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Analytical solution of space probability distributions of particles in a one-dimensional ring
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Spatial probability distributions of a few particles having nonidentical masses in one-dimensional space with
both periodic and fixed boundary conditions are analytically computed in statistical equilibrium states, and
explicit solutions of the probability distributions are obtained. Some nontrivial interesting features of the
probability distributions are predicted and fully confirmed by numerical simulations. The realization of a
microcanonical equilibrium state of the system is justified by the agreement between the theoretical predictions
and numerical observations.
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I. INTRODUCTION

In recent decades the problem of equilibrium states
few-body systems has attracted much attention@1–11#. The
interest in this problem rests on the fundamental significa
of the link between mechanics and statistical physics. I
now clear that statistical behavior such as microcanon
distributions and associated quantities like temperature,
tropy, free energy, and so on can be observed in cha
low-dimensional mechanical systems. This is in contras
the long-existing understanding that these statistical qua
ties can be defined only in macroscopic systems consistin
huge numbers of microscopic subsystems.

In few-body systems, some analytical computations
statistical quantities directly from the corresponding Ham
tonians become possible. In particular, probability distrib
tions of particles can be explicitly calculated in some sim
cases. These exact solutions are important and instruc
they can be used for confirming the ergodic theory by co
paring with numerical simulations, and also as a start
point for further perturbation treatments. Note that in sta
tics very few nontrivial analytical solutions are availab
even for few-body systems. So far, most explicit solutio
have been obtained for moment~or, say, velocity! probability
distributions, and many fewer analytical results for spa
probability distributions are known because of some diffic
ties of space configuration computation. In Refs.@11# and
@12#, an explicit solution for the two-particle system in
two-dimensional rectangle is obtained, and this exact s
tion can well explain the interesting van der Waals effect a
the associated liquid-solid-like transition in a two-body sy
tem @10,12#. Thus, it is significant to find some other no
trivial exact solutions in few-body statistics.

One of the simplest systems showing chaos and a mi
canonical probability distribution on the energy surface i
one-dimensional~1D! many-body system. The typical mod
can be described as follows.N particles ~dimensionless
hard dots! are distributed in a 1D ring; the masses of t
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particles may take arbitrary real values which may be diff
ent from each other. The Hamiltonian of the system is giv
by

H5(
i 51

N Pi
2

2mi
, Pi5miẋi , ~1!

wherexi is the space position of thei th particle in the ring
and the length of the ring isL. Moreover, the particles canno
penetrate through each other, and elastic interactions are
fined whenever two dots collide with each other. A schema
figure of the model is shown in Fig. 1.

The statistical behavior of the system Fig. 1 has be
investigated in detail@3,13,14#. It is confirmed that this 1D
N-body system can reach a microcanonical probability d
tribution ~i.e., statistical equilibrium! in the long-time aver-
age wheneverN>3 and the masses of the particles are n
all identical. In @3# the equilibrium moment distributions o
the particles of Fig. 1 are explicitly given, and these dis
butions were confirmed by numerical simulations. Howev
for space distributions only some numerical results are av
able, and no analytical results have been obtained. An e
solution for both moment and space distributions would c
tainly be useful for understanding the statistical behavior

FIG. 1. Schematic figure of anN-body system in circular space
©2003 The American Physical Society02-1
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such a typical and important model, and this exact solut
may serve as the basis for further analysis of more com
cated and realistic systems. The task of this paper is to c
pute the exact space distribution of the system Fig. 1
compare the theoretical solution with a numerical simulati

In Secs. II and III we derive the explicit form of the spa
probability distribution of a 1DN-body and nonidentical-
mass system. In Sec. IV we set the mass of one particl
infinity, and derive the solution for a hard-ball system. So
interesting results contrary to intuition are obtained. In S
V the system statistics is numerically computed, and the
merical results fully agree with the theoretical prediction
Section VI presents a brief discussion and conclusions.

II. DISTRIBUTIONS OF MOTION RANGES OF VARIOUS
PARTICLES

It has been numerically confirmed that the system Fig
can reach statistical equilibrium in the long-time avera
i.e., it can reach an equal-probability distribution on t
given energy surface@3#. The task in this and the next se
tions is to explicitly compute the space probability distrib
tion by assuming the microcanonical distribution state. In
present section we first focus on the distributions of mot
ranges of various particles.

First, the motion of system~1! is restricted by the tota
moment conservation law, i.e.,

(
i 51

N

miẋi50, ~2!

which leads to a constraint on the space distribution:

(
i 51

N

mixi5const50, ~3!

where we set the constant to zero without losing any ge
ality.

