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Information transfer through disordered media by diffuse waves

S. E. Skipetrov*
Laboratoire de Physique et Mode´lisation des Milieux Condense´s, CNRS, 38042 Grenoble, France

~Received 18 October 2002; published 26 March 2003!

We consider the information contenth of a scalar multiple-scattered, diffuse wave fieldc(r ) and the
information capacityC of a communication channel that employs diffuse waves to transfer the information
through a disordered medium. Bothh andC are shown to be directly related to the mesoscopic correlations
between the values ofc(r ) at different positionsr in space, arising due to the coherent nature of the wave. For
the particular case of a communication channel between two identical linear arrays ofn@1 equally spaced
transmitters or receivers~receiver spacinga), we show that the average capacity^C&}n and obtain explicit
analytic expressions for̂C&/n in the limit of n→` andk,→`, wherek52p/l, l is the wavelength, and,
is the mean free path. Modification of the above results in the case of finite but largen andk, is discussed as
well. If the signal to noise ratioS/N exceeds some critical value (S/N)c , ^C&/n is a nonmonotonic function of
a, exhibiting maxima atka5mp (m51,2, . . . ). For smaller S/N, ka5mp correspond to local minima, while
the absolute maximum of̂C&/n is reached at someka;(S/N)1/2,p. We define the maximum average
information capacitŷC&max as^C& maximized over the receiver spacinga and the optimal normalized receiver
spacing (ka)opt as the spacing maximizinĝC&. Both ^C&max/n and (ka)opt scale as (S/N)1/2 for S/N
,(S/N)c , while (ka)opt5mp and ^C&max/n;log(S/N) for S/N.(S/N)c .
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I. INTRODUCTION

Transport of coherent waves in disordered media has b
extensively studied during the past decades@1–6#. Remark-
ably similar, diffusion behavior of multiple-scattered ele
tronic wave functions at low temperatures@1–3#, coherent
electromagnetic@4# ~optical @5# and microwave@7#!, acoustic
@8#, and elastic@9# waves has permitted impressive advanc
of the field@6#. Recently, multiple-scattered seismic waves
the earth’s crust has been demonstrated to behave in a si
way @10,11#. In the context of these studies, the main qua
tities of interest are the transport coefficients of disorde
samples, such as, e.g., the transmission coefficientT or the
conductanceg. The average values, fluctuations, full pro
ability distributions, angular, spatial, and temporal corre
tion functions ofT andg have been studied both theoretica
and experimentally~see, e.g., Ref.@4# for a review!. These
quantities are, without any doubt, very important, since th
describe the transport of waveenergythrough a disordered
sample and hence can be measured experimentally. On
other hand, in practical applications one rarely uses multip
scattered waves with a primary purpose of energy transm
sion. Much more often, waves are used to transfer theinfor-
mation. Readily available examples are microwa
communications~portable telephony! in cities, indoor wire-
less local-area networks in buildings with complex structu
and underwater acoustic communication systems. In f
one of the main motivations to study the multiple scatter
of waves in disordered media is their possible use for tra
mission or processing of information in electronic devices
wireless communications.

In the same way as the properties of a disordered sam
with respect to transmission of energy are described by
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transmission coefficientT or conductanceg ~depending on
the details of the specific experiment!, its properties with
respect to transmission of information are characterized
the information capacity C. The latter gives the maximum
rate of error-free information transfer through a disorde
sample using a given type of waves~acoustic, electromag
netic, etc.! and a given transmitter-receiver configuratio
~see Refs.@12–14# for a more rigorous definition ofC). In-
formation capacity of communication channels in disorde
media has recently received considerable attention@15–21#.
The most interesting and important result concerns a c
munication system consisting of multiple transmitters a
receivers@15–17,19–21#: it has been found that the capaci
of such a communication system scales linearly with
number of receiversn ~as long as the number of transmitte
m is of the same order!. The authors of Refs.@16,19–21#
have also studied the effect of correlations between the
nals received by different receivers onC. More specifically,
the communication channel betweenm transmitters andn
receivers is described by an3m Green matrixG (Ga i is the
signal at the receivera due to a unit signal emitted by th
transmitteri ). Due to the multiple scattering of waves, in
disordered medium the entries ofG are random variables
with certain correlations between them. These correlati
are often termed ‘‘mesoscopic’’@4# because they originate
from the fact that the phase coherence length of the con
ered wave exceeds the length of the path that the wave t
els inside the disordered medium. Mesoscopic correlati
complicate significantly the theoretical calculation of capa
ity which otherwise~i.e., for uncorrelatedGa i) is relatively
straightforward@15,19,20#. Although it follows from Refs.
@16,20# that nonzero correlations betweenGa i reduce the
information capacity of the communication channel und
particular conditions considered in those papers, no syst
atic study of the role of mesoscopic correlations in the c
text of information transfer is available at the time of writin
©2003 The American Physical Society21-1
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S. E. SKIPETROV PHYSICAL REVIEW E67, 036621 ~2003!
Mesoscopic correlations have been extensively studied
ing the past decade~see, e.g., Refs.@2,4,7# and references
therein!, but their role in the context of the information tran
fer has been completely ignored until very recen
@16,19,20#. Meanwhile, understanding the relation betwe
mesoscopic correlations and information capacity has
only the practical importance but also a fundamental sign
cance, since the correlations are usually affected by the s
metries of the problem~translational symmetry, time-revers
symmetry, etc.! and it might be interesting to study the in
fluence of these symmetries on the information-theor
quantities, such as the information capacity.

