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Survival probability of a diffusing particle in the presence of Poisson-distributed mobile traps
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The problem of a diffusing particle moving among diffusing traps is analyzed in general space dintension
We consider the case where the traps are initially randomly distributed in space, with uniform gerssity
derive upper and lower bounds for the probabi{t) (averaged over all particle and trap trajectortbst the
particle survives up to timé We show that, for £d=<2, the bounds converge asymptotically to giét)
~exp(—\gt¥?) for 1=d<2, where\y=(2/md)sin(zd/2)(47D)%¥?p and D is the diffusion constant of the
traps, and thaQ(t) ~exp(—4mpDt/Int) for d=2. Ford>2 bounds can still be derived, but they no longer
converge for largd. For 1=d=<2, these asymptotic forms are independent of the diffusion constant of the
particle. The results are compared with simulation results obtained using a new algpritiehra and P.
Grassberger, Phys. Rev. @, 050101(2002] which is described in detail. Deviations from the predicted
asymptotic forms are found to be large even for very small value®(@j, indicating slowly decaying
corrections whose form is consistent with the bounds. We also present resditsliffor the case where the
trap densities on either side of the particle are different. For this case we can still obtain exact bounds but they
no longer converge.
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I. INTRODUCTION also holds for theA+A— process above its critical di-
mensiond,=2.

Reaction-diffusion processes represent a large and impor- By contrast, the density decay forms for ther B—J
tant class of systems with nonequilibrium dynamics. From gprocess when the initial densitigg(t) and pg(t) are not
fundamental physical viewpoint, the interest in these systemequal are less well understood. In fact, since the exposition
lies in the fact that the concentration of reactants is governe®f the process as a model of monopole-antimonopole anni-
in general, by irreversible reaction events that depend on thiilation in the early universe nearly twenty years 444],
spatial distribution of particles rather than through equilib-Only & few results are known exactly. Most notably, Bramson
rium fluctuations controlled by a chemical potential. Such@nd Lebowitz[14] proved rigorously that, at large times, the
model systems have a range of applications, most notably tggensn_y of the minority specigsvhich we will take to be the
chemical kinetic§1,2] but also to interfacial growtfg], do-  ~ Particles behaves as
main coarsening4,5], and aggregatiof6].

oy 4di2
The most intensively studied reactions are single-species exp(—Agt™), d<2

annihilation A+A—) and coalescenceAd+A—A) as pa(t)~9 exp(—AzInt/t), d=2 (1)

well as two-species annihilationA(-B—J)—see, e.g., exg —\gl), d>2

Refs.[7-9] for reviews. In this paper we focus on the two-

species problem. It is known to exhibit two different Classesrevealingdzz to be critical in this case. To the best of our
of Iong.-time behavior depepding on whether the initial CON-ynowledge, no predictions for the constants were given
centrations ofA and B particles are equal or notAs an ntjl recently[15]. Furthermore, there has been no convinc-
aside, we note that a similar dependence on the initial conpg numerical verification of the predicted decay even in one
dition also holds for theA+ A—(J reaction when the reac- gimension, despite the development of sophisticated simula-
tant motion is deterministic rather than diffusiy#0,11).  tjon techniques[16] that allow the probing of extremely
The reason for this is that when the initial densitieAand  small densities that emerge at large times. In this paper, we
B particles are the same, they remain so for all timesexpand on the bounding arguments reported in Réf| that
whereas if, say, the initial density éfparticlesp,(0) is less  give rise to precise values af; for d<2. We also present a
than that of theB particles pg(0), theratio pa(0)/pg(0) detailed description of the simulation algorithm introduced in
—0 ast—o and at late times one has a few, isolattd Ref.[16] and extend it to test our bounding arguments and

particles diffusing in a background & particles. understand the approach to the asymptopia described by Eg.
The case of equal initial densities is well understood, and1).
results similar to those for th&+ A— & with diffusive par- As noted above, the late-time regime is characterized by a

ticle motion have been obtain¢#i2,13. In low dimensions, few isolatedA particles diffusing in a sea & particles. Thus
hered<4, fluctuation effects are important and one finds ait is appropriate to consider the extreme case of a siAgle
density decaypa(t)=pg(t)~t~ ¥ in this diffusion-limited  particle in a sea oB particles that has a uniforifPoisson
regime. Above the critical dimensiod>d.=4 one finds density. In this case, the quantipa(t) is just thesurvival
that the mean-field resufi, g(t)~ 1/t applies. This result probability of the A particle. Furthermore, if the diffusion
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constants of thé andB particles are the same, one can also 9= p(1) )
view p,(t) as the fraction of particles that have not met any
other particles. Thus the reactiént- B—J in the limitofa . . - .
low density of A particles has been discussed under thd" which the subscript=0 d_er_10t§s the particlez1 one of
guises ofuninfected walker§17] in which random walkers (he raps and the superscriptindicates a component of the
infect each other on contactliffusion in the presence of Position vectok;. The noisen;’(t) is a Gaussian white noise
traps[16,18 in which theB particles are considered as traps With zero mean and correlator

for the A particles, andoredator-prey model§19] in which

one asks fo_r th(_a survival of a pre(jm.e A particle.being <77ia(t)77jﬂ(t’)>:2Di5ij5a/35(t_t,)- (3)
chased by diffusing predatothe B particles. To avoid con-
fusion, we shall adopt only the trapping terminology in our

dlslcusr?_lon. K how h h val bability of particle to have a diffusion constabt'. HenceD,=D' and
diﬁlTs;[nls V:':Il(r)triciem:ﬁ tsheowresogéeeof&rjrr]\cl)lgﬁle '?rrg sclalayb% SnDi =D for i>0. The quantity of interest in this model is the
derstoo% ?n terms of tht§rget annihilation probltlaonﬁZO—ZZ pr.oba}bilityQ(t), averaged over all initial conditions and re-
(or first passage problefi23]) where one asks for the prob- alizations of the _randpm walks, that the particle has not yet
ability that none of the traps has entered a particular regiorr1net any of the diffusing traps.
(targe} in the d-dimensional space. In turn, the asymptotics
of the target annihilation problem are intimately related to [1l. ANALYTICAL RESULTS IN ONE DIMENSION

the recurrenceor transienceof diffusion in various dimen- . . -

sions. A process is said to be recurrent if the probability of FOF clarity, we restrict ourselves initially to the cade

returning to the initial configuration is unity. In the context of =1. Later,l in Sep. V we will explain h.OW i arguments
diffusion, this implies that with probability one, a walker will presented in detail here can be generalized to higher dimen-