From ergodicity~which must be valid for statistical equ
librium state! and the constraint~3! we can extract some
interesting characteristics of the space distributions of
particles. Because of ergodicity, the following state must
reached during the system evolution:

x15x25¯5xN50. ~4!

FIG. 2. Distribution of theN special pointsS1 ,...,SN given in
Eqs.~7!, where all particles gather together with certain orderin
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In this state, all theN particles come together to the sam
space point x50. Since the particles cannot penetra
through each other, theN particles must follow a necessar
order even at the same point; this ordering is assumed t
1→2→3→¯→N, i.e., particle 1 is the leftmost and pa
ticle N is the rightmost. We call the space pointx50 where
all the particles come together in the order 1→2→3→¯

→N the S1 point ~i.e., particle 1 is the leftmost!. Now we
haveS150.

Because of the constraint~3! and nonpenetrability of the
particles, particle 1 cannot move right~cannot move anti-
clockwise fromx50), and it has the right boundary of mo
tion at x50. However, particle 1 can move left fromx50
~can move clockwise fromx50); the left boundary of par-
ticle 1 is also defined by the constraint~3! as

m1~L2x!5(
i 52

N

mixi ,

~5!

x5S25m1L/M ,M5(
i 51

N

mi .

At S2 all particles come together again. However, the
dering is now changed to 2→3→¯→N→1, where the left-
most particle is particle 2. Thus we call this accumulati
point S2 .

We defineSiSĵ as an arc, which linksSi to Sj along the
anticlockwise path in the ring of Fig. 1. Thus, particle 1 c
never enter the regionS1S2̂ , but it can move in the whole
region ofS2S1̂ . S1 andS2 are two boundaries restricting th
motion of particle 1.

Again particle 2 cannot move anticlockwise fromS2 but it
can move left fromS2 , and the leftmost point of particle 2 i
also defined by Eq.~3! as

m2~L1x1S2!5(
iÞ2

N

mi~xi2S2!,

~6!
x5S35S21m2L/M .

Now all particles can come together to the same pointS3 , at
which particle 3 is the leftmost, and the ordering reads
→4→¯→N→1→2. The regionS2S3̂ is forbidden for par-
ticle 2 while the whole areaS3S2̂ is reachable for this par
ticle.

The above discussion can be extended to all partic
Based on the ergodicity of the system, nonpenetrability
the particles, and the total moment conservation law of
~3!, we can reach some interesting and general conclus
summarized as follows.

~1! For anN-particle system there areN particular space
points in the ring of Fig. 1, which can be defined as

S150, Si 115Si1miL/M , i 51,2,...,N21. ~7!

The distributions ofSi are schematically drawn in Fig. 2. A
these space points, all the particles may assemble, but
different orderings at different points. At pointSi , the par-
ticle ordering reads

.

2-2
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i→ i 11→¯→N→1→2→¯→ i 21 ~8!

~while i 51, the ordering is 1→2→¯→N).
~2! The above space points play important roles in

stricting the regions of motions of various particles. For
stance, the regionSiSi 11̂ is forbidden for particlei. Thus, a
nonzero space probability distribution of particlei exists
only in the region ofSi 11Sî . The length of the forbidden
region of particlei is proportional to its mass valuemiL/M .

In @3#, numerical results qualitatively revealed some ch
acteristics of~1! and ~2!; however, no explicit analysis an
quantitative measures were available, and the mechanism
derlying these features and the existence of theN accumula-
tion pointsSi , distinguishing the forbidden zones of variou
particles, were unknown.

III. SPACE PROBABILITY DISTRIBUTIONS IN THE
RING SYSTEM

From the discussion of Sec. II, we know that, asN (N
.3) elastic and nonpenetrable particles, with nonident
masses, move in a 1D ring, the motion of each particle
restricted if the total moment is scaled to zero. Then thei th
particle has nonzero probability only in the regionSi 11@Si
defined in Eq.~7!. In this section we compute the spa
probability distributions of all particles in their ranges
motion.

Since we accept an equal-probability distribution on
energy surface and the space variables are not included i
energy expression of Eq.~1!, the space probability distribu
tion can be analytically computed based on the equ
probability principle for different space configurations und
the total moment conservation condition of Eq.~3! and the
nonpenetrability restriction.

We deduce the probability distribution of particleN in the
periodic boundary case. Since there is symmetry with res
to the index of the particles, we can get the probability d
tributions of all other particles directly from that of the pa
ticle N by changing the index. We can set the mass cente
the N-particle system atx50.