The purpose of the present paper is to consider
multiple-scattered wave field from the point of view of th
information theory, to quantify its information content, an
finally, to provide a comprehensive study of the informati
capacity of a communication channel in a disordered m
dium with a proper account for mesoscopic correlations a
ing from the coherent nature of multiple-scattered waves
carry the information. To be specific, we limit our conside
ation to identical linear arrays ofn equally spaced transmit
ters or receivers~see Fig. 1!. Such a geometry is common fo
microwave@7# and acoustic@8# experiments with multiple-
scattered waves in disordered media@32#. Besides, it is also
widely considered in connection with the time-revers
acoustics@22#. We note that the time-reversal techniqu
seem to be very promising for wireless communications
disordered and/or chaotic environments@23,24#.

Before going into calculations, we would like to comme
on the applied aspects of the considered problem. Com
nication systems, consisting of multiple transmittin
receiving antennas, are currently under an active study du
their potential importance for microwave wireless commu
cations, in particular, wireless local-area networks and w
less telephony in cities@15–17,21,27#. In the 2-GHz region,
the wavelengthl;15 cm and the mean free path, is of the
order of meters for indoors and tens of meters for outdo
propagation@16#. If the transmitter-receiver separationL
*10 m indoors andL*100 m outdoors, the wave emitte
by the transmitter is multiply scattered before reaching
receiver. In the actual commercially available communi
tion systems, the multiple scattering of the microwaves
treated as a nuisance, reducing the power of the useful,

FIG. 1. We consider the transfer of information between ide
cal arrays ofn transmitters or receivers placed in a disordered m
dium. We denote the transmitter~receiver! spacing bya and the
distance between the arrays byL. A wave emitted by some trans
mitter i experiences multiple scattering in the disordered med
before reaching the receivera. The signal measured by the receiv
a due to the transmitteri is given by the Green functionGa i . The
Green functionsGa i (a,i 51, . . . ,n) form a Green matrixG.
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scattered signal, and adding up to the noise originating fr
other sources. Only recently, it was realized that one
make use of the multiple-scattered part of the signal to
hance the amount of information that can be transmit
through a disordered medium@25,15–17#. The architecture
of the communication system based on this idea has b
developed at Bell Laboratories and is called BLAST~Bell
Labs Layered Space-Time! @25–27#. The experimental ge-
ometry considered in the present paper~Fig. 1! is close to the
laboratory prototype developed at Bell Laboratories us
BLAST architecture@26,27#. The analysis presented belo
is, therefore, of immediate applied importance in this co
text. Alternatively, in acoustic underwater communication
arrays of transducers have been already used for some
@28#. In this case, the spatial inhomogeneity of sound vel
ity gives rise to multiple paths for a wave to propagate fro
a given transmitter to a given receiver. The phenomenon m
be further enhanced by scattering on fishes and ships an
multiple reflections from the water-ground and water-air
terfaces. The analysis presented below allows one to estim
the maximum achievable rate of error-free information tra
mission in this case, as well as to choose the optimal tra
ducer spacing in the array. Finally, recent experiments@24#
show that ultrasonic wave propagation in artificial disorde
media~random arrangements of metallic rods@8#! provides a
‘‘tabletop’’ means for efficient modeling of communicatio
systems that operate on a larger scale using different typ
waves and higher carrier frequencies~e.g., microwaves in a
building with complex structure or in a city!. The present
paper provides a theoretical support for further developm
of such model experiments.

The paper is organized as follows. We start by a study
the information content of the multiple-scattered wave fie
in Sec. II. The information content of a random field is qua
tified by its differential entropy. We show that mesoscop
correlations reduce the differential entropy, reducing the
formation content of the multiple-scattered wave field a
leading, in practice, to a smaller volume of compu
memory required for its storage. After this somewhat int
ductory part of the paper, in Sec. III we study the informati
capacityC of a communication channel between two iden
cal linear arrays ofn transmitters or receivers in a disordere
medium~see Fig. 1!. Under certain approximations, we ob
tain analytic expressions for the average information cap
ity ^C&. The latter expressions provide a reasonable estim
of ^C& in real experimental situations, although one can
better using numerical methods. Next, we show that mes
copic correlations reduce the information capacity~as found
in Ref. @16#! only if the signal power is strong enough. If th
signal is weak, correlations play a positive role and allow
higher capacity as compared to that in the absence of co
lations. Finally, we define the maximum capacity as a cap
ity maximized over the transmitter~receiver! spacing and the
optimal transmitter~receiver! spacing as the spacing max
mizing the capacity. Simple analytic expressions are fou
for these two quantities. We summarize the main results
the paper in Sec. IV. Derivations of some important eq
tions used in the main text but not essential for its und
standing are provided in Appendixes A and B.
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INFORMATION TRANSFER THROUGH DISORDERED . . . PHYSICAL REVIEW E67, 036621 ~2003!
II. INFORMATION CONTENT OF THE
MULTIPLE-SCATTERED WAVE FIELD

We start our analysis by considering a problem which
somewhat simpler than the one depicted in Fig. 1. Nam
we assume that there is only one transmitter~located, say, at
r0) that emits a monochromatic scalar spherical wave,
analyze the information content of the multiple-scatte
wave field c(r ). As a consequence of multiple scatterin
c(r ) is a random function of positionr ~‘‘speckle pattern’’!.
Sincec(r ) is a complex continuous random field, it contai
an infinite amount of information or, in other words, an i
finite volume of computer memory would be required
store its values at allr with absolute accuracy. In reality
however, one usually measuresc(r ) at some finite numbern
of positionsra (a51, . . . ,n). In the following, we identify
the information content of such a measurement with the
formation content ofc(r ), keeping in mind that this is
strictly true only forn→`. A measurement ofc in n points
ra results in a random complex vectory5$ya%, whereya
5c(ra)/^I &1/2 and we normalize the fieldc(r ) by the square
root of the average intensitŷI &5^uc(ra)u2& given by the
diagram~a! of Fig. 2 and assumed to be the same for aln
receivers. From here on the angular brackets denote ave
ing over disorder. Ifp(y) is a probability density function o
the random vectory, the differential entropyof y is defined
as @12,13#

h~y!52E p~y!log p~y!dny. ~1!

