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Analytical solution of space probability distributions of particles in a one-dimensional ring
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Spatial probability distributions of a few particles having nonidentical masses in one-dimensional space with
both periodic and fixed boundary conditions are analytically computed in statistical equilibrium states, and
explicit solutions of the probability distributions are obtained. Some nontrivial interesting features of the
probability distributions are predicted and fully confirmed by numerical simulations. The realization of a
microcanonical equilibrium state of the system is justified by the agreement between the theoretical predictions
and numerical observations.
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[. INTRODUCTION particles may take arbitrary real values which may be differ-
ent from each other. The Hamiltonian of the system is given
In recent decades the problem of equilibrium states oby
few-body systems has attracted much attenfibAl1]. The N o
interest in this problem rests on the fundamental significance _ Pi e
- - o - - H=> -—, P;=mX, (1)

of the link between mechanics and statistical physics. It is =12m
now clear that statistical behavior such as microcanonical _ N _ o _
distributions and associated quantities like temperature, efwherex; is the space position of theh particle in the ring
tropy, free energy, and so on can be observed in Chaoti@nd the Iength of the rnng is. Moreover, the partIC|6§ cannot
low-dimensional mechanical systems. This is in contrast tPenetrate through each other, and elastic interactions are de-
the long-existing understanding that these statistical quantfined whenever two dots collide with each other. A schematic

ties can be defined only in macroscopic systems consisting dfgure of the model is shown in Fig. 1. _
huge numbers Of microscopic Subsystemsl ) The StatIS.tlcal be.haV|Or Of the SySt.em F|g 1 haS been

In few_body SystemS, some ana'ytica| Computations Oﬂnvestlgated In deta|“3,13,14. It IS Conﬁrmed that th|S 1D )
statistical quantities directly from the corresponding Hamil-N-body system can reach a microcanonical probability dis-
tonians become possible. In particular, probability distribuy-tribution (i.e., statistical equilibriumin the long-time aver-
tions of particles can be explicitly calculated in some simple2ge wheneveN=3 and the masses of the particles are not
cases. These exact solutions are important and instructiv@ll identical. In[3] the equilibrium moment distributions of
they can be used for confirming the ergodic theory by comihe particles of Fig. 1 are explicitly given, and these distri-
paring with numerical Simu|ati0ns’ and also as a Startind:)utions were confirmed by numerical simulations. However,
point for further perturbation treatments. Note that in statisfor space distributions only some numerical results are avail-
tics very few nontrivial analytical solutions are available @ble, and no analytical results have been obtained. An exact
even for few-body systems. So far, most explicit solutionssolution for both moment and space distributions would cer-
have been obtained for momefot, say, velocity probability tainly be useful for understanding the statistical behavior of
distributions, and many fewer analytical results for space
probability distributions are known because of some difficul- mi
ties of space configuration computation. In Rdfkl] and
[12], an explicit solution for the two-particle system in a
two-dimensional rectangle is obtained, and this exact solu-
tion can well explain the interesting van der Waals effect and
the associated liquid-solid-like transition in a two-body sys-
tem[10,12. Thus, it is significant to find some other non-
trivial exact solutions in few-body statistics.

One of the simplest systems showing chaos and a micro-
canonical probability distribution on the energy surface is a
one-dimensionallD) many-body system. The typical model

can be described as followsN particles (dimensionless m2
hard dot$ are distributed in a 1D ring; the masses of the mN
* Author to whom correspondence should be addressed. FIG. 1. Schematic figure of aN-body system in circular space.
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In this state, all theN particles come together to the same
space pointx=0. Since the particles cannot penetrate
through each other, thi particles must follow a necessary
order even at the same point; this ordering is assumed to be
1—-2—-3—---—N, i.e., particle 1 is the leftmost and par-
i ticle N is the rightmost. We call the space poit 0 where

all the particles come together in the order»2—3—---
—N the S; point (i.e., particle 1 is the leftmostNow we
haveS;=0.

