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Lattice Boltzmann algorithm for surface tension with greatly reduced microcurrents
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We present an algorithm for inserting an interface between the immiscible phases of a multicomponent
lattice Boltzmann fluid which is based solely upon the appropriate continuum physics: stress boundary condi-
tions and continuity of velocity. Results are presented for the algorithm when applied to static, neutrally
buoyant drops. It is shown that the present algorithm gives a significant reduction in the spurious velocities
which are reported for previous schemes and a concomitant improvement in the isotropy of the interface.
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[. INTRODUCTION work. It is important to note that the method presented here
is based only on that physics which is appropriate for the
A number of lattice Boltzmann equatidtBE) methods length scale addressed in continuum hydrodynamics.
have been developed to deal with a wide range of continuum
fluid applications[1]. An attraction of IBE is the intuitive Il. THEORY
way in which new physics can be inserted, as illustrated by
the several fluid-fluid interface generating techniques which
have been developed from the basic IBE algorithm. One area The arguments in this section are based upon the LBGK
in which IBE is especially promising is complex fluids and, method which was pioneered by Qian and d’Huresd 9],
in particular, for immiscible liquid mixtures. In these systemsanalyzed in detail by Howt al. [10] and derived from the
one needs accurately to represent deformable interfaces sefgsltzmann equation directly by He and L{ibl]. Results are
rating immiscible components and the flow is typically atpresented in Sec. Ill to show that the new method is equally
low Reynolds number and possibly with a complex geometryeffective on D2Q7, D2Q9, and D2Q13 lattices and can be
[2]. straightforwardly extended to three dimensions.
Surface tension may be activated by a number of possible In the usual notation, the LBGK algorithm may be repre-

methods3—6], all of which are at some level physical and sented by the equation
designed to imitate in varying degree, atomisticnoicro-
scopichehavior. Possibly as a result, the emergent continuum
interface suffers from small and unwanted artifacts, princi-
pally (i) small, spurious velocities, anicrocurrents close to
the interface(ii) anisotropy in the effective surface tension wherec; represent the vectors of the lattice bagisrepre-
(and hence boundary shapesand (iii) a finite boundary sents the time step, andcontrols the molecular kinematic
thickness for the hydrodynamic regime. It should be notedriscosity of the lattice fluid through the relation
that for correct hydrodynamics, immiscible liquids satisfy
boundary conditions which obtain at a sharp, unstructured 27—1
interface even at the mesoscale. However, IBE is a highly V=T o 2
dispersive method and any interface algorithm based on local

rules, for the sake of speed and computational simplicityand the quantitye; may be used to impress e.g., a pressure
distributes the emergent continuum interface. But while recis assumed to be introduced@¢s,). Velocity moments give

ognizing the need for speed, simplicity and stability, oneihe |attice fluid’s density and momenta in the usual way
must also recognize that to model continuum fluids with IBE,through

an interface should be as unstructured as possible. Accord-
ingly, any interface generating algorithm which reduces mi-
crocurrents, such as we report here, and serves more sharply p= 2 fi=2 fi(o),
to define the interface is important for most applications. ' !
It is true that more sophisticated model interfaces.,
Ref.[7]) are appropriate in applications where one seeks to _ A £(0)
capture, for example, the kinematics of phase separffipn Py 2 fig Z afi™. ®
But where hydrodynamics alone is the problem, “simpler”
methods based directly upon mechanical quantities are agvhere the equilibrium distribution functioﬁ(o) is
knowledged as being as valiB,8]. Here we present a

A. The Gunstensen and Rothmann method

1
fir+ad t+a)=fir)+—(fO—f)+F, (@

method for obtaining a direct interface between immiscible vee V2 (veg)?
lattice fluids with the same density, although it is our inten- fp V) =top| 1+ — — S +— (4)
tion to generalize thigdensity aspect of the model in future Cs 2c5  2cg
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TABLE |. Data for different lattice types.

a0t =2 tpG[R )~ Bi(x,)] (10
ay—a !

Lattice t, t; t, ¢ ay x100%

against the color field3]. Relaxation parameters with a
D2Q7 112 112 1/4 0.00706 8.5% limited range of difference may be applied in the bulk of the
D2Q9 49 1/9 1/36 1/3 0.00722 6.5% separated liquids, conferring different kinematic viscosities.
D2Q13 11/25 9/100 1/300 3/10 0.00757 1.9% In the mixing(interfacia) regions we use effective relaxation

parameterrq;;:
The weightst, and the velocity of sounds are given in 1 PR PB
Table I. The form of the equilibrium distribution function, veri=g (27Ter— 1) =————vpt————vg. (11

PRT PB PR PB

Eq. (4), ensures that relatior{8) are satisfied and also deter-
mines the nonviscous part of the momentum-flux tensor of
the lattice fluid, B. New method