The logarithm is to base 2 andh is hence measured inbits.
The differential entropyh is a measure of uncertainty of th
random vectory and reflects the average amount of inform
tion that one receives when some value ofy is observed. The
larger the differential entropy, the larger the information co
tent of the vectory, and we will therefore useh to quantify
the information content ofy and, consequently, of th
multiple-scattered wave fieldc(r ).

Under conditions of strong multiple scattering and p
vided that ura2r0u@, for all a51, . . . ,n and thatk,@1
~where k52p/l, l is the wavelength, and, is the mean
free path!, the wave fieldc(r ) can be considered Gaussian
a good accuracy, and hencey is a circularly symmetric com-
plex Gaussian random vector described by a Gaussian p
ability density function

FIG. 2. ~a! The diagram contributing to the average intens
^I (ra)& for a point source of radiation atr0. The shaded rectangle i
the ladder propagator, the solid lines denote the retarded and
vanced average Green functions.~b! The diagram for the correlation
function of the Green functionŝGa iGb j* &.
03662
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p~y!5det~pK !21exp~2y1K21y!, ~2!

whereK is a covariance matrix:Kab5^yayb* &. The integra-
tion in Eq. ~1! can be then carried out analytically, yieldin

h~y!5 log det~peK!. ~3!

It also can be shown@13# that the Gaussian density functio
~2! maximizes the differential entropy for a given covarian
matrix K. Recalling thatKab is the correlation function of
the multiple-scattered wave field, we can readily computeK
in the ladder approximation@see the diagram~b! of Fig. 2
with r i5r j5r0 or Ref. @29##:

Kab5
sin~kDr ab!

kDr ab
expS 2

Dr ab

2, D , ~4!

whereDr ab5ura2rbu. We now restrict ourselves to the cas
of measurement pointsra arranged in a line with a constan
distancea betweenra andra11. As we already mentioned in
Sec. I, such a measurement geometry is common for b
microwave@7# and acoustic@8,22# experiments. The covari
ance matrixK is then Toeplitz:Kab5Ka2b , where Kg
5sin(gka)/(gka)exp@2uguka/(2,)#, and hence in the limitn
→` the density of its eigenvalues tends to a limit, which
the spectrum ofy. The differential entropy rate can be the
expressed through the power spectral density ofy @30#,

f ~m!5 (
g52`

`

Kgexp~ igm!. ~5!

The resultingh(y) appears to scale linearly withn and hence
it is convenient to consider thedifferential entropy rateor the
differential entropy per receiver,

H~y!5 lim
n→`

h~y!

n
5 log~pe!1

1

2pE0

2p

log f ~m!dm. ~6!

Equation~4! allows us to computef (m) explicitly:

f ~m!511
1

ka H arctan
sin~ka1m!

exp@ka/~2k, !#2cos~ka1m!

1arctan
sin~ka2m!

exp@ka/~2k, !#2cos~ka2m!J . ~7!

This expression simplifies greatly in the limitk,→`:

f ~m!5
p

ka
~m11m211!, ~8!

wherem6 denotes the greatest integer not larger than (ka
6m)/(2p). We show the differential entropy rate followin
from Eqs.~6!–~8! in Fig. 3 by solid lines fork,510, 100,
andk,→`. In order to demonstrate the convergence of
exact formula~3! to the asymptotic Eq.~6!, we also show the
curves following from Eq.~3! for n550 ~dashed lines! and
the same values ofk,. It is worthwhile to note that the
entropy rateH reaches its maximum value log(pe) at ka
5mp ~wherem is a positive integer! and that forka.p the

d-
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S. E. SKIPETROV PHYSICAL REVIEW E67, 036621 ~2003!
variations ofH with ka are extremely weak. Exact analyt
result forH can be obtained in the limitk,→` by substi-
tuting f (m) given by Eq.~8! into Eq.~6! and performing the
integration. We findH→2` for ka,p and H5ka/p
1 log@(pe/2)(p/ka)# for p,ka,2p. At ka.2p, H shows
only weak deviations from its maximum value log(pe).