visit a particular point in space infinitely often. It is well Sions. We begin with a description of the target annihilation
known (see, e.g, Refd23,24) that diffusion is recurrent in problem before moving on to discuss how it applies to the

dimensionsi<2, whereas in more than two dimensions it is TOré general problem of a particle’s survival in a sea of
transient(i.e., the return probability is less than oné is diffusing traps. The target annihilation problem can be

precisely this property of diffusion that gives rise to the criti- S0Ived exactly for and[20—-22. The asymptotic form of the
cal dimension of two for the trapping reaction and hence th&flution, and the leading corrections tdfor d>1), play a
asymptotic resultsl) for the A+ B— S process. central role in our bounding arguments. To estabhs_h the no-
The principal result of the paper is the determination oftation apd t.o make our pres_e-ntgﬂon self—contalned, we
the constants. in Eq. (1) for d=2, and the derivation of present in this paper a brief derivation of the main results as

upper and lower bounds fat=3. A striking feature of the a prelude to deriving the bounds.

results is that, fod<2, the value ol 4 is independent of the

diffusion constant of thé\ particle. A. The target annihilation problem
We begin in the following section of this paper by defin-

ing the trapping reaction model. Then, in Sec. Il we presen;ength 2 centered on the origifi.e., lying betweerx= —|

in de.tail our_analysis of the one—dimensional case, testing 0”:5ndx=|). We wish to calculate the probabili@-(t) that
pred'|ct|ons n 5‘?9- IV where we discuss how the model ma(tone of the diffusing traps initially placed outside this region
be simulated efficiently. !n Sec_. V. we show how the metho as hit the target by a time This quantity can be calculated
used 1o treat th_e one-dimensional case can be. exte_nded ifone knows the probabilityQ, (t|y) that a trap initially at
general d|meq3|ond>1. 'Only when the underlying diffu- positiony has not yet entered the target region. Since the
sion process is recurrerfie., for d_SZ) do our-upper and_ target is static and each trap executes independent diffusion,
lower bounds converge asymptotically to give exact pred'CWe can simply multiply the probabilities for each individual

tions forhg . Finally, in Sec. VI, we present a discussion andy ., qether and average over all possible initial positions to
summary of the results. find Qr(t)

We take all the traps to have a diffusion constBnand the

Consider a one-dimensional line containing a target of

Let us consider then a trap that has its initial position to
Il. DEFINITION OF THE MODEL the right of the target, i.ey;>|. The probabilityQ(t|y) that
the trap has not reached the target satisfies the backward

The trapping reaction model we consider is defined A% Kker-Planck equation

follows. At timet=0 a particle is placed at the origin of a

d—dmensmnal coordinate systelm.. .Surrou.erLng this particle is 9Q4(t]y) 22Q4(tly)
a uniform sea of traps whose initial positiorsare chosen Fra— 5 4)
independently. This initial condition ensures that the distri- ay

bution of traps is Poisson, i.e., the probability that a volume
V containsN traps is (pV)N/N! Jexp(—pV) in whichp isthe  with the boundary condition®4(t|l)=0, Q.(0]y)=1 if y

mean number of traps per unit volume. >| and Q,(t|*)=1. These express the facts that the prob-
The dynamics of the particle and traps can be expresseability that the target has been reached if the trap started at
using the Langevin equation y=1is one, that it is reached in zero time from-1 is zero
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and that it is reached from infinitin a finite timeis zero () (ii)
respectively. The solution to Eq4) that satisfies these

boundary conditions is

o Y
Ql(tly) - erf( \/4_Dt) (5)

in which erf(x) is the error function.
Instead of a single trap to the right of the target, consider

N independently diffusing traps, each initially placed at ran- > —°
dom in the intervaly; e[l,1+L]. Then, the probability that FIG. 1. Two walker trajectorieéspace-time plots, with=0 at
none of the traps has reached the target by tinse the botton) for which the particlgunfilled) survives contact with a
N trap. Trajectories of typéi) have the property that the particle re-
1+t yi—| mains inside a notional box, and the traps outside. This forms a
QN(t):ilJl [J dy; erf \/ﬁ ) ©) subset of the entire class of surviving trajectories, which includes

paths of type(ii) in which the particle leaves the box and the traps

It is convenient now to rewrite the error function in terms of e€nter but nevertheless no particle-trap contact occurs.

th I t functi =1-—erfc(x). Th
e complementary error function, exj¢ erfc(x) en prove this statement rigorously, although it is supported by

one has intuition and numerical datésee Sec. IV beloyw We also
1 [+t y—I N note that when we say “on average” we mean “after aver-
Qn(t)=|1- _f dy erfc( ) (7) aging over all possible initial trap positions and trajectories
LJi V4Dt of both particle and traps.”

. . : o If this claim is accepted, we obtain an upper bohgl(t)
Since we wish to con;ujer an |nf|n|t'e sea of traps,'we take the particle’s survival probability from E¢9) by noting
N=pL and then the limit.—o holding p, the density of  hat requiring the particle to remain stationary is equivalent
traps, fixed. This yields to having a target region of size=0. Then we immediately

1 FieL y—1 oL have that
Q.(t)=Ilim|1— —f dy erfc( H
_. L) /4Dt 4p Dt
: Q(t)SQu(t)=eXp( T m ) (10
B 2p\/D_'[ 7'r
—eXp NE ®) To derive a lower bound on the survival probabil@(t)

we introduce a notional box of sizecentered on the origin.
This gives the probability that no traps initially positioned on If we ask for the particle to remain inside this box until a
one side of the target have reached the target by tifSsmce  timet, and for all the traps to remain outside it, the traps and
we have in mind a target surrounded on both sides by trapgarticle may never meet and hence the particle survives until
and that the motion on each side is independent, we obtaiime t. There are, of course, other trajectories for which the
the probability that the target has not been annihilated by garticle survives, and so those just described form a subset of
trap by squaring Eq(8). That is, all possible surviving trajectories—see Fig. 1. Hence the

probability that the particle remains within the box and traps

4p+\Dt outside is a lower boun@®, (t) on Q(t).
Qr(t)=exp — = 9 There are three independent contributions to this bound:

Note that the size of the one-dimensional targebes not

(i) the probability that there are initially no traps in the box
of sizel; (ii) the probability that no traps enter the box up to
appear in this exact expression for its survival probability.
Later, in Sec. V, we will find that at suitably large times, the

time t; and (iii ) the probability that the particle has not left
the box up to timet. The first two contributions are easily

size of the target is unimportant for a2 (where diffusion

is recurrent

obtained. From the definition of the Poisson distribution, we
have that the probability the box initially contains no traps is
exp(—pl). Second, the probability that no traps enter the box
is independent of the box size and is given by E). The
third contribution, the probability that the particle remains
inside the box, is obtained as follows.