S, =mL/M Because of the constraif®) and nonpenetrability of the
23,..N.1) particles, particle 1 cannot move rigltannot move anti-
(12,...N) clockwise fromx=0), and it has the right boundary of mo-
tion atx=0. However, particle 1 can move left from=0
(can move clockwise fronx=0); the left boundary of par-
ticle 1 is also defined by the constraif® as

Soy =S, +mL/M

(+1,. N1, )

Sy =Sy tmy LIM
N,1,...,N-1)

FIG. 2. Distribution of theN special pointsS,,...,Sy given in
Egs.(7), where all particles gather together with certain orderings

such a typical and important model, and this exact solution N
may serve as the basis for further analysis of more compli- ml(L—x)z_E miX;
cated and realistic systems. The task of this paper is to com- =2
pute the exact space distribution of the system Fig. 1 and N ©)
compare the theoretical solution with a numerical simulation. x=S,=m;L/M,M= E m; .
In Secs. Il and Il we derive the explicit form of the space =1

probability distribution of a 1DN-body and nonidentical-
mass system. In Sec. IV we set the mass of one particle t8ering is now changed to23—---—N— 1, where the left-

@nfinity, _and derive the solution_for a hard-ball system. Somemost particle is particle 2. Thus we call this accumulation
interesting results contrary to intuition are obtained. In Secpointsz

V the system statistics is numerically computed, and the nu* We defineSS as an arc, which links, to S; along the
. . . T (] I} )
merical results fully agree with the theoretical prEd'Ct'ons'anticlockwise path in the ring of Fig. 1. Thus, particle 1 can

Section VI presents a brief discussion and conclusions. never enter the regioB;S,, but it can move in the whole

region ofS,5,. S; andS, are two boundaries restricting the
II. DISTRIBUTIONS OF MOTION RANGES OF VARIOUS motion of particle 1.

PARTICLES Again particle 2 cannot move anticlockwise fr@pbut it

It has been numerically confirmed that the system Fig. 1€an move left fron®,, and the leftmost point of particle 2 is
can reach statistical equilibrium in the long-time average?Ilso defined by Eq3) as
i.e., it can reach an equal-probability distribution on the N
given energy surfacg3]. The task in this and the next sec- _ o
tions is to explicitly compute the space probability distribu- my(L+x+S,) .Z’z mi(Xi—S),
tion by assuming the microcanonical distribution state. In the (6)
present section we first focus on the distributions of motion X=S3=S,+m,L/M.
ranges of various particles.

First, the motion of systenil) is restricted by the total Now all particles can come together to the same p8intat

At S, all particles come together again. However, the or-

moment conservation law, i.e., which particle 3 is the leftmost, and the ordering reads 3
N —4—---—N—1—2. The regiorS,S; is forbidden for par-
> mx =0, (2) ticle 2 while the whole are&;S, is reachable for this par-
=1 ticle.

which leads to a constraint on the space distribution: The above discussion can be extended to all particles.

Based on the ergodicity of the system, nonpenetrability of
N the particles, and the total moment conservation law of Eq.
2 m;x; = const=0, 3 (3), we can reach some interesting and general conclusions
=1 summarized as follows.
where we set the constant to zero without losing any gener- (1) For anN-particle system there afé particular space

ality. points in the ring of Fig. 1, which can be defined as
From ergodicity(which must be valid for statistical equi- .
librium staté and the constraint3) we can extract some $=0, S;1=§+mlL/M, i=12,..N-1. (7)

interesting characteristics of the space distributions of the o . o
particles. Because of ergodicity, the following state must belhe distributions of5; are schematically drawn in Fig. 2. At

reached during the system evolution: these space points, all the particles may assemble, but with
different orderings at different points. At poi&, the par-
X1=Xp="+-=Xy=0. (4)  ticle ordering reads
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i—i+l——>N—-1-2——i—-1 (8) %
m; X
(while i =1, the ordering is 2>2—---—N). R 17
(2) The above space points play important roles in re- Bi(xi+l!xi+21---aXN)—_—Mi , 1=2,3,.N—-1,
stricting the regions of motions of various particles. For in-
i—1 N

stance, the regio&; S, is forbidden for particlé. Thus, a
nonzero space probability distribution of partidleexists > mj(L_XN)_;Z m;X;
only in the region ofS ;5. The length of the forbidden Ei(Xis1,Xi10,0e Xn)= ! Ul
region of particle is proportional to its mass valug;L/M.

In [3], numerical results qualitatively revealed some char- i=2.3.N—1
acteristics of(1) and (2); however, no explicit analysis and T '
guantitative measures were available, and the mechanism un- i-j-1 N
derlying these features and the existence ofNreccumula- m (L —Xy) — > My X
tion pointsS;, distinguishing the forbidden zones of various CO (X411 Xi120eee Xn) =
particles, were unknown. PSRz 2':

my

I1l. SPACE PROBABILITY DISTRIBUTIONS IN THE
RING SYSTEM i=3,4,.N-1j=12,.i—2.