Let us now discuss the implication of Fig. 3 for expe
mental measurements. In an experiment, the values oya
cannot be measured with an absolute accuracy. Anm-bit
quantization of Reya and Imya with a quantization stepD
;22m is a common procedure@33# and the measured quan
tized ya8 can take;D22 discrete values. The vectory8
5$ya8 % can therefore take;D22n different values. One can
show that the entropyH(y8) of y8 is approximatelyh(y)
22n logD for D→0. The number of bits required on ave
age to describe a given componentya8 of the random vector
y8 is then H(y8)/n;H(y)22 logD. It can be now easily
seen that the smaller differential entropy rateH(y) means
that less bits will be required in an experiment to record
the relevant information about the multiple-scattered wa
field. As follows from Fig. 3, at large receiver spacinga
(ka.p), H is very close to its maximum value. At such
large receiver spacing, the signals measured by differen
ceivers are only weakly correlated and hence each si
contains a relatively large amount of information. One the
fore needs a relatively large number of bits per recei
H(y8)/n to record the speckle patternc(r ) in this case. In
contrast, at smalla (ka,p), H decreases, since the signa
measured by different receivers become significantly co
lated and hence the information contained in each of
signals on average,H(y8)/n, is smaller than atka.p. If k,
or n is finite, the value ofH at ka,p can be small but
remains finite. If, in contrast, we take the limit ofk,→` and
n→`, H→2` at ka,p. This means that an infinitely
small amount of information is contained in the signal me
sured by a given receiver and is a direct consequence o
fact that in the absence of exponential damping of correla

FIG. 3. Differential entropy rateH as a function of normalized
receiver spacing for the multiple-scattered wave field measured
linear array ofn→` ~solid lines! andn550 ~dashed lines! receiv-
ers atk,510, 100, andk,→`.
03662
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in Eq. ~4!, the correlation range is infinite and the decrease
h(y) with n is faster than linear.

III. INFORMATION CAPACITY OF A COMMUNICATION
CHANNEL IN A DISORDERED MEDIUM

A. General definitions

After having considered the information content of t
multiple-scattered wave field, we are now in a position
analyze the central problem of the present paper. We c
sider a communication channel between two identical lin
arrays ofn equally spaced transmitters or receivers shown
Fig. 1. The vector of emitted signalsx and the vector of
received signalsy are related byy5Gx1z, whereG is a n
3n complex Green matrix (Ga i gives the signal measured a
the receivera due to a unit signal emitted by the transmitt
i ), and z is a noise vector. We consider scalar waves a
assume that the noisesza at different receivers are statist
cally independent, normally distributed random variab
with powerN: ^zazb* &5Ndab . Before defining the informa-
tion capacity of such a communication channel, we first
mind the definitions of theconditional differential entropy
@13#

h~yux!52E E p~x,y!log p~yux!dnx dny ~9!

andmutual informationbetween two random vectorsx andy
@13#:

I~x,y!5h~y!2h~yux!, ~10!

wherep(x,y) andp(yux) are the joint and conditional prob
ability density functions ofx andy, respectively. In our case
y5Gx1z, and one findsh(yux)5h(z) and

I~x,y!5 log detF I n1
1

N
G1QGG . ~11!

Here I n is the n3n unit matrix and we assume thatx is a
circularly symmetric complex Gaussian random vector w
a covariance matrixQ: Qi j 5E@xixj* #, where E@•••# de-
notes the averaging over all possible emitted signalsx and
should be contrasted from the disorder averaging that
denote by the angular brackets.

If we assume that the Green matrixG is known at both
transmitters and receivers, the Shannoninformation capacity
C ~or simply capacity for brevity! of the communication
channel is found by maximizing the mutual information~10!
over all possible distributionsp(x) of emitted signalsx. The
fundamental importance ofC is that it gives the largest in
formation transfer rateR that can be realized for a give
information channelin principle with infinitely small prob-
ability of error @12,13#. Although no general procedure exis
to realizeR5C in practice, in many real situations one ca
achieve information transfer rates that are quite close tC
@34#. Since the Gaussian distribution maximizes the differe
tial entropy h ~and hence the mutual informationI) at a
given Q ~see Sec. II and Ref.@13#!, maximizing Eq.~10!

a
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INFORMATION TRANSFER THROUGH DISORDERED . . . PHYSICAL REVIEW E67, 036621 ~2003!
overp(x) amounts to maximize Eq.~11! overQ. In practice,
however,G is often known only at the receivers, but not
the transmitters, where only statistical information aboutG is
available. It is the case that we consider in the remaining
of the paper. The optimalQ is then the matrix maximizing
theaveragemutual information̂ I(x,y)&. To accomplish the
averaging, we need to specify the statistical properties of
Green matrixG. In the considered case of strong multip
scattering, provided that the distanceL between the arrays o
transmitters and receivers is much larger than the mean
path , and thatk,@1, Ga i is a circularly symmetric com-
plex Gaussian random variable with zero mean and cov
ance given by the diagram~b! of Fig. 2: ^Ga iGb j* &
5^I &KabKi j , where Kab is defined in Eq.~4! and ^I &
5^uGa i u2& is assumed to be independent ofa and i. In the
following we adopt the total emitted power constraint TrQ
<n and introduce a normalized Green matrixG
5G/(^I &n)1/2. In the present paper we will only be inte
ested in the average capacity^C&, although it should be kep
in mind that C exhibits random fluctuations as disorder
varied. As follows from the above reasoning, the avera
capacity is

^C&5max
Q

K log detF I n1
S

N
G 1QGG L , ~12!

whereS/N plays the role of the signal to noise ratio andS
5n^I & is the average power received by each receiver
suming independent signals from transmitters. When
~12! is applied to a real situation, it gives the maximu
amount of information that can be transferred through
considered communication channel per second using a
frequency bandwidth@12,13#. The units of̂ C& are therefore
bits per second per Hertz~or bps/Hz for brevity!.