We now discuss how to construct upper and lower bounds Since the system is translationally invariant, we can just
on the particle’s survival probabilit@(t) using the result for as easily consider a particle initially sandwiched between
the target annihilation problen®) in one dimension. We absorbing boundaries at=0 and x=I|. The probability
claim that, on average, a particle surrounded by a uniformQp(t|y) that the particle starting at=1/2 has not crossed
isotropic distribution of traps survives longer if it is station- the absorbing boundaries satisfies a backward Fokker-Planck
ary than if it is allowed to diffuse. We are currently unable to equation

B. Bounding argument for a diffusing particle in the presence
of mobile traps
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aQp(tly) _D,aZQp(tly)
o Jy?

(11)

subject to the absorbing boundary conditioG(t|0)
=Qp(t|)=0 and the initial conditionQp(tly)=1 for O

PHYSICAL REVIEW E 67, 041101 (2003
InQ(t)

Note that this constant depends only on the density and dif-
fusion constant of the traps, and is independent of the diffu-

Ny=—lim (18)

t—o

<y<lI. The general solution to this equation that satisfies th&ion constant of the particle.
absorbing boundary conditions is obtained by separating the

time and space variables in the usual way. One obtains the

Fourier sine series

kK2m?D't

Qe(tly) =2 akex;n(— 5
k=1 |

sin( kfy) . (12

The expansion coefficients, are fixed through the initial

condition. Using the orthogonality of the sine functions one

finds

g k odd

0,

ag= (13)

k even.

C. Extensions to the basic trapping reaction model

It is straightforward to incorporate two generalizations of
the one-dimensional trapping model defined in Sec. Il into
the bounding arguments discussed above. The first of these is
to allow the traps to the left and right of the origin at time O
to have different densities. We denote the largerspec-
tively, smalle) of these densities gs, (p_) and their aver-
age asp=z(p.+p_). Additionally we shall placen par-
ticles at the origin at time 0 and study the probability ththt
survive until a timet.

To obtain an upper bound on the survival probability, we
note that the survival probability of the particles can only
increase(or remain constantas eitherp, or p_ is de-
creased. Hence the survival probability for the case of un-

For the purposes of the present calculation, we need corequal densities is bounded from above by the case where the

sider only the long-time form oQp(t|y) for a particle that
starts aty=1/2. Thus we keep only the longest-lived (
=1) mode in expansiofil2) to find

4 D't
Qp(t]1/2)~ —exp - B

(14)

Including this along with the contributions to the lower
boundQ, (t) on the diffusing particle’s survival probability
Q(t) discussed above, we have

D't
1z

_4p\Dt
Jr

once the timd is sufficiently large. Note that this provides a
bound for a particular box side Since the box is an artificial
construct, we can choose its size so that the lower bound
maximized at a particulgpredeterminedtime t*. One finds
that the corresponding box sizelts= (272D 't*/p)*3. Us-
ing this box size in Eq(15) we find the largest lower bound

is given by
4 Dt 2 2Dlt 1/3
pr—s[”’ ) (16)

4
QL(t): ;ex% - \/; 4

Combining this lower bound with the upper bou@d(t)
of Eq. (10) we find
3 W)
_$ f— J—
Jr 2

This implies that the constant; in the expressions of Bram-
son and LebowitZ1) is precisely determined as

ol . (15

4 4

<—+
a

2/3(D//D)1/3
(pZDt)lIB '

InQ(t)

(pZDt)1/2 (17)

density of traps is on both sides equapto. For the case of

a single diffusing particle, we argued above that an upper
bound on its survival probability is found by setting its dif-
fusion constanD’ to 0. Clearly, ifD’=0 the number of
particles at the origin is irrelevant, and so an upper bound on
Q(t) is given by Eq.(10) with p=p_, i.e.,

_4p_\Dt
N

To obtain a lower bound on the particles’ survival prob-
ability we once again introduce a notional box, inside which
all the particles must remain and no traps may enter until
time t. This time, however, we respect the asymmetry of the
problem by allowing the box to extend a distariceinto the
low-density region of traps anld. into the high-density re-
gion. We will again seek to maximize the lower bound by
Yaryingl _ andl , .

A lower bound Q,(t) is obtained using an argument
analogous to that leading to E{.6). Considering once again
late times, we find

21/
QL(t)MeXp(_nw_Dt
(I_+1,)?

_ZP—\/E_ZP+\/a
Vm Vo )

The number of particles enters into this expression through
the fact that the probability faall of then particles to remain
inside the box of sizé=1_+1, is simply thenth power of
the corresponding probability for a single particle.

The maximal lower bound for a prescribed tine is
obtained from Eq(20) by settingl® to zero(thus discount-

. (19

Q(t)gQU(t)=exp(

—(p-l_+pily)

(20
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ing partl_cle jriljectorlzes’t?at eq}ger the high-density repion IPy(xt) PPy (x,1)
and puttingl* =(2n7“D't*/p_)**. Then = (24
ot &XZ
e 2 21~4]1/3
Q(t)BQL(t)xex;{ _ 4”@_ nm"p-D 1 ) _ By Taylor expanding Eq(23) we find the diffusion constant
J 4 of both particle and trap to bB=D'=3
(21 The solution of the diffusion equation with an arbitrary
moving absorbing boundary a(t) is not known analyti-
Along with the upper bound Eq19) we find that cally. One can obtain it numerically, however, by iterating
the following two steps over’'=1,2, ... |.
4 InQ 4 5 (nsz’)m 1 (1) Construcththe probability dlstnbution of the trap’s po-
—<-——< —+3 . sition wusing the equationPi(x,t")=3[Pi(x—1t"—1
\/; (pZ_Dt)IIZ \/—p_ 4D (pZ_Dt)1/6 —{—Pl(x—}-l't’g—l)]_ q l( ) 2[ 1( )
(22 (2) Enforce the absorbing boundary condition by subse-
. quently settingP[Xq(t"),t']=0.
Note that, except for the case where p_ (which implies In the simulation, we wish to consider not just a single

p_=p,) these two bounds do not converge and so we cantrap, but a Poisson distribution of traps. This can be achieved
not make a precise prediction far when the trap densities as follows. LetP,(x,t) be the probability that there amre

are unequal. For the cape =p, , however, the bounds con- traps on lattice sitex at timet. We shall assume that this
verge to 4{/m, independent of the number of particles distribution is Poisson, i.e.,