From the discussion of Sec. Il, we know that, 4N  Whenj=0 we haveE;=C{®, B;=C{" V.
>3) elastic and nonpenetrable particles, with nonidentical If we fix Xy, Xy-1,....Xi+1, the range ofx; is B;<X;
masses, move in a 1D ring, the motion of each particle is<E;i. But when x;,;<E;, the range becomes;<Xx;
restricted if the total moment is scaled to zero. Thenithe ~<Xi+1. In @ word,Bj<x;<min(x,1,E;). So the probability
particle has nonzero probability only in the regin [ S for xy is

defined in Eq.(7). In this section we compute the space min(xy .En_1) [ Min(xy_1.En_2)
probability distributions of all particles in their ranges of p(XN) = J'
motion. Bn-1 Bn-2
Since we accept an equal-probability distribution on the min(xs Ey)
energy surface and the space variables are not included in the fB dXo -~ dXn_20Xy_1- 9
2

energy expression of Eql), the space probability distribu-
tion can be analytically computed based on the equalnow the problem is whe;<x; ., happens. We inse@{))

probability principle for diﬁer_ent space configurations under;p, this relation and find that, if and only i, ,<CU),, x;
the total moment conservation condition of E§) and the <Ci(jfl). We call Ci(j) the j-order middle point of theth

nonpenetrability restriction. i ) . (i+1)
We deduce the probability distribution of partidiein the particle. It is easy to prove that ¥ <C; thenx; _ <X,

periodic boundary case. Since there is symmetry with respe&cij—)l_-
to the index of the particles, we can get the probability dis- Claim. If

tributions of all other particles directly from that of the par- XN<Si.1,i=1,2,.N—1
ticle N by changing the index. We can set the mass center of
the N-particle system ax=0. then
First we introduce four characters: .
i N CV>S 1 k—j>1+i. (10)
M;= m, M= m, i=12,..N—-1,
' 121 ) 121 y N Proof We have
k—j-1 N k—j-1 N k—j—1 N k—j-1
Do mL—xy)— 2 omx X ml—xy— X mxy > mbL— X mxy— X mxy
=1 ISk+1 =1 I1<k+1 =1 ISK+1 =1
CE(J): K > K = K
> m, > - my m
I=k—j I=k—j I=k—j
k—j—1 N k—=j—1 k—j—1 i k
P2 m|L—|; mS.1— 2, mMSi pa) m|L—|21 mL +|§7 mS; 1
> K = K >S1
> S m > S m
I=k—]j I=k—]

According to the above discussion, we can write down the probability distribution as
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PE‘(XN), Xe[Sk,S«+1], K=1,2,..N—-2,
p(xn)=1 PN_2En—1(Xn)),  Xe[Sy_1,S\], (11
0, xe[Sy,L],

with

N XN XN-1 X3
P1(Xn)=An ] A dXy— 2l Xy,
Bn-1/Bn-2 B2

cMd -
PSI(XN)_AN{ fBN Py 1(XN—1)dXN—1+f(N 3)PN YeRS)dxy- 1+J - 3)f(,\, 4PN 2(CRES ) dxy—pdxy— g+

N

XN-1 XN-2 3)
-3 Jet-o J e 5) o cli=? 1(C 1A% Xy oUXy g+

+JX” JX“ fx“ szd dxg - dxy_od

" Xo0X3 **OXN—20XN-1,
C;\IN:S) (N 24) C(al) B,
and generally

(N—K-1)

cN74 - _
PR(Xn)= AN(I N PN (XN 1) Xy 1+J <: ;P (XNfl)dXNfl+"'+J N PRII(n- D)Xy

(N=K)
N—-1 CN—l

_|_

XN N-1
N-K-2 N—K-3
fd“ - oP SHCNTE - 1+J1C(N7K—1)IC(N . 2P THCNZE P dxyodxy gt
N—-1

J’_

e o ClZX Y dxg - dxy-odxn-1+
Y D' e
C(N K 1) C&‘N:ZK_Z) Cj(j_K K l( ) Xj XN—20XN-1

N XN-1 XK+2PK £ d d d
+ C(NiKil) C(N’K’Z)”‘ C(l) K*l( K*l) XK+1”' XN*Z XN*l
N—1 N—-2 K+1
K-1 C(N 2 -
=An E f(N - )P (Xn-1)dXN-1
=1 1 i
N—1 X X X
N N-1 i+1
+ > | Pk (CU T Yy dxg g (12
=K1 Jegon Jeh-k-2 C(_J—K) i
- - ]

K=2,3,.N—-2,

with Ay being the normalization coefficient. The analytical expression for the recufs®rcan be used, in principle, for
computing the space probability distributions of 1D ring system with any finite numbers of particles.

