
and its respective neighbors, wimhb denoting their joint
probability.
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FIG. 1. The cross-correlation measi8é¢a) and the mutual in-
formation| (b) of the noise generated via E(p) as a function of
the noise strength and temporal noise colar. The square of the
spatial correlatior\ varies in(a) and(b) from (1) A?=0.1, (2) A?
=0.3,(3) A\>=0.5, (4) A>=1.0 to(5) A>=5.0. An integration time
of T=700t.u. with a sampling rate of 14.u.”* was used. Four
realizations of the noise have been performed, each time using a
different set of random numbers. Other parameters values are given
in Sec. Il.

strengths and space coloAlbeit changingu, between 0.5
and 1.0 did not change the results fagignificantly.

Before studying the noise-induced structures in €g,
we apply these tools to a surrogate data test by using noise
generated via Eq5). Figures 1a) and Xb) show the time
averaged cross-correlation meas&and the mutual infor-
mationl for various spatial correlations as a function of the
noise strengttd and the temporal noise colet Being mea-
sures for spatial coherence, bothand | increase withi
without showing any dependence enas it should be. The
normalization ofS yields this quantity independent of the
noise strengttD. S saturates ah?~2, i.e., no further in-
crease can be observed at higher spatial noise correlation.
The state space discretization used lf@an the other hand,
induces another threshold for the noise strendir=(Q.1),
below which| remains zero for all noise parameters, and
above which rises to a maximal value that is determined by
\. Consequently, the above analysis tools are capable of
sorting out spatial correlations, irrespective of other noise
parameters.

IV. RESULTS

The influence of the spatiotemporal noise on the structure
formation in the network is depicted in the contour plots in
Fig. 2. Figure 2a) denotes the temporally almost white noise
case ¢=0.001), while Fig. 2b) is an example using some
intermediate noise color7&0.05). First, note the optimal
noise strength in Figs.(8 and 2b) at which one perceives
the most coherent spatial structures, like fragmented spirals
and target wavele.g., in Za) for D=10.0 and\?>=0.1]. The

The mutual information yields the symmetric amount of sole impact of increased is a shift of the optimal noise

deterministic dependence of two processeanishes, if the
processes are stochastically independent and obtains so

strength for pattern formation towards smaller val{esm-
pare the first two columns in Fig. 2a with the last two col-

positive value in case of even nonlinear dependencieuumns in Fig. 2b)]. Changing the spatial noise correlation

Hence,| is a natural way to quantify the deviation from

changes the appearance of the spatial structures themselves.

independence of two processes. Throughout the paper we ulgreasing\ reduces the small, irregular background fluctua-

a fixed threshold value afy,= 0.7, which lies well above the
noisy fixed point amplitudes o (for not too large noise

tions (left columng and reshapes the spatial patterns to
cloudy structuregbottom rows in Figs. @) and 2b)].
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FIG. 2. Snapshots of the network for various noise strenBths
(columng and spatial noise colofrows) for 2 values of temporal FIG. 3. The mutual informatiot (left column) and the cross-
correlations(a) 7=0.001(b) 7=0.05. Shown are the variables of ~ correlation measuré (right column as a function of the noise
each grid poinfEq. (1)]. The amplitudes are color coded in 20 steps strengthD for various values of spatiotemporal noise colpiin-
from —0.5 to 2.0. All snapshots have been taken after a transient gfreéases from top to bottonta) and (f) 7=0.001, (b) and (g) 7
50t.u. Other parameters values are given in Sec. I. =0.01, (c¢) and (h) 7=0.1, (d) and (i) 7=1.0 to (e) and (j) 7

=10.0. The spatial correlation in each plot increases ft@jm?2

The visual impression can be quantified by the cross=0.001 (bottom via (2) \?=0.05, (3) A>=0.3, (4) A?=0.4, (5)
correlation measurgand the mutual informatioh Figure 3~ A?=0.5, (6) \?=1.0 to(7) A?=3.0 (top). Sand| have been calcu-
showsl andSas a function of spatiotemporal noise correla-'ated taking 2000 time series samples at a sampling rate of 31
tion in the left(a)—(e) and right(f)=(j) column, respectively. Error bars d_enote the variance of th(_a data points obtained in qua-
The temporal correlation of the noise increases from the tofrUPle- Varyinguy, for calculation! did not change the results,
to the bottom row. A resonance-type behavioDinindicat- qualitatively. For other parameter values cf. Sec. Il.
ing the signature of STSR, is detected by bb#dnd S at all
values ofr. Moreover, the noise strength at which the opti- lations at high noise strength. If the variance of the noise is
mal noise-induced pattern formation is detect&},f), is  small, the individual network oscillators are incapable of per-
changed by both the temporal and spatial noise ctay.  forming oscillations. Hence, each element undergoes fluctua-
4). tions around its stable fixed point, only. Becaus&bking a

Interestingly, S takes up the same values for small andmeasure for the spatial coherence in the system, it thus ren-
large noise strength3. This is a sign of the network dynam- ders the spatial correlation lengkhof the underlying noise
ics in both cases being dominated by the stochastic forcindield in both cases. The maximum 8fat intermediate noise
Obviously, the network permanently shows stochastic oscilstrengths then indicates an increase of spatial correlations in
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(a) (b) 100 effect of using smaller noise strengths for inducing patterns
in the system, the error bars at the onset of the resonant peak
of S are diminished with increasing temporal noise correla-
tion.