First we introduce four characters:

Mi5(
j 51

i

mj , M5(
j 51

N

mj , i 51,2,...,N21,
04110
-
-

-

n-

l
is

e
the

l-
r

ct
-

of

Bi~xi 11 ,xi 12 ,...,xN!52

(
j 5 i 11

N

mjxj

M i
, i 52,3,...,N21,

Ei~xi 11 ,xi 12 ,...,xN!5

(
j 51

i 21

mj~L2xN!2 (
j 5 i 11

N

mjxj

mi
,

i 52,3,...,N21,

Ci
~ j !~xi 11 ,xi 12 ,...,xN!5

(
k51

i 2 j 21

mk~L2xN!2 (
k5 i 11

N

mkxk

(
k5 i 2 j

i

mk

,

i 53,4,...,N21,j 51,2,...,i 22.

When j 50 we haveEi5Ci
(0) , Bi5Ci

( i 21) .
If we fix xN , xN21 ,...,xi 11 , the range ofxi is Bi,xi

,Ei . But when xi 11,Ei , the range becomesBi,xi
,xi 11 . In a word,Bi,xi,min(xi11,Ei). So the probability
for xN is

r~xN!5E
BN21

min~xN ,EN21!E
BN22

min~xN21 ,EN22!

¯

3E
B2

min~x3 ,E2!

dx2¯dxN22dxN21 . ~9!

Now the problem is whenEi,xi 11 happens. We insertCi
( j )

in this relation and find that, if and only ifxi 11,Ci 11
( j ) , xi

,Ci
( j 21) . We call Ci

( j ) the j-order middle point of thei th
particle. It is easy to prove that ifxi,Ci

( j 11) thenxi 21<xi

,Ci 21
( j ) .

Claim. If

xN,Si 11 ,i 51,2,...,N21

then

Ck
~ j !.Si 11 ,k2 j .11 i . ~10!

Proof. We have
Ck
~ j !5

(
l 51

k2 j 21

ml~L2xN!2 (
l 5k11

N

mlxl

(
l 5k2 j

k

ml

.

(
l 51

k2 j 21

ml~L2xN!2 (
l 5k11

N

mlxN

(
l 5k2 j

k

ml

5

(
l 51

k2 j 21

mlL2 (
l 5k11

N

mlxN2 (
l 51

k2 j 21

mlxN

(
l 5k2 j

k

ml

.

(
l 51

k2 j 21

mlL2 (
l 5k11

N

mlSi 112 (
l 51

k2 j 21

mlSi 11

(
l 5k2 j

k

ml

5

S (
l 51

k2 j 21

mlL2(
l 51

i

mlL D 1 (
l 5k2 j

k

mlSi 11

(
l 5k2 j

k

ml

.Si 11.

According to the above discussion, we can write down the probability distribution as
2-3
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r~xN!5H PK
N~xN!, xP@SK ,SK11#, K51,2,...,N22,

PN22
N

„EN21~xN!…, xP@SN21 ,SN#,

0, xP@SN ,L#,

~11!

with

P1
N~xN!5ANE

BN21

xN E
BN22

xN21
¯E

B2

x3
dx2¯dxN22dxN21 ,

P2
N~xN!5ANH E

BN21

CN21
~N23!

P1
N21~xN21!dxN211E

CN21
~N23!

xN
P1

N21~CN22
~N24!!dxN211E

CN21
~N23!

xN E
CN22

~N24!

xN21
P1

N22~CN23
~N25!!dxN22dxN211¯

1E
CN21

~N23!

xN E
CN22

~N24!

xN21 E
CN23

~N25!

xN22
¯E

Cj
~ j 22!

xj 11
P1

j ~Cj 21
~ j 23!!dxj¯dxN22dxN211¯

1E
CN21

~N23!

xN E
CN22

~N24!

xN21
¯E

C3
~1!

x4 E
B2

E2
dx2dx3¯dxN22dxN21J ,

and generally

PK
N~xN!5ANH E

BN21

CN21
~N23!

P1
N21~xN21!dxN211E

CN21
~N23!

CN21
N24

P2
N21~xN21!dxN211¯1E

CN21
~N2k!

CN21
~N2K21!

PK21
N21~xN21!dxN21

1E
CN21

~N2K21!

xN
PK21

N21~CN22
N2K22!dxN211E

CN21
~N2K21!

xN E
CN22

~N2K22!

xN21
PK21

N22~CN23
N2K23!dxN22dxN211¯

1E
CN21

~N2K21!

xN E
CN22

~N2K22!

xN21
¯E

Cj
~ j 2K !

xj 11
PK21

j ~Cj 21
j 2K21!dxj¯dxN22dxN211¯

1E
CN21

~N2K21!

xN E
CN22

~N2K22!

xN21
¯E

CK11
~1!

xK12
PK21

K ~EK21!dxK11¯dxN22dxN21J
5ANH (

j 51

K21 E
CN21

~N212 j !

