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Lattice Boltzmann algorithm for surface tension with greatly reduced microcurrents
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~Received 30 October 2002; published 11 March 2003!

We present an algorithm for inserting an interface between the immiscible phases of a multicomponent
lattice Boltzmann fluid which is based solely upon the appropriate continuum physics: stress boundary condi-
tions and continuity of velocity. Results are presented for the algorithm when applied to static, neutrally
buoyant drops. It is shown that the present algorithm gives a significant reduction in the spurious velocities
which are reported for previous schemes and a concomitant improvement in the isotropy of the interface.
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I. INTRODUCTION

A number of lattice Boltzmann equation~lBE! methods
have been developed to deal with a wide range of continu
fluid applications@1#. An attraction of lBE is the intuitive
way in which new physics can be inserted, as illustrated
the several fluid-fluid interface generating techniques wh
have been developed from the basic lBE algorithm. One a
in which lBE is especially promising is complex fluids an
in particular, for immiscible liquid mixtures. In these system
one needs accurately to represent deformable interfaces
rating immiscible components and the flow is typically
low Reynolds number and possibly with a complex geome
@2#.

Surface tension may be activated by a number of poss
methods@3–6#, all of which are at some level physical an
designed to imitate in varying degree, atomistic ormicro-
scopicbehavior. Possibly as a result, the emergent continu
interface suffers from small and unwanted artifacts, prin
pally ~i! small, spurious velocities, ormicrocurrents, close to
the interface,~ii ! anisotropy in the effective surface tensio
~and hence boundary shapes!, and ~iii ! a finite boundary
thickness for the hydrodynamic regime. It should be no
that for correct hydrodynamics, immiscible liquids satis
boundary conditions which obtain at a sharp, unstructu
interface even at the mesoscale. However, lBE is a hig
dispersive method and any interface algorithm based on l
rules, for the sake of speed and computational simplic
almost inevitably involves a degree of fluid mixing whic
distributes the emergent continuum interface. But while r
ognizing the need for speed, simplicity and stability, o
must also recognize that to model continuum fluids with lB
an interface should be as unstructured as possible. Acc
ingly, any interface generating algorithm which reduces m
crocurrents, such as we report here, and serves more sh
to define the interface is important for most applications.

It is true that more sophisticated model interfaces~e.g.,
Ref. @7#! are appropriate in applications where one seeks
capture, for example, the kinematics of phase separation@7#.
But where hydrodynamics alone is the problem, ‘‘simple
methods based directly upon mechanical quantities are
knowledged as being as valid@3,8#. Here we present a
method for obtaining a direct interface between immisci
lattice fluids with the same density, although it is our inte
tion to generalize this~density! aspect of the model in future
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work. It is important to note that the method presented h
is based only on that physics which is appropriate for
length scale addressed in continuum hydrodynamics.

II. THEORY

A. The Gunstensen and Rothmann method

The arguments in this section are based upon the LB
method which was pioneered by Qian and d’Humie`res @9#,
analyzed in detail by Houet al. @10# and derived from the
Boltzmann equation directly by He and Luo@11#. Results are
presented in Sec. III to show that the new method is equ
effective on D2Q7, D2Q9, and D2Q13 lattices and can
straightforwardly extended to three dimensions.

In the usual notation, the LBGK algorithm may be repr
sented by the equation

f i~r1cid t ,t1d t!5 f i~r ,t !1
1

t
~ f i

(0)2 f i !1Fi , ~1!

whereci represent the vectors of the lattice basis,d t repre-
sents the time step, andt controls the molecular kinemati
viscosity of the lattice fluid through the relation

n5
2t21

6
d t , ~2!

and the quantityFi may be used to impress e.g., a press
gradient. For the purposes of a Chapman-Enskog analysiFi
is assumed to be introduced atO(d t). Velocity moments give
the lattice fluid’s density and momenta in the usual w
through

r5(
i

f i5(
i

f i
(0) ,

r v5(
i

f i ci5(
i

ci f i
(0) , ~3!

where the equilibrium distribution functionf i
(0) is

f i
(0)~r,v!5tprF11

v•ci

cs
2

2
uvu2

2cs
2

1
~v•ci !