IV. SIMULATION ALGORITHM AND RESULTS P(Xt)= ———— Le (X t)] exd —c(x,t)] (25)

A sophisticated algorithm for simulating the trapping re-
action in discrete space and time and with a Poisson distrin which c¢(x,t) is the mean number of traps at siteand
bution of traps was recently introduc¢ti6]. The beauty of timet.
the algorithm is that it admit@umerically exact calculation Now, if each trap can hop with equal probability to the
of the survival probability for an arbitrarily long, but fixed, left or right in one time step, we have
trajectory of the particle. As will be discussed below, the
algorithm takes into account all possible paths of the traps, as n
long as their initial distribution is Poisson. In order to obtain P,(x,t+1)= E Wo(x—LHW,_ (x+1t)  (26)
an estimate of the particle survival probability, it is necessary m=0

to iterate the algorithm over a sequence of particle paths. We
now discuss this algorithm in detail. in which W,,(x,t) is the probability thatm particles hop

from sitex at timet to x+1 at timet+ 1. This quantity is
- . _ _ given by
A. An efficient simulation algorithm
In order to simulate the trapping reaction model in one . [c(x,1)]

dimension, we construct a discretized version in which each Wi (X, 1) = Z S—,GXF[—C(X.'E)]( m)_S' (27)
walker follows a pathx(t) that hasx(t+1)—x(t)==+1. sme 2
Since all hops to the left or right occur in parallel, we must
ensure that the initial coordinates of all the walkers are eve
integers so that no two walkers are able to hop over eac
other. —
_ As a sta_rting point in underst_a_nding the si_mulation algo- P, (x,t+1)= [c(x,t)]”exq —?(x,t)] (29)
rithm, consider a system comprising the particle, whose tra- n!
jectory xq(t) is predetermined, and a single trap, whose tra-
jectory x,(t) is stochastic given some initial condition in which
x1(0)=y;. The probabilityP,(x,t) of finding the trap at site
x after timet, given that it has not absorbed the particle, c(X— 1t)+C(X+1t)
satisfies the equation C( = 2

Il1nsert|on of this expression into E¢R6) and a little algebra
Fleveals that

(29

Pi(xt+1)= l[pl(x_lt)_’_ Py(x+11)] (23  Thatis, if the distribution of traps at timeis Poisson the
distribution of traps at time¢+1 is also Poisson, with the
mean occupation number at each site obeying the discrete

subject to the initial conditio(x,0)= d4 y, and the moving diffusion equation
absorbing boundary conditioR(xy(t),t)=0. Note that Eq.

(23) is the discrete analog of the diffusidfrokker-Planck

1
equation cx,t+1)=sle(x— L +e(x+1h]. (30)
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As with the case of the single-trap described above, we ' ' ' ' '

wish to determine the probability distribution of traps given i — t=4
that the particle following the predetermined pagjft) has 0251 el
not been absorbed until a timeWe must therefore have at - --- t=16
each time stef,(Xo(t),t)= 6,0, which can be achieved by 02 . {2%2 -
enforcing the boundary condition(xy(t),t)=0. Thus we L o =28

can evolve the mean occupation numbers for the Poissoéo,ls_ _
distributed sea of traps in exactly the same way as for thex
single-trap distribution function described abqedbeit with

a different initial condition, to be described shojtly

In the simulations, we wish to calculate the probability
that the particle has survived until timieTo obtain an ex-
pression for this, consider a particular distribution of traps - .
described by the functioa(x,t). The probability that site 0% ' - 0 10 ' 20
contains no traps is just exp€[xg.t]) and so Q(t+1)
=Q(t)exp(—c[Xo.t]) where the value of(xo,t) used is that FIG. 2. Survival probability?(S,t|x) given that the particle is at
obtained after the diffusion step, but before enforcing thesite x at early times and wittp, = pg=0.5.
boundary conditiorc(xg,t) =0.

We now give a step-by-step explanation of the algorithmjes such as the mean and variance of the particle’s displace-
for calculating the particle survival probability for a prede- ment. Also, if one is interested only in the short-time behav-
termined particle pattxo(t). One begins by setting up the jor, one can obtain the particle survival probability for each
trap concentration as follows: possible path. We should also note that the one-dimensional
algorithm described here generalizes straightforwardly to
higher (integey dimensions.

01—

2p,  X<Xq(0)

c(x,tg)=4 0, X=x0(0) (3D
2pr,  X>Xq(0), B. Numerical results

We first investigate the entire set of short particle paths in
order to get a feel for those that give rise to the greatest
robability of survival. For each time<28 we found that
he paths which have the greatest survival probability are
those with the smallest widtkdefined as the distance be-
tween the extrema of the pathi.e., the sequences(t)
=(0,1,0,1,0...) andx(t)=(0,-1,0,-1,0,...). This re-
A , , Lult gives support to the supposition in Sec. lll that staying
c(x,2t ZI_;E[C(X_ll’t. —1)+p(|x+1,t - 1|)]' bability is caleu. St (i.e., a diffusion constard’ =0) gives rise to the great-
Iatc(a d) usir?ggu(rtr}l)ftg(et’rfl;t;%i qsfg\gz’% ,F;f(t), )""jl liity 1s calcu- est chance pf survival. We also gstablished this to be case for
(3) The boundary condition is0 em;orced by setting two-c_hmen_smnal walks up to a timte=12.
N oere It is a simple matter to use the algorithm presented above
C(xo(t").t )_O'. . . to find the probabilityP(x,t|S) for the particle to be at co-
Note that this aIgonthm' can bg run for paths of a.rb'traryordinatex after timet given that it has survived. Then, an
Iengt_h and that, at ? particular t'mé’,t.he trgp density at application of Bayes’ theorem yields the more telling quan-
p03|t|orr11$?<<x0(0)—t andx>x0(0|)+t| |sr;1|:|form. Hence tity P(S,t|x), i.e., the probability that the particle has sur-
at eac .t'gre step, onle neehd qle? only w 1 concentra- vived to timet given that it ends at coordinate The result-
tion variables to simulate the infinite system. . ing data are plotted in Fig. 2 and one sees quite clearly that
Using the above algorithm, one obitains the survival prOb'the particle is most likely to survive if it is at the origin, at

ability for a particle following a partiCl_JIar patho(t_): To least for timest=<28. This figure provides further weight to
reach an estimate of _th_e particle gu_rvwal probability averyur assertion that staying still is the best particle survival
aged over all paths, it is most efficient to perform Montestrategy
Carlo sampling. That is, one generates a binomial rando )