B. Average capacity atnš1

For a small number of transmitters and receiversn;1,
the averaging and maximization overQ in Eq. ~12! can be
carried out by a numerical simulation~see, e.g., Ref.@20# for
n52 and Ref.@21# for n52 and 3). At largen such an
approach becomes inadequate. It appears, however, that
lytic methods can be applied to estimate the asymptotic
havior of capacity forn@1 ~see Appendix A and Refs
@16,31,19#!. In the limit of largen the capacity per receiver i
given by

^C&
n

5
1

n (
i 51

n

log@~S/N!21/21k iqiu#1
1

n (
i 51

n

log@~S/N!21/2

1k iv#2uv/ ln 21 log~S/N!, ~13!

wherek i are the eigenvalues of the matrixK, while the aux-
iliary variablesu, v, andp<n nonzero eigenvaluesqi of the
matrix Q are solutions of the following system of equatio
~see Appendix A for derivations!:

u5
1

n (
i 51

n
k i

~S/N!21/21k iv
, ~14!
03662
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1

n (
i 51

n
k iqi

~S/N!21/21k iqiu
, ~15!

f5
k iu

~S/N!21/21k iqiu
, i 51, . . . ,p, ~16!

n5(
i 51

p

qi . ~17!

In principle, the above equations are sufficient for the cal
lation of the average capacity at givenn@1, S/N, andka. It
should be noted, however, that the total number of equat
is p13 ~with p that can be as large asn), and that the
equations are nonlinear. Hence, the numerical solution
quires considerable computational resources at largen. Be-
sides, the interpretation of numerical results is known to b
rather difficult task. Below we show that in the limit ofn
→`, Eqs.~13!–~17! can be significantly simplified and eve
that simpleanalytic expressions for̂C& can be obtained in
certain cases.

C. Average capacity atn\`

As we already mentioned in Sec. II, the covariance ma
K is Toeplitz and hence forn→` one can use the limit
theorems known for this class of matrices@30#. Of particular
use for us is the fundamental eigenvalue distribution theo
of Szego¨ that states that ifK is ann3n Hermitian Toeplitz
matrix andF(x) is some continuous function then~under
certain conditions fulfilled in our case!

lim
n→`

1

n (
i 51

n

F~k i !5
1

2pE0

2p

F@ f ~m!#dm, ~18!

where f (m) is the power spectral density defined in Eq.~5!.
We now admit that the right-hand sides of Eqs.~13!–~15!
can be readily simplified using Eq.~18!. After some algebra
this leads to the following set of equations for the auxilia
variablesu andv:

u5
1

2pE0

2p

f ~m!F S S

ND 21/2

1v f ~m!G21

dm, ~19!

v5
1

u

1

2pE0 f (m).(S/N)21/2v

2p F12S S

ND 21/2 v
f ~m!Gdm,

~20!

while the expression~13! for the average capacity per re
ceiver becomes

^C&
n

5
1

2pE0 f (m).(S/N)21/2v

2p

logF f ~m!

v Gdm

1
1

2pE0

2p

logF S S

ND 21/2

1v f ~m!Gdm1 logS S

ND
3S 12

1

4pE 21/2

2p

dm D 2
uv
ln 2

, ~21!

0 f (m),(S/N) v
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where the integral in Eq.~20! and the first integral in Eq
~21! are over the part of the interval (0,2p) where f (m)
.(S/N)21/2v, while the last integral in Eq.~21! is over the
part of the same interval wheref (m),(S/N)21/2v. Once
f (m) is known, Eqs.~19!–~21! allow one to calculate the
average capacity per receiver,^C&/n, in the limit n→`.

1. Average capacity at n\` and kø\`

We first consider the limitk,→`. Although particularly
simple results can be obtained in this case, we will sh
later that this limit can serve as a good approximation to r
situations with large but finitek,. If 0,ka,p, we find~see
Appendix B!

^C&
n

5
ka

p
logF S

N

p

ka

1

fG2
f

ln 2
, ~22!

where

f5
ka

p
2

1

2~S/N! S ka

p D 3FA114
S

N S p

kaD 2

21G . ~23!

Analytic results for^C&/n can also be obtained atka.p,
but the resulting expressions are rather cumbersome
lengthy and we present them in Appendix B. In Fig. 4, w
show the average capacity per receiver^C&/n, as a function
of normalized receiver spacingka/p at a fixed signal to
noise ratioS/N5100. The solid line shows our analytic re
sult, corresponding to the limitn→` @Eq. ~22! at 0,ka
,p and more lengthy but analytic formulas given in Appe
dix B at ka.p], while the dashed and dotted lines are o
tained by a numerical solution of Eqs.~13!–~17! at finite
number of receiversn (n5100 and 10, respectively!. As
follows from our analysis, atk,→` andn→`, the deriva-
tive of ^C& with respect toka exhibits a discontinuity at
ka5mp (m51,2, . . . ). Although the discontinuity disap
pears at finiten, the overall agreement between the resu

FIG. 4. Average information capacity per receiver of a comm
nication channel between two identical linear arrays ofn equally
spaced transmitters or receivers as a function of normalized rec
spacing fork,→` and n→` ~solid line!, n5100 ~dashed line!,
andn510 ~dotted line!. The signal to noise ratio isS/N5100. The
inset is a zoom of the main plot.
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corresponding to finiten andn→` remains satisfactory eve
for n as small asn510. The analytic results correspondin
to the limit of n→` can therefore serve as a reasona
approximation in real situations with large but finiten.