6 The variation of the spatial correlation results in two
SO T 00 effects. Similar to the temporal noise color, increasing

(c) o moves the position oD, towards smaller values d, re-

: gardless of the value of [Fig. 4(c)]. This behavior can be
explained on the network level. Excitations initiated at some
point are more likely to spread, if there is an accumulation of
favorable noise perturbations within their immediate neigh-
borhood[5]. Spatial noise color will increase the susceptibil-
0001 001 01 10 ity of local sites to excitation, as it renders them in a state

A similar to the site, where the wave was initiated. Thus, local
FIG. 4. (a) Contour plot of locations of the maxima(,) ob- excitations are more likely to spread with increasing spatial
tained from the cross-correlation meas8f&€q. (13)] as a function ~ Noise correlation length, but in contrast to the findings for
of 7 and\2 The contour levels increase logarithmically frdn ~ varying temporal noise correlation, there is no power-law
=0.01(black to D=10.0(white). (b) Cross sections of the contour dependence dD, as a function of.
plot in (a) for constant values of the spatial correlatianincreases Furthermore, an increasing spatial correlation of the noise
from top to bottom withA?=0.001 (crossel A%=0.3 (asterisk, has a decremental effect on the overall occurrence of STSR.
\2=0.4 (diamond$, \?=1.0 (triangleg, and\?=3.0(squares (c)  This finding can be related to the interplay of the spatial
Cross sections of the contour plot (@) for constant values of the scales present in the noise and in the deterministic network.
temporal correlation.r increases from top to bottom with  To achieve a certain degree of comparability, we fit a Gauss
=0.001 (crossep 7=0.01 (asterisk, 7=0.1 (diamond$, 7=1.0  function to the front of a plane wave initiated through appro-
(triangles, and 7=10.0(squares For parameters cf. Fig. 3. priate driving in the deterministic system. Usingr)exp
—(rz)\gz) as a simple fit for the inhibitor variable, one finds
the network due to an interplay of the stochastic forcing and\ ;~1.
the excitable dynamics, i.e., the occurrence of excitable pat- Depending o =\/\4, two different types of network
tern formation. behavior can be distinguished. Fos@<1 andr=1, the
The influence of ianeaSing temporal noise correlatios absolute and relative maxima f&and |, respective|y’ be-
a shift of Dopt towards smaller noise Strength. This Changecome wider, moving towards smaller values Df as ex-
can be understood from the impact of the noise on the indip|ained above. Local amplitude differences are decreased by
vidual network oscillator. Close to their respective fixedthe “ordering” effect of the spatial noise color, resulting in
point, the inhibitor variabley of each individual oscillator gn increase of with \ [Figs. 3e)-3(h)]. At r=1, pattern
from Eq.(1) is dissipative with a slow exponential deddye  formation occurs over a wide range of noise strengths, as
decay constant is of the orderl). Hence, the network el- noise and intrinsic network correlations support each other in
ements act as @empora) low-pass frequency filtdi27]. On  an optimal way. For >1 the shape of the spatial patterns
the other hand, increasing while keepingD, i.e., the total ~ changes from the typical excitation shapes to cloudlike struc-
noise energy, constant, biases the energy distribution of thgres [Figs. 2a) and 2b), bottom rowg. This transition is
noise towards smaller temporal frequenciet Eq. (10)].  detected by the mutual information, onfyremains virtually
Consequently, the fluctuations have an ever greater impact ghchanged for every value Bfor 7, as a consequence of the
low noise strength®, causing the above described shift of high degree of synchronization of nearest neighbors. The de-
Dopt- lay in the rise ofl with the noise strengt® for \?=3 [Fig.
Within a range of 0.0% 7<1.0, Fig. 4b) shows that the  3(3)-3(c)] resembles the functional dependence of the mu-
position of Dy, @s a function of the temporal correlation tyal information onD in the pure noise cas@ig. 1), now
follows a power law, i.e.Dop(7)c7“. The characteristic indicating that noise is dominating the dynamics of the sys-
exponenta~1=*0.05 is almost independent of the spatial tem. The change of the dynamical behavior in the network is
correlation. Consequentlyrs,= 7Dy, the optimal STSR  also accompanied by large error bars foAs now patterns
noiseintensity remains constant within this range af This  render the spatial structure of the noise field rather than the
indicates that the oscillators perceive the colored noise agnderlying excitable network dynamics, the excitation
white, due to their characteristic time scales being muchhreshold of the individual oscillators become more or less
larger than the temporal correlation of the noise. The powermeaningless and one cannot distinguish between excited and
law scaling becomes corrupted at large valuesroffhen, — quiescent states of thg;’s as clearly as before.
most energy of the noise is accumulated within the oscilla- We want to stress, that the above discussion is valid for
tors’ limit cycle frequency ranges and a further increase of short temporal noise correlations, only. An increase in the
will not shift D,,; towards smaller values of the noise temporal correlation of the noise has a non-negligible effect
strength, as observed in Figgf)3-3(j). on the average excitability threshold of the individual oscil-
Also note how the variation of changes the STSR be- lators in the network, which directly influences the oscilla-
havior of the network qualitatively. Due to the smoothing tors’ pulse shapes. Thus, at largei.e., 7>1.0t.u., one can-