2

2cs
4 G . ~4!
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The weightstp and the velocity of soundcs are given in
Table I. The form of the equilibrium distribution function
Eq. ~4!, ensures that relations~3! are satisfied and also dete
mines the nonviscous part of the momentum-flux tenso
the lattice fluid,

Pab
(0)5(

i
f i

(0)ciacib5cs
2rdab1rvavb . ~5!

Gunstensen and Rothmann@3# proposed an extension t
models such as those outlined above, using additional r
to confer spontaneous interface generation betweencolored
momentum densities, now denoted byRi(r ,t), Bi(r ,t).
These component momentum densities undergo the colli
part of the algorithm as a mixed, single density, as if it we
color blind,

f i~r ,t !5Ri~r ,t !1Bi~r ,t !. ~6!

A perturbation is then applied on thosemixednodes contain-
ing both red and blue densities, which has the effect of r
dering the stress tensor anisotropic in such a way as corre
to recover a surface tension. Segregation of the two flu
then emerges upon the addition of arecoloring step for
mixed nodes. Essentially the site totals of red and blue m
rR(r ,t) and rB(r ,t) are conserved and reallocated to po
collision f i(r ,t)’s according to the following algorithm.

Where colors mix on the lattice, a color differencerN is
defined as

rN~r ,t !5rR~r ,t !2rB~r ,t ! ~7!

in terms of which a color field may be calculated,

f~x,t !5“rN. ~8!

The color field is approximately perpendicular to the int
face and is used to define,na , a unit normal to the surface
To fourth-order accuracy, color field~8! is given by

f~x,t !5
1

cs
2 (

i j
t pci@Rj~x1ci ,t !2Bj~x1ci ,t !#. ~9!

We note, in passing, that the inclusion of the factortp in
definition ~9! improves the definition of the color field as a
interface normal; this minor point will be discussed in a f
ture publication. The color isdemixedrelative to the color
field, by reallocating color massesrR(r ,t) andrB(r ,t) over
the postcollision ‘‘receptacle’’f i(r ,t)’s so as to maximize the
work done by color fluxq(x,t),

TABLE I. Data for different lattice types.

Lattice t0 t1 t2 cs
2 aM

UaM2a

a U3100%

D2Q7 1/2 1/12 1/4 0.00706 8.5%
D2Q9 4/9 1/9 1/36 1/3 0.00722 6.5%
D2Q13 11/25 9/100 1/300 3/10 0.00757 1.9%
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q~x,t !5(
i

t pci@Ri~x,t !2Bi~x,t !# ~10!

against the color field@3#. Relaxation parameterst with a
limited range of difference may be applied in the bulk of t
separated liquids, conferring different kinematic viscositi
In the mixing~interfacial! regions we use effective relaxatio
parameterte f f :

ne f f5
1

6
~2te f f21!5

rR

rR1rB
nR1

rB

rR1rB
nB . ~11!

B. New method

We now modify the Gunstensen algorithm by replaci
the perturbation step with a direct forcing term at mix
sites, chosen so as to recover the required pressure differ
across the interface. This recovers the macroscopic effec
surface tension in such a way as significantly to reduce
artifacts associated with earlier methods.