Ik by choosing th ticle_ disol ) — % (t! M As stated in the preceding section, one can obtain esti-
walk Dy choosing the particle disp acemexy(t’) XQ( mates of various quantities at later times if one performs
—1)={-1,1} with equal probability. Then, one estimates

. . > Monte Carlo sampling over particle paths. In fact, we pro-
the mean particle survival probability as duced histograms oP(S,t|x) this way and obtained data
N very similar to those shown in Fig. @&xcept with poorer

Q(t)%i 2 QW(t) (32) statisticg. Hence we do not present them here. Instead we

N =1 concentrate on the survival probabilities for a range of trap

densities to compare with the bounds given by &2).

in which Q™ is the value of the survival probability for the First we consider the case of equal trap densities either

kth random walk. One can, of course, estimate other quantiside of the origin and the case o1 and 2 particles start-

in which p; andpg are the equivalent continuum densities to
the left and right of the particle, as used in Sec. Il C. The
factor of 2 emerges because that is the effective lattice spa
ing in the discrete model. We also s@{0)=1 (i.e., we
assume there are no traps at the origin to begin)withen,
for each timet’=1,2, . . . t we perform the following steps.
(1) The trap concentration variables are evolved usin
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.
S o o pJp =8 o
Nﬁ 4~ n é N
4 a -
= S
st S
5 3 i g
L L L | . | . | \ 1

4 4 6
In(p’Dt) In(t)

FIG. 5. Single particle survival probability and bounds with
p+lp_=2, 4, and 8. The symbols on the solid lingspresenting
the numerical dajaare included purely for the purpose of identify-
ing each curve with the corresponding density ratio.

FIG. 3. Single particle survival probability and bounds with
pL=pr=0.5.

ing at the origin. We generated the data for the casel

using the algorithm described above, and densiies pr =2,4,8 withpgr=0.5 in each case. Note that the density used

=0.5 until a timet =30 000. Bearing in mind the form of the 1o scale the plots is alwavs the smaller of the two.. Again

bounds Eq.(22) it is appropriate to plot the quantity(t) P Y aller of the two,. Ag

—In Q(t)/\/—zﬁ against log time. In all the simulations we see that the numerical data lie within the bounds pre-
p- ' ' dicted by Eq.(22). In these cases, however, the bounds we

—_n’/-1 : : —
D=D"=; and in this casep_=0.5. Hence the upper and e presented do not converge so we have no predictions
lower bounds in Eq{(22) converge to the constamt(«) for the limiting value ofA(t).

=4/\/7. Figure 3 shows that, after an initial transientt)

does fal! within t-he bognds. Hovyever, even at the late times V. ANALYTICAL RESULTS IN DIMENSIONS GREATER
probed in the simulation)(t) still seems to be far away THAN ONE

from its asymptote. This highlights the fact that the predicted

asymptotic form for the particle’s survival probability EG) The upper and lower bounds Q(t) derived ind=1 will

has not yet been observed in simulation, even with sophistinow be generalized to atl in the range kd<2 and tod
cated methods at our disposal. =2, the latter case requiring a slightly different treatment.

The data for the case=2 have been taken from R¢L6]  The casead>2 will also be discussed.
and are plotted with our bounds in Fig. 4. As with the case
n=1 we have from Eq(22) that\ (=)= 4/\/7 and again the
convergence to asymptopia is very slow.

In Fig. 5 we plot the single particle survival probability  Let the particle, with diffusion consta’, start at the
for the case, where the densities of traps either side of therigin, and the traps, with diffusion constadf be randomly
origin are unequal. Specifically we have the capedp_ distributed in space with densipy. As before, we assert, on

intuitive grounds, that the “best strategy” for the particle is
, . , . , . | : | to stay at rest at the origin. With this assumpti@rhich was

M. — Numen verified numerically ford=2, for all times up tot=12, in
“ umerical data X . . L
101 . the preceding sectignthe survival probability forD’=0
1 provides an upper bound on the survival probability for any