We now modify the Gunstensen algorithm by replacing
0)_ (0) _ 2 the perturbation step with a direct forcing term at mixed
o= Z F7CiaCip=C5pOap™ PUL - ® sitesF,) chosen so as t(F)) recover the requiredgpressure difference
across the interface. This recovers the macroscopic effects of
Gunstensen and Rothmafi8] proposed an extension to surface tension in such a way as significantly to reduce the
models such as those outlined above, using additional rulesrtifacts associated with earlier methods.
to confer spontaneous interface generation betveatored Consider mixing and demixing red and blue fluids, pas-
momentum densities, now denoted m(r,t), B;(r,t). sively separated parallel to the directionf¢%,t), as above.
These component momentum densities undergo the collisioBuch a passive process will not affect the hydrodynamics of
part of the algorithm as a mixed, single density, as if it werethe combined fluids’ mixture. Accordingly stress will be con-
color blind, tinuous throughout this region, which may be confirmed by
direct measurement. We therefore assume that stresses mea-
fi(r,)=Ri(r,t) +B;(r,t). (6)  sured on either side of a narrow red-blue interfacial region

o _ ) ) satisfy
A perturbation is then applied on thosgxednodes contain-

ing both red and blue densities, which has the effect of ren- oJt— o Dtp=0, (12)
dering the stress tensor anisotropic in such a way as correctly
to recover a surface tension. Segregation of the two fluidsvhere, for exampleasfg denotes the red fluid stress on the
then emerges upon the addition ofrecoloring step for red side of the interface artg is a unit interfacial tangent,
mixed nodes. Essentially the site totals of red and blue massierived from the interface normal, through E8). If the red
pr(r,t) andpg(r,t) are conserved and reallocated to post-and blue fluids are each individually incompressible,
collision f;(r,t)’s according to the following algorithm.
Where colors mix on the lattice, a color differene® is dpv?=0, (13
defined as
whereC=R or B. In three dimensions, the standard condi-
pN(r,t)=pgr(r,t)— pg(r,t) (7)  tion on the normal stress at the boundary between the fluids
is given by[12]
in terms of which a color field may be calculated,
1

+ —
Ry Ry

f(x,t)=VpN. 8 oing—o{ing=a Ne s (14)
The color field is approximately perpendicular to the inter-
face and is used to define,, a unit normal to the surface.
To fourth-order accuracy, color fiel@) is given by

where « is a surface tension parameter amglis the local
interfacial unit normal. This is equivalent to the requirement
that the pressure must be distributed over the interface ac-
cording to

1
f(x,1)== > t,G[Rj(X+¢ 1) —Bj(x+c,0)]. (9
Cs 1l pL_p@=,

We note, in passing, that the inclusion of the factgrin

definition (9) improves the definition of the color field as an In Eq. (14) R;, R, are the local values of the principal radii
interface normal; this minor point will be discussed in a fu- of curvature of the interface. For a model with a continuous
ture publication. The color islemixedrelative to the color tangential stress, therefore, the task of forcing the correct
field, by reallocating color masseg(r,t) andpg(r,t) over  condition of normal interfacial stress reduces to a require-
the postcollision “receptaclef;(r,t)’s so as to maximize the ment on a pressure differenceP related to the instanta-
work done by color fluxq(x,t), neous local curvature through E@.5).

—+—.
Ri Ry

1 1
) (15
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In order to impose resulid4) and(15) onto the behavior
of our lattice fluids we force a local pressure gradient
throughout thenarrow but distributedinterface as an addi-
tional force density; i.e., the forcing is applied only on mixed
sites of the lattice. In IBE, a body force can be impressed a
an appropriate perturbation to tligs through the ternf¥; in
Eqg. (1) [13]. The necessary force is defined to act normal to
the local interface, centripetally and with a magnitude pro-
portional to the gradient ip"/p. The local curvature of the
interface, for a two-dimensional system, is given by

1
K:§:—Vs-n, (16)
where
Vs=(I-nn)-V, 17

<
<
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FIG. 1. Normalized pressure difference as a function of distance
(lattice units from the drop center.

| is the unit tensolV  is the surface gradient operator, and activity it generates. The latter is measured after the manner
is the interface normal, determined as the unit vector, parallé®utiined in Ref.[6]. In order to make sensible comparison

to the gradient of the color step functidh(p"/2p). In two
dimensions, the curvature can be written as

K=nyny(dyny+ dyNy) — NZdyng—nZayny, (18

tat
and can be evaluated by standard finite difference methods7&1

on the lattice. In order to impose conditi¢bb), the momen-
tum densityf,(r,t) of theith link in Eq. (1), must be aug-
mented by

Equation(19) includes the gradient of the color step function

N

pp)'