CN21
~N222 j !

Pj
N21~xN21!dxN21

1 (
j 5K11

N21 E
CN21

~N2K21!

xN E
CN22

~N2K22!

xN21
¯E

Cj
~ j 2K !

xj 11
PK21

j ~Cj 21
~ j 2K21!!dxj¯dxN21J , ~12!

K52,3,...,N22,

with AN being the normalization coefficient. The analytical expression for the recursion~12! can be used, in principle, fo
computing the space probability distributions of 1D ring system with any finite numbers of particles.

The general formalism of Eq.~11! can be explicitly specified for smallN. For instance, forN53 we have

r~x3!5A335
x31

m3x3

M2
, x3P@S1 ,S2#,

m1~L2x3!2m3x3

m2
1

m3x3

M2
, x3P@S2 ,S3#,

0, x3P@S3 ,L#.

~13!

For N54 we have
041102-4



r~x4!5A43

¦

E
2m4x4 /M3

x4 E
2~m4x41m3x3!/M2

x3
dx2dx3 , x4P@S1 ,S2#

E
2m4x4 /M3

@m1~L2x4!2m4x4#/~m21m3!E
2~m4x41m3x3!/M2dx2dx3

x3

1E
@m1~L2x4!2m4x4#/~m21m3!

x4 E
2@m4x41m3x3#/M2

@m1~L2x4!2m4x42m3x3#/m2
dx2dx3 , x4P@S2 ,S3#

E
2m4x4 /M3

@m1~L2x4!2m4x4#/~m21m3!E
2~m4x41m3x3!/M2

x3
dx2dx3

1E @M2~L2x4!2m4x4#/m3 E @m1~L2x4!2m4x42m3x3#/m2
dx2dx3 , x4P@S3 ,S4#,

~14!

ANALYTICAL SOLUTION OF SPACE PROBABILITY . . . PHYSICAL REVIEW E67, 041102 ~2003!
@m1~L2x4!2m4x4#/~m21m3! 2~m4x41m3x3!/M2

0, x4P@S4 ,L#.
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The equal-spacing rule numerically observed in@3# can be
confirmed in Eqs.~13! and~14! and also in Eq.~11! for any
finite N we tested. The long-range periodic ordering can
interpreted as crystallization driven by maximizing the e
tropy @15,16#. An interesting feature from Eq.~11! is that for
anN-particle system the probability densityr(x) has smooth
derivatives up to order dN23r(x)/dxN23, and
dN22r(x)/dxN22 has discontinuities, while
dN21r(x)/dxN21 diverges. This conclusion can easily b
checked forN53 and 4 systems.

IV. SPACE PROBABILITY DISTRIBUTION IN A FIXED
BOUNDARY SYSTEM

If one of the N particles has infinitely large mass, th
periodic boundary condition can be changed to a fix
boundary one. In the case of infinitemN , Eqs. ~7! are re-
duced to

Si50, i 51,2,...,N21,
~15!

SN5L.

Now all particles except particleN can move in the entire
space region of lengthL, while particleN is static atx50,
serving as two hard walls of fixed boundaries.

If we insert Eqs.~15! into Eq. ~11! and consider infinite
mN , the space probability distribution of particlei can be
specified as

r i~x!5
~N21!

LN21 CN22
i 21 xN2 i 21~L2x! i 21,

~16!

CN
i 5

N!

~N2 i !! i !
.

It is easy to check that

E
0

L

r i~x!dx51, i 51,2,...,N21, ~17!
04110
e
-

d

n~x!5 (
i 51

N21

r i~x![~N21!/L.

The equal-spacing property found in@3# can be confirmed
analytically as

^xi&5E
0

L

xir~xi !dx5
iL

N
.

An interesting feature of Eqs.~16! is that the spatial prob-
ability distributions of all moving particles are totally inde
pendent of their masses, in sharp contrast with Eq.~11!,
where with all masses finite the distributions of particles
apparently mass dependent. In particular, if the mass di
bution in the (0,L) region is asymmetric, the spatial distr
butions are symmetric. Assume, for instance, that we h
N2153 moving particles in Fig. 3~a!, andm3@m1 . Then
we may expect that the heavy particlem3 may move in a
more restricted region than the light onem1 . However, the
theoretical predictions of space probability distributio

FIG. 3. ~a! Three particles moving in a 1D line of lengthL with
fixed boundary conditions. Mass distribution is asymmetric,m1

55, m252, m351. ~b! Symmetric probability distributions of sys
tem ~a! predicted by Eqs.~16!.
2-5
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shown in Fig. 3~b! have mirror symmetry between the fir
and third particles, disregarding the asymmetry of the val
of m1 andm3 . The mechanism of this feature can be und
stood as follows: the infinitely largemN allows all other re-
maining N21 particles to be free from the total mome
conservation law@with N finite masses, this conservation la
plays the central role in determining Eqs.~7! and ~11!#.