D’'>0. Let Q(t|r) be the probability that a given trap,
starting a distance from the origin, has not yet visited the
origin at timet. It obeys the backward Fokker-Planck equa-
tion

~~~~~~~~~~~~~~~~~~~~ | 0Q;

4t = Xl _pv2o. =
_/\_ ot DV Ql D

where we have exploited the spherical symmetry of the prob-

A. Upper bound

0
T
|

-In Q(/(p’ Dty
(=)}
T
|

9°Q,q N d—19Q,
(9[‘2 r ar

) , (33

2 ln(pth)Z 4 6 lem. The boundary conditions af@;(t|0)=0 for all t and
Qi(t|ee)=1 for all t, while the initial condition isQ;(0|r)
FIG. 4. Two particle survival probability taken from R¢fe] =1 for all r>0. Since there is no length scale in the prob-
and bounds wittp, = pg=0.25. lem, Q,(t|r) must have the scaling form
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Q. (t[r)=f(r/\Dt). (34)

Substituting this form into Eq(33) gives an ordinary differ-
ential equation forf (x):

d?f d—1df x df B

dX2+T&+E&—O, (35)

with boundary condition$(0)=0, f(«)=1. The solution is
-1
F(—Z; d) fxzm'ds s 42g=s,

0
For d=1 our previous resultf (x) =erf(x/2), is recovered.
Note that Eq.(36) is only valid ford<2, since the integral

f(x)= (36)

PHYSICAL REVIEW E 67, 041101 (2003

which no traps meet the particle, so the probability weight of
this subset provides a lower bound @f{t). We compute
these probabilities in turn.

(i) The probability that the sphere initially contains no
traps is simply exptpV4?), whereVy=279%/dT'(d/2) is
the volume of ad-dimensional unit sphere.

(i) The probabilityQp(t|r,!) that the particle stays inside
the sphere up to timeis obtained by solving the backward
Fokker-Planck equatiof83), with D replaced byD ', subject
to the boundary condition®p(t|l,I)=0 and Qp(t|r,l) is
analytic atr =0, and the initial conditiorQp(0|r,I)=1 for
r<I. The solution has the form

Qp(t|r,l)=rVnZl chexp(—D'K2)JI_,(k.r),  (42)

diverges ford=2. This regime will therefore require a dif-
ferent treatment.

Equation(36) gives the survival probability of a station-
ary particle in the presence of a single diffusing trap. Con-
siderN traps in a large sphere of volumécentered on the
origin. Each trap starts anywhere in the volume with equabqk | =7 is thenth zero of_ (z). The coefficients,, are
probability. The average, over the initial positions of the ghiained from the initial condition, but their precise values
traps, of the probability that none of the traps has yet reacheg,e of no interest here. Since the particle starts=a0, we

whereJ_,(2z) is a Bessel function of the first kind,

v=(2—d)/2, (42)

the origin at timet is

N

(37

<ol

Taking the limit N—oo, V—oo, with p=N/V held fixed,

gives
Q(t)=exr{ —pf ddr[ 1—f(\/LD_t>

] , (39)

needQp(t|0)). Its asymptotic form is

Qp(t|0))~exp—Z2D't/12). (43

(iii) To compute the probabilityQ+(t), that no trap enters
the sphere up to time(the target annihilation problenwe
begin by calculating this probabilit@,(t|r,!), for a single
trap. Then the probability that none of the traps enter the
sphere is given by a natural generalization of BB9),

QT(t)IeXF{—pfr>lddf{1—Q1(t|f,|)} - (49

In contrast to the cade=0 used for the upper bound, there is

where the integral is now over all space. Inserting the funcng simple scaling form analogous to EG4) for Qs (t|r,I)
tion f(x) from Eq.(36) and evaluating the integral gives the pecausd provides an additional length scale.

final result, which serves as an upper bou@g(t), for the
problem with generaD’>0:

Qu(t)=exd —agp(Dt)¥?], (39
where
ad=%(4w)d’zsin(%d). (40)

B. Lower bound

Our strategy for constructing a rigorous lower bound fol-
lows that employed in one dimension. We construct an
imaginary @-dimensional sphere of radius centered on the
origin, and calculate the probability th@} there are no traps
inside the sphere &t=0, (ii) the particle stays inside the

The functionQ,(t|r,l) obeys the backward Fokker-Plank
equation(33), with boundary condition§(t|I,1)=0 for all
t, Qq(tJee,1)=1 for all t, and initial conditionQ,(0|r,I)
=1 for r>I. The solution can be found by Laplace trans-
form techniques. The result 5]

2(r\" (=dk
Ql(t|r,l)=;(|—) J;) ?exp(—Dkzt)GV(kr,kI),
(45)

where

Y, (0)3,(y) = 3,()Y,(y)
Fy)+Yi(y)

Gu(xy)= , (46)

sphere up to timé, and(iii) no traps enter the sphere up to andY,(z) is a Bessel functions of the second kind.

timet. As before, the set of trajectoriésf particle and traps

Before continuing, we can first simplify E¢44) as fol-

selected by these constraints are a subset of all trajectories liows. First define
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t)~exg —agp(Dt)9?
Fo= | dr-ounn), @y QTR AwOUT
r>| X exd — pVgl9—ZZD "t/I2—bgp(Dt)9~ 112797,
where F(0)=0 follows from the initial condition (54)
Qq(0|r,1)=1 for all r>I. Then we use the backward
Fokker-Planck equatiof83) to write As usual, for a given tim&* we choose a sphere radilfsto

optimize the lower bound. The dominalrtlependent terms
A for t— are the final two terms in the second exponential.
oF=-D fmd rVeQu(t|r,)=-D fAdA' VQu(t]l) Ignoring constants of order unity, we find that the valu¢*of
that gives the greatest lower bound is

_ d-1
_DSdl arQl(t|r1|)|r:Ir (48) ) 1/(4—d)
whereA is the surface of the sphemA is a surface element "~ —= (tF)@mda=d, (55
directed along the inward normal to the sphere, and pD
2 412 Inserting this into Eq(54) the second exponential takes the

Sq (49  form

“T(d)
_ 1\ (2-d)/(4—d), ryd—1y2/(4—d);d/(4—d)

is the surface area of the unit spheredidlimensions. Inte- exL —constD’) (pD™) t 1. (56

grating resuli{48) with respect to time, with initial condition

The neglected first term in the second exponential in(&4).
F(0)=0, Eq.(44) takes the forn{22] g p (B4

behaves ad?~t92-d/(4=d which is indeed negligible
. compared ta®“4~9 for larget (recalling thatd>1 hers.
QT(t)=ex;{ —pDSd|d_1f dt’ 3, Qq(t'|r,D)],=|. (50) In summary, the best lower bound behaves as
0
Qu(t)~exd —agp(D)¥*+ 0t D)]. (57)
We are interested in the behavior@#(t) for larget. At this

point it is convenient to discuss separately the casesl 1 Since d/(4—d)<d/2 for d<2, the two bounds pinch as-
<2,d=2, andd>2. ymptotically, to give the exact result

1. The case ¥d<?2 INQ(t)

For 1<d<2, the functionQ,(t|r,l), given by Eq.(45), tlm_ p(Dt)dIZZ
has the large--expansiorn 25]

ay, l=d<2, (59)

where we recall thaady is given by Eq(40). The constank 4

[\ 2v 7Y T in Eq. (1) is therefore given b
=~ -1 + N e
Qu(tlr,D) %) |r(1+v) [2(1+v)
ny= 2P il @ (47D)%?,  1=d<2 (59
(LA (51 e -
Fima

Note that the subdominant term in E&7) decays more
wherer=4Dt/1% and we recall that=(2—d)/2. Taking the ~SIoWly relative to the leading term a$—2, signaling a
derivative with respect to, settingr =, inserting the result change of behavior at=2. Note also that the coefficieay
into Eq. (50), and evaluating the integrals over, gives the Vvanishes atd=2, suggesting alower decay than a simple

probability, that the target has not been annihilated by a tragz*Ponential in two dimensions. We now show that this ex-
pectation is correct, and determine the consignn Eq. (1).

Q(t)=ex —agp(Dt)¥2—byp(Dt)d4" 12794 ...,

(52 2. The case &2
whereay is given by Eq.(40) and For d=2 the asymptotic form o€ (t|r,I) is [25]