The general formalism of Eq11) can be explicitly specified for smal. For instance, foN=3 we have

M3X3
X3+ M ’ X3E[Sl,82],
2

p(X3)=AgX ml(L_)r:)_mSX3+m|\ZX3' Xs€[S,.54]. (13
2 2
0, Xze[Ss,L].

For N=4 we have
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f[ml(L —X4) — MyXal/(My+mg) fX3

—MyX4 /M3

PO = A
J‘[ml(L—x4)—m4x4]/(m2+m3) J‘x3

—MyXe /M3

\ 0, Xxqe[SyL].

The equal-spacing rule numerically observed 3h can be
confirmed in Egs(13) and(14) and also in Eq(11) for any

finite N we tested. The long-range periodic ordering can be
interpreted as crystallization driven by maximizing the en-

tropy [15,16]. An interesting feature from Eq11) is that for
anN-particle system the probability densijiyx) has smooth
derivatives up to order dV 3p(x)/dxN"3  and
dN"2p(x)/dxN 2 has discontinuities, while

dV"1p(x)/dxN~?1 diverges. This conclusion can easily be

checked foiN=3 and 4 systems.

IV. SPACE PROBABILITY DISTRIBUTION IN A FIXED
BOUNDARY SYSTEM

( X4 X3
dX,dXs,
—MyX4 M3 J —(myxs+msx3)/My

X4
N J j
[my(L—X4) —myXxg4]/(My+mg3)

[Mo(L—x4) —myx4]/mg
J’_
[My(L—X4) —myXgq]/(My+mg3)

PHYSICAL REVIEW E67, 041102 (2003

X4€[S1,S]

—(MyX4+mMgx3)/Modxdxg

[My(L—X4) —MyX4—mzxz]/my

—(MyX4+m3x3)/M>p

dxdxz,  X4€[S,,S3]

—[MygXg+mMzx3]/Mo (14)
dx,dx3

[mq(L—X4) —mMyX4—mgxz]/my

dxdxs, X4€[S3,S4],
—(MyX4+mM3x3)/Mo
I

N-1

n(x)zg1 pi(x)=(N—1)/L.

The equal-spacing property found i8] can be confirmed
analytically as

L iL
(xi)= fo Xip(X)dx= -

An interesting feature of Eq$16) is that the spatial prob-
ability distributions of all moving particles are totally inde-
pendent of their masses, in sharp contrast with @4),
where with all masses finite the distributions of particles are

If one of the N particles has infinitely large mass, the @Pparently mass dependent. In particular, if the mass distri-
periodic boundary condition can be changed to a fixecpution in the (Q.) region is asymmetric, the spatial distri-

boundary one. In the case of infinitey, Egs.(7) are re-
duced to
S=0, i=12,.N-1,
(15)
SN:L.

Now all particles except particldl can move in the entire
space region of length, while particleN is static atx=0,
serving as two hard walls of fixed boundaries.

If we insert Eqs.(15) into Eq.(11) and consider infinite
my, the space probability distribution of particlecan be
specified as

(N=1) 4 aNoie i
pi0= e Oy L=
(16)
i N!
CN_(N—i)!i!'
It is easy to check that
L
fpi(x)dx=1, i=1,2,..N—1, (17)
0

butions are symmetric. Assume, for instance, that we have
N—1=3 moving particles in Fig. &, andm;>m,. Then

we may expect that the heavy partiale; may move in a
more restricted region than the light ong. However, the
theoretical predictions of space probability distributions

. r'y
@ 0 m m m L

0.03

0.02+

0.014

0.00- i . i .
0 20 40 60 80
(b) y

100

FIG. 3. (a) Three particles moving in a 1D line of lengthwith

fixed boundary conditions. Mass distribution is asymmetng,

=5, m,=2, my=1. (b) Symmetric probability distributions of sys-

tem (a) predicted by Eqs(16).
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0.04

0.03+

0.02+

)

pix

0.01+

0.00+

FIG. 4. Space probability distributions of three-particle system
in 1D space with periodic boundary conditionan;=5, m,=3,
andmz=2. At S;=0, S,=20, andS;=50, the three particles can
gather together with the orderings 1,2,3; 2,3,1; and 3,1,2, respec-
tively. The solid line represents the theoretical results E#3), study N=5 and 6, respectively. In all these cases we find
while circles, triangles, and squares show the numerical observazomplete agreement between the theoretical and numerical
tions. results.