Consider mixing and demixing red and blue fluids, pa
sively separated parallel to the direction off(x,t), as above.
Such a passive process will not affect the hydrodynamics
the combined fluids’ mixture. Accordingly stress will be co
tinuous throughout this region, which may be confirmed
direct measurement. We therefore assume that stresses
sured on either side of a narrow red-blue interfacial reg
satisfy

sab
(R)tb2sab

(B)tb50, ~12!

where, for example,sab
(R) denotes the red fluid stress on th

red side of the interface andtb is a unit interfacial tangent
derived from the interface normal, through Eq.~8!. If the red
and blue fluids are each individually incompressible,

]bvb
(C)50, ~13!

whereC5R or B. In three dimensions, the standard con
tion on the normal stress at the boundary between the fl
is given by@12#

sab
(R)nb2sab

(B)nb5aS 1

R1
1

1

R2
Dna , ~14!

wherea is a surface tension parameter andna is the local
interfacial unit normal. This is equivalent to the requireme
that the pressure must be distributed over the interface
cording to

P(1)2P(2)5aS 1

R1
1

1

R2
D . ~15!

In Eq. ~14! R1 , R2 are the local values of the principal rad
of curvature of the interface. For a model with a continuo
tangential stress, therefore, the task of forcing the cor
condition of normal interfacial stress reduces to a requ
ment on a pressure differenceDP related to the instanta
neous local curvature through Eq.~15!.
1-2
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In order to impose results~14! and~15! onto the behavior
of our lattice fluids we force a local pressure gradie
throughout the~narrow but distributed! interface as an addi
tional force density; i.e., the forcing is applied only on mix
sites of the lattice. In lBE, a body force can be impressed
an appropriate perturbation to thef i ’s through the termFi in
Eq. ~1! @13#. The necessary force is defined to act norma
the local interface, centripetally and with a magnitude p
portional to the gradient inrN/r. The local curvature of the
interface, for a two-dimensional system, is given by

K5
1

R
52“S•n, ~16!

where

“S5~ I2nn!•“, ~17!

I is the unit tensor,“S is the surface gradient operator, andn
is the interface normal, determined as the unit vector, para
to the gradient of the color step function“(rN/2r). In two
dimensions, the curvature can be written as

K5nxny~]xny1]ynx!2ny
2]xnx2nx

2]yny , ~18!

and can be evaluated by standard finite difference meth
on the lattice. In order to impose condition~15!, the momen-
tum densityf i(r ,t) of the i th link in Eq. ~1!, must be aug-
mented by

Fi5
a

cs
2R

tpcim]mS rN

2r D . ~19!

Equation~19! includes the gradient of the color step functio
to ensure that, when considered as a line integral along
local normal, the cumulative effect of the body force is
produce an appropriate local step in pressure across th
terface in accord with that prescribed in Eq.~15!. This term
is valid provided the fluid is incompressible. The perturb
tion is applied prior to the reallocation of color, as describ
in the text following Eq.~9!. Note that in body forcing the
lattice fluid, the stress field remains continuous. Note a
that the total force on a drop, generated by a normal forc
constant magnitude per unit length~the total color step
across the interface should be uniform!, should be zero, for a
drop has a closed interface.

Before proceeding, it is perhaps appropriate to summ
rize, in broad terms, the algorithm in mixed regions of t
lattice. At mixed~interfacial! nodes:~a! collide according to
Eq. ~1!, ~b! determine and apply body force~19!, ~c! reallo-
cate colored densitiesrR andrB.

III. RESULTS

In this section, we test the interface algorithm described
Sec. II. In order to assess the algorithm we consider a s
~red! drop and measure its isotropy~the uniformity of its
radius with position on the interface! and the microcurren
03670
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activity it generates. The latter is measured after the man
outlined in Ref.@6#. In order to make sensible compariso
with previous results we use lattices of identical size, dro
of identical initial radius, surface tension parametera, and
an equivalent lattice closure process to those used in Ref.@6#.

The simulation was run on D2Q7, D2Q9, and D2Q
lattices. The data were extracted after 105 time steps from a
static drop on a 1503150 lattice with initial radiusR540,
t2151.5, and surface tension parametera50.007 72. Fig-
ure 1 plots the pressurep5r/cs

2 against horizontal distanc
from an undeformed drop center. In the inner and outer
gions of the drop the pressure is constant with good ac
racy, and shows some variation in the interfacial region.