1 1
220- 1442 (g2 —on -] =
by 7T (d2) 53 Qu(t|r.)=2In| -]} —+0 || (60)

T (2—dT2A(1-d2T )’

wherer=4Dt/1? as before. Inserting this into EG0), with

Note that, as with the casg=1, the leading term is inde-  _ . o .
pendent ofl. This phenomenon can be attributed to the re_d 2, gives the probability that no trap has entered the circle

currence of diffusion in dimensiors$<2. of radius| up to timet:

Finally we assemble the contributiofig—(iii) above to 470Dt ¢
obtain a rigorous lower bound on the asymptotic behavior for Q(t)=exp — IR Lol — | | (61)
1<d<2, In(4Dt/1?) In’t
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Following our previous procedure, the asymptotic lower
bound is given by
+O( ) —pml?

wherez; is now the smallest zero afy(z). The dominant
terms in the exponential for largeare the first and last
terms. Extremizing this bound with respect tat some fixed
t* gives

D't

t D't
1 |2

In?t

47pDt
In(4Dt/1?)

QL(t)~eXp{ -

(62)

l* ’ 1/2I pDZt* 63
Z; 47pD n D’ (63)
to leading order, and
o AmpDt O(tln(lnt) -
~exg — i
: In(pD2t/D") In?t

As far as the upper bound is concerned, E3%) is not
useful ind=2, sincea,=0. This tells us that the probability
that a trap will reach a specified region of zero volugne.,

a specified pointis zero in two dimensions. Tha particle
has to be given a nonzero si@a the system put on a lattice
for a nonzero trapping probability. We therefore assign th
particle a nonzero radiug but still treat it as stationary for
the upper bound. The traps will, for the moment, continue t

occurs if a trap enters within the particle’s radigs thata is
an interaction range our upper bound is just given by the
probability Q+(t), Eq.(61), but with| replaced by, to give

ol
In?t) |
In the limit t—o, the bounds converge to give the

asymptotic resulQ(t) ~exp(—4mpDt/int) or, equivalently
IntInQ(t
m— MO

47pDt

In(4Dt/a?) (69

QU(t)~ex;{ -

This gives the constant, in Eq. (1) as
No=4mpD. (67)

As noted previously, the algorithm described in Sec. IV

PHYSICAL REVIEW E 67, 041101 (2003
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FIG. 6. Numerical data for the two-dimensional trapping reac-
tion taken from Ref[16]. In the simulation, the trap density
=1/4 and the diffusion constant®=D’=1/4. The asymptote
given by Eq.(66) is plotted for comparison.

in Eq. (65) is O(1/Int), while the subleading term for the
lower bound, Eq.(64), is even larger, of relative size
O(In[Int)/Int). This suggests that convergence to asymptopia
will be extremelyslow in two dimensions. Note also that the
particle’s survival probability was found to decaytal0™ %°
aftert=1600 time steps. This emphasizes the importance of
determining the corrections to asymptopia in order to deter-

€mine the form of the survival probability in numerically

(and, indeed, experimentallpccessible regimes.

0
be treated as point particles. With the definition that trapping

3. The case &2

The same bounding arguments can be applied equally
well in d>2. The main difference frond<2 is that the
bounds no longer converge, so it is not possible to determine
g exactly (except ford very close to 2—see belgwThe
basic idea is the same as fd=2, except that the particles
must be given nonzero sizésr, equivalently, a nonzero
range of interaction We let the particle have radiws and
the traps radiud. A reaction is deemed to have occurred if
there is an overlap between the particle and any trap, i.e., if
the centers approach more closely than a distaReea
+b, which is the range of interactioiNote, however, that
we continue to assume that the traps do not interact with
each other. In particular, there is no excluded volume inter-
action between traps.

The upper bound is obtained from the target annihilation
problem with target radiuR. Ford>2, the single-trap sur-
vival probability, Q4(t|r,R), has a nonvanishing largdimit

can be used to simulate the trapping reaction in any integeagiven by the well-known result

dimension. Numerical results for the two-dimensional sys-

tem were presented in Rgfl6] and we compare these data
with the asymptotic resul(66) in Fig. 6. We find that the
deviation of the numerical results from the asymptote is eve
more marked in two dimensions than in disee Fig. 3. Part
of the reason for this is, presumably, that the increased nu
ber of sites in two dimensions means that one cannot pro
such late times. A second, and perhaps more important, re
son is the very large corrections to scaling evident from ou
bounding arguments. Thelative size of the subleading term

Qu(|r,R)=1—(R/M)?, (68)

which is easily obtained from E¢§33) on setting the left side

"o zero, and imposing the boundary conditid@g(=|R,R)

=0, Q(|,R)=1 on the resulting ordinary differential

rgla'quation. Inserting this form in Eq50), with =R, and

g\/aluating the time integral, gives an upper bound with the
?e'ading larget- behavior

Qu(t)~exd — (d—2)SepR?~?Dt].

r

(69)
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The lower bound is obtained in a similar fashion, follow-  To conclude this section, we consider again the case
ing the pattern established fa<2. One constructs a no- where n particles start from the origin, and we want the
tional sphere of radiu§ centered on the initial position of probability thatall survive until timet. As noted in the dis-
the particle. The bound is given by the subset of trajectoriesussion of the one-dimensional casepnly enters in the
in which (i) there are no traps initially within the spher@) calculation of the lower bound, in the term giving the prob-
the center of the particle remains within a sphere of radiusbility for the particle to stay inside the notional boa (
| —a, so that the particle remains entirely inside the sphere ot 1), or sphered>1), of sizel. This probability behaves as
radiusl, and (iii) the center of every trap remains outside aexp(—constD't/I?), so havingn particles simply requires
sphere of radiug+b, so that every trap remains entirely raising this factor to the powen, which is equivalent to
outside the sphere of radilis replacingD’ by nD’. Since the asymptotic forms we derive

The probability of(i) is exd —pV4(l+b)?]. The probability  do not depend ob’ for d<2, it follows that our results are
of (i) has the asymptotic form ekpZD't/(I—a)?], wherez,  independent ofn in this regime. Ford>2, however, our
is the first zero of)_,(z)=J4-2)A(2). The probability of results do depend dd’ [see Eq(73)]. In this regime, there-
(ii ) is given, for larget, by Eq. (69) with R replaced byl fore, the generalization to arbitranyis achieved through the
+b. Assembling these three contributions gives thereplacemenD’—nD’.
asymptotic lower bound

OL(t) ~ exif — (d— 2)Syp(1 + b)®~?Dt— 22D /(1 - a)? VI. DISCUSSION AND SUMMARY

d In this paper we have derived a number of results for the
—pVy(l+Db)7]. (70 asymptotic survival probability of a particle diffusing among
randomly distributed diffusing traps with density We al-
rT4ow the particle and traps to have different diffusion con-
stants,D’ and D respectively. Our results take the forms