. (19

o
Fi :ﬁtpciﬂﬁ

S

with previous results we use lattices of identical size, drops
of identical initial radius, surface tension parameterand
an equivalent lattice closure process to those used inBlef.
The simulation was run on D2Q7, D2Q9, and D2Q13
lattices. The data were extracted afteP tilne steps from a
ic drop on a 150150 lattice with initial radiusR= 40,
=1.5, and surface tension parametet 0.007 72. Fig-
ure 1 plots the pressuie= p/c§ against horizontal distance
from an undeformed drop center. In the inner and outer re-
gions of the drop the pressure is constant with good accu-
racy, and shows some variation in the interfacial region.
In order to obtain the macroscopic surface tensignwe
follow Eg. (15) and write

an=R(pR—p®), (20)

to ensure that, when considered as a line integral along the

local normal, the cumulative effect of the body force is towhereﬁR is the the mean static pressure inside the drop
produce an appropriate local step in pressure across the ifaveraged over all the points of radins=32 lattice units
terface in accord with that prescribed in Ed5). This term

is valid provided the fluid is incompressible. The perturba- 5~ T T T T T T
tion is applied prior to the reallocation of color, as described A, . *1
in the text following Eq.(9). Note that in body forcing the RO f*% ﬁ’ﬁ”ﬁ* £
lattice fluid, the stress field remains continuous. Note also 1.9;@;?,&_*&@5__&*#*%
that the total force on a drop, generated by a normal force of_ > , -
constant magnitude per unit lengfithe total color step 3 x ¥ 3 I
across the interface should be unifgrshould be zero, fora 3§ Py ﬁ‘i £ 2%
drop has a closed interface. L 0 ¥y

Before proceeding, it is perhaps appropriate to summa-’*‘é FIE ; % -~ % §
rize, in broad terms, the algorithm in mixed regions of the 2 i % M % =% 0%
lattice. At mixed(interfacia) nodes:(a) collide according to o Y £ b ; 2 4 E
Eqg. (1), (b) determine and apply body for¢&9), (c) reallo- ‘g m E&F‘ ’i&_f %
cate colored densitigs® and p®.

-0.5

Ill. RESULTS

In this section, we test the interface algorithm described in FIG. 2. Variation of normalized static fluid pressyravith ro-
Sec. II. In order to assess the algorithm we consider a stati@tional angles. Symbols ¢ for the red fluid,x for the blue fluid
(red drop and measure its isotrogyhe uniformity of itS  correspond to data from RdB]; solid lines represent the results of
radius with position on the interfac@nd the microcurrent the present work.
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FIG. 3. Color interface location as a function of distasiedtice FIG. 5. Variation of|u|, microcurrent flow speed measured in
units) from the drop center. units of lattice spacing per time step, against normalized distance

from the drop centety|/R. The solid line corresponds to data from

— . Ref.[6]; the dotted line corresponds to data obtained by the method
from the drop centgr p® is the external mean pressui/-  gescribed in the present work.

eraged over all the points of radiuz48), and the radius of

the dropR s taken as the initialized radius of 40 lattice units. . o
For the same drop, the recorded values of the standal§SSer pressure difference than it is expected from the

Laplace surface tension, for all lattice types used, are close te@Place law. For larger dropsR(>2) the macroscopic sur-
the imposed surface tension parametefsee Table). The  face tensionay, calculated using Eq(20) is close to the
origin of the small discrepancy is the subject of current in-initial surface tensior, as it is seen from Fig. 4 where it is
vestigation, but does not in any way limit the applicability of plotted for static droplet of different radii.
the method. Figure 5 shows the radial variation of microcurrent veloc-
The anisotropy of the surface tension, characterized byty in D2Q9 lattice, mean square averaged over polar angle.
the variation ofp(R) andp(B) with polar angled appearsto The microcurrent velocity observed under the same condi-
be much smaller than that in the Gunstensen mefise@ tions appears to be about 40 times smaller than that in Ref.
Fig. 2). Additionally, the variations of the distance between[6]. Microcurrents are concentrated close to the interface
the droplet center of mass and the interface with polar angland, moreover, decay faster in the bulk.
are not larger than the distance between adjacent nodes. To demonstrate the applicability of the proposed method
Figure 3 plots the color step functigil'/p against hori-  for the dynamic cases and to three dimensions, the simula-
zontal distance from an undeformed drop center in the vicintjon of the behavior of initially static three-dimensional drop
ity of the interface. As in other diphasic LBGK algorithms, jy shear flow has been performed. A spherical drop of radius
there is a small variation of density across the interfaciag_g \yas put in the center of the simulation box of size

region having width 1-2 nodes. Hence, small drops ( 40x24x24. We used the D3Q19 lattice with a body force
=<2) may consist fully of mixed nodes and, as a result, show
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FIG. 4. Surface tension as a function of drop radilattice of the principal axis of a three-dimensional droplet distorted by a
units). Data normalized by the surface tension parameter shear flow. Shear rate in lattice units.
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acting in the positive(negative x direction applied to the IV. CONCLUSIONS

nodes with the lowesthighesj} y coordinate. The curvature

was calculated using E@18). At small shear rates the drop-  This paper has reported a continuum surface tension gen-
let distorts into an ellipsoid which is aligned with its major erating algorithm for a two component lattice Boltzmann
axis at an anglé to the flow axis. Results are presented in scheme, which exhibits a significant reduction in the artifacts
Fig. 6 for the variation of and this is seen to intersect the  which are present in many earlier schemes. The method has
axis at approximately 45°, as is expected from the theorybeen validated for a number of two- and three-dimensional
The small system size leads to the slightly noisy resultdattices and will be easily extended to situations where addi-
shown in Fig. 6, and work in progress will report a moretional features, aimed at increasing separated fluids density
comprehensive comparison with the theory of Ca4]. difference, are present.
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