In Fig. 7, we takeN=5 and letmg—oo. Thus, we con-
shown in Fig. 8b) have mirror symmetry between the first sider a four-particle system with fixed elastic boundary con-
and third particles, disregarding the asymmetry of the valueditions. The solid line gives the theoretical result of Egs.
of m; andm;. The mechanism of this feature can be under-(16), the circles (squares plot the simulations form;
stood as follows: the infinitely largey allows all other re- =10 (m;=2), my,=5(Mm,=7), m3=2 (m3;=10), andm,
maining N—1 particles to be free from the total moment =1 (m,=50). The same space probability distributions are
conservation lavjwith N finite masses, this conservation law obtained for the numerical plots of different mass distribu-

FIG. 5. Same as Fig. 4 withN=4 andm,;=2, m,=3, my=4,
andm,=6. The solid line presents Eq&l4).

plays the central role in determining Eqg) and (11)]. tions, and all numerical results coincide with the theoretical
formula. It is clear that asymmetric mass distributions give
V. NUMERICAL RESULTS identical symmetric probability distribution lines, and the

For confirming the predictions of the space probability

distributions in Secs. II-1V, we compute the system statistics 0.04
numerically. In our simulations the probability distribution of
particlei is calculated by the time average 0.03-
P(Xi ,AXi)=p(Xi)AXi=ATi /T, %_002-
(18)

K 0.01
T:izl ATi y 0.00-

whereAx; is the space step used in measurirfg;). In all @

our following simulations we takAx=L/100. A is the
time length for particleé to stay in the space stepx; cen-
tered atx;, andT is the total time length for our measure- 0.04
ment, which is taken to be so large that the system undergoes
more than 10 collisions between the particles. 0.03
In Fig. 4 we plotp(x;) for N=3 and finite massen),
=5, my,=3, andmg=2. The total energy is an irrelevant . 0.021
guantity and is set to be 297. The solid line represents the = ;
theoretical prediction of microcanonical distribution Eg. 0.011
(13), while all the circles, triangles, and squares show nu-
merical results. It is obvious that numerical simulations con- 0.00 s
firm the theoretical curves perfectly, indicating that the sta-
tistical equilibrium of the equal-probability principle on the (b)
energy surface is valid for our simple three-body hard-ball
system. In Fig. 5 we do the same as Fig. 4 witk-4 and FIG. 6. Same as Fig. 4 witN=(a) 5 and(b) 6. The theoretical
m; =2, m,=3, mg=4, andm,=6. In Figs. &a) and §b) we  preditions are given by Eq11).
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1D case for both periodic and fixed boundary conditions. The

0.041 " mE10mSx=2met theoretical solution is significant for the following reasons.
* m=2m=7x,=10,m=50/" First, the 1DN-body system is among very few important

0.0 ' and computable prototypes of few-body systems showing the

0.02 behavior of statistical physics directly from the first-

= ........ e .::' principles computation of simple mechanical dynamics; thus

o any nontrivial exact solution with this system is desirable.
0.014 . § Second, some features of the solutjsnch as the existence
0.00 ........ of N space points for all-particle gatherirsgy,...,Sy; the

regular orderings of the particles at these points; and the
0 20 40 60 80 100 structures of the pro.bal.JiIity distributions of Eq4.l) gnd_
(16); and the discontinuities of some high-order derivatives
FIG. 7. Same as Fig.(B) with N=5, ms—, i.e., we have of the probability distributiong(x)] were not obviously an-
fixed boundary conditions with four finite-mass particles. Solid lineticipated before the results came out. Finally, the analytical
shows Eqs(lS)_, and circles and squares are for numerical resultsormulas of Eqgs.(11) and (16) for zero-volume-ball ideal
for systems withm; =10, m;=5, mg=2, m,=1 andm;=2, m;  systems can be used as a useful perturbation basis in the
=7, mg=10, m, =50, respectively. computations of some nonideal finite-volume-ball systems in

) ) o o multiple-dimensional spaces, such as in a 2D narrow strip or
microcanonical equilibrium distribution of the system for the 3 3D narrow tube.

space variables is convincingly confirmed.
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