In order to obtain the macroscopic surface tensionaM we
follow Eq. ~15! and write

aM5R~ p̄R2 p̄B!, ~20!

where p̄R is the the mean static pressure inside the d
~averaged over all the points of radiusr<32 lattice units

FIG. 2. Variation of normalized static fluid pressurep with ro-
tational angleu. Symbols (1 for the red fluid,3 for the blue fluid!
correspond to data from Ref.@6#; solid lines represent the results o
the present work.

FIG. 1. Normalized pressure difference as a function of dista
~lattice units! from the drop center.
1-3
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from the drop center!, p̄B is the external mean pressure~av-
eraged over all the points of radiusr>48), and the radius o
the dropR is taken as the initialized radius of 40 lattice uni
For the same drop, the recorded values of the stand
Laplace surface tension, for all lattice types used, are clos
the imposed surface tension parametera ~see Table I!. The
origin of the small discrepancy is the subject of current
vestigation, but does not in any way limit the applicability
the method.

The anisotropy of the surface tension, characterized
the variation ofp(R) andp(B) with polar angleu appears to
be much smaller than that in the Gunstensen method~see
Fig. 2!. Additionally, the variations of the distance betwe
the droplet center of mass and the interface with polar an
are not larger than the distance between adjacent nodes

Figure 3 plots the color step functionrN/r against hori-
zontal distance from an undeformed drop center in the vic
ity of the interface. As in other diphasic LBGK algorithm
there is a small variation of density across the interfac
region having width 1–2 nodes. Hence, small dropsR
<2) may consist fully of mixed nodes and, as a result, sh

FIG. 3. Color interface location as a function of distance~lattice
units! from the drop center.

FIG. 4. Surface tension as a function of drop radius~lattice
units!. Data normalized by the surface tension parametera.
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lesser pressure difference than it is expected from
Laplace law. For larger drops (R.2) the macroscopic sur
face tensionaM calculated using Eq.~20! is close to the
initial surface tensiona, as it is seen from Fig. 4 where it i
plotted for static droplet of different radii.

Figure 5 shows the radial variation of microcurrent velo
ity in D2Q9 lattice, mean square averaged over polar an
The microcurrent velocity observed under the same con
tions appears to be about 40 times smaller than that in R
@6#. Microcurrents are concentrated close to the interfa
and, moreover, decay faster in the bulk.

To demonstrate the applicability of the proposed meth
for the dynamic cases and to three dimensions, the sim
tion of the behavior of initially static three-dimensional dro
in shear flow has been performed. A spherical drop of rad
R58 was put in the center of the simulation box of si
40324324. We used the D3Q19 lattice with a body forc

FIG. 5. Variation ofuuu, microcurrent flow speed measured
units of lattice spacing per time step, against normalized dista
from the drop center,ur u/R. The solid line corresponds to data from
Ref. @6#; the dotted line corresponds to data obtained by the met
described in the present work.

FIG. 6. Angleu measured with respect to the direction of flow
of the principal axis of a three-dimensional droplet distorted b
shear flow. Shear rate in lattice units.
1-4
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acting in the positive~negative! x direction applied to the
nodes with the lowest~highest! y coordinate. The curvature
was calculated using Eq.~18!. At small shear rates the drop
let distorts into an ellipsoid which is aligned with its maj
axis at an angleu to the flow axis. Results are presented
Fig. 6 for the variation ofu and this is seen to intersect theu
axis at approximately 45°, as is expected from the the
The small system size leads to the slightly noisy res
shown in Fig. 6, and work in progress will report a mo
comprehensive comparison with the theory of Cox@14#.
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IV. CONCLUSIONS

This paper has reported a continuum surface tension g
erating algorithm for a two component lattice Boltzma
scheme, which exhibits a significant reduction in the artifa
which are present in many earlier schemes. The method
been validated for a number of two- and three-dimensio
lattices and will be easily extended to situations where ad
tional features, aimed at increasing separated fluids den
difference, are present.
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