originally derived by Bramson and Lebowifd4], as ex-
pressed in Eq(1). With one assumption, supported by nu-
(d—2)2S,pD(x+ R)d73:225D//X3, (71 merical evidence, we have obtained exact results for the co-
efficients\y in Eqg. (1) for dimensionsd<2, and an exact
whereR=a+b as before. This equation cannot be solvedinequality for dimensionsi>2. These results are given by
analytically for generadl, so we concentrate on two soluble Egs. (18), (59), and (73). For d<2 the results for\4 are
cases—the physically interesting case 3, and the limitd independent of the diffusion constabt of the particle.

This has to be maximized with respectltoFor t—«, the
first two terms in the exponent dominate, and the final ter
is negligible. Settind =a+x, and maximizing with respect
to X, gives the equation

2+, The results are obtained by deriving upper and lower
For d=3, we have Sy=47 and z;=, giving X bounds for\ 4, and showing these coincide fd 2. Whilst
=(wD'/2pD)Y® and our lower bound is rigorous, we had to assume that the par-

ticle’s survival probability forD’=0 provides an upper
Q.(t)~ex{ —4mpDRt—3(272pDD")?%]. (720  bound on its survival probability wheld’ >0 when the trap
distribution is symmetric. Indeed, for tlle=1 system with

Combining the two bounds, we obtain the asymptotic formgifferent densities of traps to the left and right of the particle,

Q(t) ~exp(=A4l), as in Eq.(1), with the bounds it was found that staying still isot the particle’s best strat-
5 - o3 egy. Instead, trajectories that survive for long times tend to
4mpDR=<N3=<4mpDR+3(27°pDyD")"", d=3. be those in which the particle drifts to the side with the lower

trap density. This emphasizes the crucial role of the symme-
try of the trap distribution, an observation supported by per-
turbative studies for a system with a finite number of traps
[15,26.

In all cases the particle and traps are assumed to move in
a continuous space, and to have zero sizedfa2. Ford
=2 is necessary for the particle and/or the traps to have
1 ( ziD’)l’z nonzero sizeotherwise the survival probability, for motion

It is worth noting that the second term on the right is negli-
gible compared to the first B’/D<pR?3, i.e., whenD'/D is
small compared to the number of traps per interaction vol
ume.

Ford=2+¢, EqQ.(71) has the solution

(74) on a continuous space, is one for all timé/e also take the
traps to be randomly distributed in space at time0, with
uniform densityp. This raises the question of the extent to
which the results are “universal,” i.e., independent of the
microscopic details of the model, a question which we now

€ wpD
to leading order fore—0, giving the lower bound), (t)
~ex{d —2mepDt] to leading order ire. In the same limit, the
upper bound Eq(69) has exactly the same form, giving the

resultQ(t) ~exp(—A4t) with address.
o PEAD We argue that, fod<2, the results do indeed have a
Ng=2mpDe+---. (75)  degree of universality. ld=1, the optimal box size used to

obtain the lower bound o@(t) is large, | ~t*3 ast—ox, so
Hence the bounds pinch to leading ordereinbut not for  the effect of the particle having a finite size when confined to
generald. this box is negligible. With a little thought one sees that the
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same is true for ald=<2. The optimal length scale for the
lower boundgrows with timeas|~t~9/(4=d (d<2) orl

PHYSICAL REVIEW E 67, 041101 (2003

two. This is because in Ref27] A4 depends oD andD’
only through their sunD +D’ [28], whereas our rigorous

~Int (d=2), and the results are independent of the particleypper bound on 4 depends solely oB. It is interesting to
and trap sizes, as far as the leading-order results are coRote that in the related process- B— A, where the singlé\
cerned. The same is true of the upper bound—the finite-sizparticle acts as a trap for ti&particles, certain properties of

corrections come in at subleading order.
The dominance of large length scales at late timesgdfor

the B-particle distributioncan be expressed as functions of
D+D’ [29]. However, we stress that for the+B—B re-

<2, also suggests that the asymptotic results are indepernction studied here, the asymptotics are entirely governed by

dent of whether the model is defined on the continuias

here or on a lattice, an assumption implicitly made earlier

the B-patrticle diffusion constant fod<2.
In a very recent worK30] our approach, as outlined in

when we compared our theoretical predictions to numericaRef. [15], has been generalized to diffusion on fractals for

results obtained from lattice simulations. Fbr 2, however
the dominant value of that determines the lower bound is

the case where the fractal dimension of the traps’ trajectories
is greater that the physical dimensithis condition is the

time independent. Therefore we expect a lack of universalittn@log of the conditionl<2 in the present woik It should

in this case. The explicit dependence on the interaction ran

o

noted, however, that in R¢80] the optimal lower bound

Rin Eq.(73) is a signature of this effect. Note, however, thatO" Q(t) is not obtained. Fod<2, only the subdominant

to leading order ie=d—2, \4 is independent oR [see Eq.

corrections to the leading terms are affected, and the upper

(75)] and we expect the result to be universal to this order2nd lower bounds still pinch asymptotically. Fab=2, how-

Physically, this is because the length sdatea+ x diverges
ase—0 [see Eq(74)].

ever, the approach used in RgB0] yields bounds that no
longer converge at large so the exact result E§67) for A,

A further universality question concerns universality with 1S Missed. _
respect to the initial conditions. We have taken Poissonian N this paper and our earlier wofi5] we noted that the

initial conditions, where the probabilit\ (V) of havingN
traps in a volume V is given by Py(V)
=[(pV)N/N!Jexp(—pV) for any V. The lattice simulations,

where the number of traps on each site has a Poisson dist

bution (with meanp, say has this property, namely, the
number of traps omn sites has a Poisson distribution with

meanmp. Whether there is a larger class of initial conditions
sharing the same asymptotic behavior is a question deservi

further study.

We conclude by discussing some recent papers related to
the present work, and directions for future work. The coeffi-
cient\4 in Eq. (1) has recently been calculated using a dia-

grammatic methodi27] to first order in (2-d). The quoted
result, however, exceeds our rigorous upper bound\fpr
[corresponding to the lower bound f@(t)] by a factor of

extant simulation datfl16] fail to reach the asymptotic re-
gime even though survival probabilities are so small that
they can only be measured using sophisticated methods. Per-

haps the most important challenge, therefore, is to obtain a

better understanding of the corrections to asymptopia in or-
der to make testable, quantitative predictions. Other direc-
tions for future work include exploring further the extent to

ryﬁhich our results are universal, and establishing rigorously
t

e validity of our upper bound.
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