2. Average capacity at n\` and finite kø

Although k, is large in the experiments performed in th
diffusion regime@7,8,22,27#, its value remains finite and it is
therefore of interest to consider its effect on the average
pacity. At finitek, the power spectral densityf (m) is given
by Eq. ~7! and Eqs.~19!–~21! can be solved only numeri
cally. The solution is, however, quite simplified by the fa
that the result corresponding tok,→` is known analytically
~see Appendix B! and can be used as a good starting po
for the numerical algorithm. The average capacity per
ceiver obtained from Eqs.~19!–~21! at k,5100 and 10 is
shown in Fig. 5 by dashed and dotted lines, respectively.
solid line shows thek,→` result, the same as in Fig. 4. A
follows from Fig. 5, at finitek, the capacity is somewha
higher than atk,→`. This is explained by a lower degree o
correlation between the entries of the Green matrixG for
smaller k, @see Eq.~4!#. Also, the derivative of̂ C& with
respect toka exhibits no jumps atka5mp (m51,2, . . . )
whenk, is finite. In general, however, the average capac
is only slightly affected by the finiteness ofk, as long ask,
remains much larger than unity.

D. Maximum capacity and optimal receiver spacing

It follows from Figs. 4 and 5 that as long asn@1 and
k,@1, the average capacity per receiver is very close to
value for n→` and k,→`. We therefore limit the rest of
this section to the discussion of the latter limiting case,
suming that the behavior of^C&/n remains similar at finite
but largen andk,. The typical behavior of the average c
pacity per receiver shown in Figs. 4 and 5 can be summ
rized as follows:^C&/n has its absolute minimum atka

-

er

FIG. 5. Average information capacity per receiver of a comm
nication channel between two identical linear arrays ofn equally
spaced transmitters or receivers as a function of normalized rece
spacing forn→` andk,→` ~solid line!, k,5100 ~dashed line!,
and k,510 ~dotted line!. The signal to noise ratio isS/N5100.
The inset is a zoom of the main plot.
1-6
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INFORMATION TRANSFER THROUGH DISORDERED . . . PHYSICAL REVIEW E67, 036621 ~2003!
→0 while it reaches its maxima atka5mp (m51,2, . . . )
and becomes almost independent ofka for ka.p. It ap-
pears, however, that such a behavior is typical only forlarge
signal to noise ratiosS/N.(S/N)c , where (S/N)c is some
critical value of S/N that we define below. To study th
capacity as a function ofka at various values ofS/N, we
plot the capacity normalized to its value atka5mp in Fig.
6.

As follows from Fig. 6, at largeS/N (S/N510 andS/N
→`) the behavior of capacity withka is similar to that
shown in Figs. 4 and 5. Interestingly, in the limitS/N→`
we find a very simple result:̂C&/n5(ka/p)log(S/N) at ka
,p and^C&/n5 log(S/N) at ka.p, i.e., the capacity grows
linearly with ka for ka,p and then remains constant fo
ka.p. At finite but largeS/N the behavior of capacity is
less simple but is qualitatively very similar:̂C&/n first
shows a monotonic increase withka for ka,p and then
oscillates weakly withka for ka.p ~see also Figs. 4 and 5!.
As we noted above, such a behavior is typical only forS/N
.(S/N)c . At smaller values of the signal to noise rati
^C&/n exhibits a nonmonotonic behavior withka for ka
,p. More precisely, it reaches a maximum at someka
,p, as can be seen from Fig. 6 forS/N50.05, 0.1, and 1.
We call the value ofka maximizing the average informatio
capacityoptimal and denote it by (ka)opt. In addition, we
define themaximumcapacity^C&max as the capacity maxi
mized overka:

^C&max5max
ka

max
Q

K log detF I n1
S

N
G 1QGG L . ~24!

It follows from Eq. ~22! that (ka)opt and ^C&max depend on
the signal to noise ratioS/N in a very simple way:

~ka!opt5H A1AS/N, S/N,~S/N!c

mp, S/N.~S/N!c ,
~25!

FIG. 6. Average capacity of a communication channel betw
two identical linear arrays ofn transmitters or receivers, normalize
to its value atka5mp, is shown as a function of the normalize
receiver spacing for five different values of the signal to noise ra
S/N. We assumek,→` andn→` for this plot.
03662
^C&max

n
5H A2AS/N, S/N,~S/N!c

log@~S/N!/fmax#2fmax/ln 2, S/N.~S/N!c ,
~26!

where (S/N)c.3.35, A1.1.72 andA2.0.92 are numerical
constants, and

fmax512
1

2S/N
~A114S/N21!. ~27!

The normalized optimal receiver spacing (ka)opt is shown
in Fig. 7, while the maximum capacitŷC&max is shown, in
the inset. For comparison, we also show the capacity co
sponding toka5mp ~the dashed line in the inset of Fig. 7!
which coincides with the maximum capacity forS/N
.(S/N)c but is smaller than the latter ifS/N,(S/N)c . It is
interesting to note that atka5mp the average capacity
scales linearly withS/N for S/N→0, while the average ca
pacity maximized overka is proportional to the square roo
of S/N in the same limit. Hence, the latter can exceed
former significantly for small signal to noise ratios.