V. NUMERICAL RESULTS

For confirming the predictions of the space probabil
distributions in Secs. II–IV, we compute the system statis
numerically. In our simulations the probability distribution
particle i is calculated by the time average

P~xi ,Dxi !5r~xi !Dxi5Dt i /T,
~18!

T5(
i 51

K

Dt i ,

whereDxi is the space step used in measuringr(xi). In all
our following simulations we takeDx5L/100. Dt i is the
time length for particlei to stay in the space stepDxi cen-
tered atxi , andT is the total time length for our measure
ment, which is taken to be so large that the system underg
more than 106 collisions between the particles.

In Fig. 4 we plotr(xi) for N53 and finite massesm1
55, m253, and m352. The total energy is an irrelevan
quantity and is set to be 297. The solid line represents
theoretical prediction of microcanonical distribution E
~13!, while all the circles, triangles, and squares show
merical results. It is obvious that numerical simulations co
firm the theoretical curves perfectly, indicating that the s
tistical equilibrium of the equal-probability principle on th
energy surface is valid for our simple three-body hard-b
system. In Fig. 5 we do the same as Fig. 4 withN54 and
m152, m253, m354, andm456. In Figs. 6~a! and 6~b! we

FIG. 4. Space probability distributions of three-particle syst
in 1D space with periodic boundary conditions.m155, m253,
and m352. At S150, S2520, andS3550, the three particles ca
gather together with the orderings 1,2,3; 2,3,1; and 3,1,2, res
tively. The solid line represents the theoretical results Eqs.~13!,
while circles, triangles, and squares show the numerical obse
tions.
04110
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study N55 and 6, respectively. In all these cases we fi
complete agreement between the theoretical and nume
results.

In Fig. 7, we takeN55 and letm5→`. Thus, we con-
sider a four-particle system with fixed elastic boundary co
ditions. The solid line gives the theoretical result of Eq
~16!, the circles ~squares! plot the simulations form1
510 (m152), m255 (m257), m352 (m3510), and m4
51 (m4550). The same space probability distributions a
obtained for the numerical plots of different mass distrib
tions, and all numerical results coincide with the theoreti
formula. It is clear that asymmetric mass distributions g
identical symmetric probability distribution lines, and th

c-

a-

FIG. 5. Same as Fig. 4 withN54 andm152, m253, m354,
andm456. The solid line presents Eqs.~14!.

FIG. 6. Same as Fig. 4 withN5(a) 5 and~b! 6. The theoretical
preditions are given by Eq.~11!.
2-6
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ANALYTICAL SOLUTION OF SPACE PROBABILITY . . . PHYSICAL REVIEW E67, 041102 ~2003!
microcanonical equilibrium distribution of the system for t
space variables is convincingly confirmed.

VI. CONCLUSION

In conclusion, we have analytically calculated the spa
probability distribution of anN-body hard-ball system in the

FIG. 7. Same as Fig. 3~b! with N55, m5→`, i.e., we have
fixed boundary conditions with four finite-mass particles. Solid li
shows Eqs.~13!, and circles and squares are for numerical res
for systems withm1510, m255, m352, m451 and m152, m2

57, m3510, m4550, respectively.
ev

l

04110
l

1D case for both periodic and fixed boundary conditions. T
theoretical solution is significant for the following reason
First, the 1DN-body system is among very few importa
and computable prototypes of few-body systems showing
behavior of statistical physics directly from the firs
principles computation of simple mechanical dynamics; th
any nontrivial exact solution with this system is desirab
Second, some features of the solution@such as the existenc
of N space points for all-particle gatheringS1 ,...,SN ; the
regular orderings of the particles at these points; and
structures of the probability distributions of Eqs.~11! and
~16!; and the discontinuities of some high-order derivativ
of the probability distributionsr(x)] were not obviously an-
ticipated before the results came out. Finally, the analyt
formulas of Eqs.~11! and ~16! for zero-volume-ball ideal
systems can be used as a useful perturbation basis in
computations of some nonideal finite-volume-ball systems
multiple-dimensional spaces, such as in a 2D narrow strip
a 3D narrow tube.
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