1.0

0.01+

0.001 0.01 01.:1 1.0 10.0

jj]

0.01

-
-46  [Dopt] 18
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not assume the samey for both the deterministic and the excitable dynamics of the network and thus on STSR. Hence,
stochastic case. From Fig9aB-3(e), one observes how the further investigations should extend to investigating space-
decremental effect of spatial noise correlation on STSR igime neighborhoods fo8 andl, thus gaining information on
counteracted by an increase in the temporal noise color. Lahe interdependence of the spatial and temporal length scales
cal maxima inl, indicating the signature of STSR, which are of the noise and the underlying deterministic network. More-
not present forx?=3 in Figs. 3a)—3(c), are restored for over, it would be worthwhile to develop an analytical frame-

large values ofr [Fig. 3(e)]. work for the dependence of STSR on additive spatiotemporal
colored noise, as recently has been put forward by Alonso
V. DISCUSSION et al. [28] for the case of multiplicative noise. There, the

) . ) . . authors have shown that one is able to replace spatially ex-

In conclusion, we investigated the influence of spatiotem+tended media, driven by spatiotemporally colored multiplica-
poral noise color and noise strength on structure formation ifiye noise, with an effective deterministic reaction-diffusion
a network of coupled excitable systems using nearestequation, their analytical results being in very good agree-
neighbor analysis tools. To our knowledge, this is the firsinent with numerical simulations, as well as experimental
time that STSR has been shown to occur in the Barkleyyata, for both the excitable and oscillatory regimes.
system using additive spatiotemporal noise. Both spatial and |nyestigating the influence of noise correlation parameters
temporal correlations have a favorable impact on STSR by pattern formation may provide further insight into the
causing a shift ofD,,; towards smaller values of noise interpretation of data from biological time series and model-
strengths. This has been explained as occurring due to 8Ag. The combined influence of external and internal noise
interplay of the noise’s and the system’s spatiotemporale g., fluctuating environment conditions versus intrinsic
length scales. thermal fluctuationscan result in new dynamical behavior

The phenomenon of noise-induced pattern formation isf the underlying deterministic system. In a recent experi-
robust with respect to a wide range of temporal noise corremental study it was observed that the dynamics of the pho-
lation parameters;, but it disappears, if the spatial correla- tosynthetic efficiency in a circadian rhythm of a plant leaf
tion of the noise exceeds that of the Underlying eXCitabIeshOW Spatiotemporaj Separation of the photosynthetic me-
system, i.e.A>Nq. In this situation, the behavior &andl  tabolism activity[29]. Previous models of plant leaf dynam-
with varying D equal the pure noise case, hinting that thejcs with spatially extended excitable media could not predict
dynamics of the network become noise dominated. A resothese patchy structures observed in experiment. It is possible
nancelike behavior with respect 1ois observed, if the spa- that the inclusion of spatiotemporally correlatestochasti¢
tial length scales of the noise and the underlying determinisforces, e.g., entering the experiment through the spatial
tic system interfere. Then, the formation of coherent patterngariation of the light intensity, could render the model simu-
occurs over a wide range of noise strengths, starting at smaltions closer to the experimental d&&0].
values ofD, already.

Several open questions remain. Interestingly, we did not ACKNOWLEDGMENTS
find a change in the network dynamics with increasin@gs
we did for an increasing spatial noise correlation. Quite con- We are indebted to J. GaaeOjalvo for fruitful discus-
trary, in the parameter regimes investigated, the temporadions on spatially correlated noise. H.B. would like to thank
noise correlation seems to have a stabilizing effect on thé.-Th. Hutt for fruitful discussions.
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