Qualitatively different behavior of the average capacity
small and large signal to noise ratios, illustrated in Figs
and 7, can be understood without any lengthy calculatio
We first remind that atka,p, according to Eq.~4!, smaller
ka means stronger correlation between the Green funct
Ga i . Next, we map the quite complicated communicati
channel shown in Fig. 1 onto an equivalent set ofn8 inde-
pendent communication channels, the capacity of e
equivalent channel being; log(11S8/N8), whereS8 andN8
denote the signal and noise powers in each ofn8 independent
channels. Obviously, the numbern8 of equivalent indepen-
dent channels grows with decreasing the correlations
tween the entries of the Green matrixG. Consequently, since
the total capacity isn8log(11S8/N8), it seems that having
zero correlations~and henceka5mp) should always maxi-

n

o

FIG. 7. Normalized optimal receiver spacing, maximizing t
information capacity, as a function of the signal to noise ratio. T
inset shows the maximum average information capacity per rece
^C&max/n. The dashed line iŝC&/n at ka5mp (m51,2, . . . ),
coinciding with ^C&max/n for S/N.(S/N)c.3.35 but smaller than
the latter for S/N,(S/N)c . The vertical dotted line isS/N
5(S/N)c .
1-7
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mize the capacity because it ensures the largestn8. This
reasoning, however, is not correct, since the signal poweS8
is also sensitive to the correlations between the entries o
Green matrixG. Indeed, partially correlated Green functio
Ga i lead to a constructive interference of scattered wave
the receivers, thus increasing the power of the received
nal, while the noise powerN8 remains unchanged. There
fore, when changing the receiver spacingka from 0 to p,
one gradually switches from a small number of equival
independent channelsn8 with relatively large signal to noise
ratio S8/N8 to a larger number of equivalent independe
channelsn8 with weakerS8/N8. If S8/N8 is large~which is
only possible ifS/N is large!, the capacity of each indepen
dent channel log(11S8/N8)'log(S8/N8) depends onS8/N8
only logarithmically, while the dependence of the total c
pacity onn8 is linear. To achieve the maximum capacity o
therefore needs to choose the largestn85nmax8 ~which corre-
sponds to ka5mp), the decrease of capacity of eac
equivalent channel being negligible due to its weak~logarith-
mic! dependence on the signal to noise ratio. In contras
S8/N8 is small~which corresponds to smallS/N), the capac-
ity of each equivalent channel log(11S8/N8)'S8/N8 depends
linearly on the signal to noise ratio. In this case, the ma
mum capacity is achieved by choosing some optimal num
of independent equivalent channelsn8,nmax8 ~and hence
some optimal value ofka,p), which is large enough, bu
less thannmax8 to ensure a reasonable value ofS8/N8 in each
of n8 equivalent channels. This explains the origin of t
optimal receiver spacing and its behavior shown in Fig. 7

IV. CONCLUSION

In the present paper, we study the information conten
coherent multiple-scattered wave fields in disordered me
and the capacity of multiple-scattered waves to transfer
information through a disordered medium. We show that
information-theoretic quantities, such as the differential
tropy h of the multiple-scattered wave field and the inform
tion capacityC of a communication channel in a disorder
medium, are directly related to the mesoscopic correlati
between the scattered waves. Mesoscopic correlations re
the information content of the coherent, multiple-scatte
wave field in a disordered medium, leading to a smaller nu
ber of bits required to store all the relevant information ab
it. To consider the transfer of information by multiple
scattered waves, we limit ourselves to the case of comm
cation between two identical linear arrays ofn equally
spaced transmitters or receivers~receiver spacinga). The
average information capacitŷC& of such a communication
channel is shown to scale linearly withn, analytic expres-
sions for ^C&/n are obtained in the limitn→` and k,
→`. For finite but large values ofn andk, the capacity per
receiver^C&/n is somewhat greater than atn→`, k,→`,
but the latter limiting case proves to be a fairly good appro
mation as long asn@1 andk,@1. Our analysis shows tha
if the signal to noise ratioS/N exceeds the critical value
(S/N)c.3.35, ^C&/n grows monotonically witha as long as
ka,p and then oscillates slightly below its maximum val
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achieved atka5mp (m51,2, . . . ). If S/N,(S/N)c , the
behavior of the average capacity per receiver^C&/n is not
monotonic for 0,ka,p and an absolute maximum o
^C&/n is reached at someka,p. We define the maximum
average capacitŷC&max as the average capacity maximize
over the receiver spacinga and the normalized optimal re
ceiver spacing (ka)opt as the spacing maximizing the avera
capacity. Both ^C&max/n and (ka)opt are proportional to
(S/N)1/2 for S/N,(S/N)c . At S/N.(S/N)c , we find
(ka)opt5mp and ^C&max/n}log(S/N).

To conclude, let us illustrate the application of the the
retical analysis developed above on a specific example.
sume that one wishes to establish a wireless microwave~car-
rier frequencyn;2 GHz) communication link between tw
locations separated by a distanceL of several hundreds o
meters ~say, L5500 m) in an urban environment~city!
where the waves are multiply scattered by numerous bu
ings. The simplest choice is to install a single antenna at e
of two locations (n51 using our notation!. If a high signal to
noise ratio~say,S/N5100) can be obtained on the receiv
~thanks to a powerful transmitter!, the maximum average rat
of error-free information transfer~i.e., average capacity! of
the resulting communication channel will be„see Eq.~12!
with G being scalar or Ref.@20#… '5.9 bits per second and
per Hertz of the available bandwidthDn. To be specific, let
us assumeDn530 kHz as in Ref.@26#, yielding the average
capacity ^C&'180 kbps. There are not much ways to i
crease this number: using larger bandwidth is too expen
@17#, while increasing the transmitter power is not only e
pensive but also does not yield much gain since^C& is
roughly logarithmic inS/N: increasingS/N by an order of
magnitude~i.e., from 100 to 1000! will increase^C& by less
than a factor of 2. A reasonable way to increase^C& is then
to use multiple antennas on both transmitting and receiv
ends of the channel. For the same total transmitted po
n510 antennas arranged in a line and separated bya5l/2
'8 cm will yield ^C&'1.6 Mbps@see Eq.~22! and Figs. 4,
5#, which is an order of magnitude higher than the valu
corresponding ton51. Note that such a gain in capacity
made possible by multiple scattering of microwaves on th
way from transmitters to receivers. In the absence of sca
ing, all receivers would measure essentially the same sign
since the small apertured5(n21)3(l/2)'70 cm of the
receiving array is much smaller than (lL)1/2'9 m, and
hence the array cannot resolve different transmitting an
nas ~Fresnel limit!. Therefore, increasingn would only in-
crease the total received power, leading to a roughly lo
rithmic increase ofC with n. In the case of low signal to
noise ratio~e.g., S/N50.1), we obtain@see Eqs.~12! and
~22!# ^C&'4 kbps in then51 case and a ten times large
capacity ^C&'40 kbps in the case ofn510 and a5l/2.
Optimizing a using Eq.~25! shows that one can double th
latter result for̂ C& by choosinga.0.1l instead ofa5l/2
~see also Figs. 6 and 7!. The resulting channel capacity i
roughly 20 times higher than in the case ofn51, illustrating
the utility of the theoretical analysis presented in this pa
in the context of practical applications.
1-8



n
a

tin

t

t

s
-

h

the
ave

g

ay
.

INFORMATION TRANSFER THROUGH DISORDERED . . . PHYSICAL REVIEW E67, 036621 ~2003!
ACKNOWLEDGMENTS

The author is grateful to R. Maynard and B.A. va
Tiggelen for numerous discussions. A.M. Sengupta is
knowledged for useful comments on the e-print@20#.

APPENDIX A: AVERAGE CAPACITY AT nš1

In this appendix, we follow Refs.@16,19# to calculate the
average capacitŷC& in the large-n limit. The idea of the
calculation stems from the fact that the moment genera
function of the random variable C5 ln det@ I n
1(S/N)G 1QG#, F(g)5^exp(2gC)&, writes F(g).exp
(2g ^C&) in the limit of g→01. We start therefore by a
calculation ofF(g), keeping in mind that taking the limi
g→01 will allow us to obtain the average capacity^C&
5^C&/ ln 2. We admit that F(g)5^@det„I n
1(S/N)G 1QG…#2g&, and that for integerg we can represen
@det„I n1(S/N)G 1QG…#2g as

@det„I n1~S/N!G 1QG…#2g

5~S/N!ngE dm~X,Y!expF2
1

2
~S/N!21/2

3 (
m51

g

~Xm
1Xm1Ym

1Ym!2
1

2

3 (
m51

g

~Ym
1G 8Xm2Xm

1G 81Ym!G , ~A1!

where G 85Q1/2G and we introduce 2g auxiliary complex
vectorsXm andYm (m51, . . . ,g), the procedure known a
the ‘‘replica trick,’’ and dm(X,Y) is the appropriate integra
tion measure. We now average Eq.~A1! over disorder, inter-
changing the order of averaging and integration on the rig
hand side of the equation:

F~g!5~S/N!ngE dm~X,Y!expF2
1

2
~S/N!21/2(

m51

g

~Xm
1Xm

1Ym
1Ym!2

1

4n (
m,l 51

g

~Ym
1AY lX l

1BXm!G , ~A2!

where ^G a i8 G b j8* &5(1/n)AabBi j . The last term in Eq.~A2!
precludes the direct integration overX andY. We can, how-
ever, reduce it to a sum of quadratic terms by definingg
3g complex matricesU andV and introducing integrations
along appropriate contours in the complex plane:

F~g!5~S/N!ngE dm~X,Y!dm~U !dm~V!expS 2
1

2
SD ,

~A3!

where
03662
c-

g

t-

S5~S/N!21/2(
m51

g

~Xm
1Xm1Ym

1Ym!1 (
m,l 51

g

~Ym
1AY lUml

1VmlXm
1BX l2nUmlVlm!. ~A4!

We now perform the integrals overX andY in Eq. ~A3! and
are left with

F~g!5~S/N!ngE dm~U !dm~V!exp$2 ln det@~S/N!21/2

1AU#2 ln det@~S/N!21/21BV#1n Tr~UV!%,

~A5!

whereAU andBV are the outer products of matrices.
Introducing the eigenvaluesj i and h i of the matricesA

andB, respectively, we can rewrite the exponent in Eq.~A5!
as

(
i 51

n

$ ln det@~S/N!21/21j iU#1 ln det@~S/N!21/21h iV#%

2nTr~UV!. ~A6!

In the limit n→` the integrations in Eq.~A5! can be per-
formed using the saddle point method. Assuming that
replica symmetry is not broken at the saddle point, we h
U5uIg andV5vI g with I g the g3g unit matrix. Equation
~A6! then becomes

g(
i 51

n

$ ln@~S/N!21/21j iu#1 ln@~S/N!21/21h iv#%2gnuv.

~A7!

At the saddle point the partial derivatives of Eq.~A7! with
respect tou andv should be zero. This yields the followin
equations foru andv:

u5
1

n (
i 51

n
h i

~S/N!21/21h iv
, ~A8!

v5
1

n (
i 51

n
j i

~S/N!21/21j iu
. ~A9!

Relaxing the condition of integerg, we take the limitg
→01 and put Eq.~A5! in the formF(g).exp(2g^C&) with

^C&5(
i 51

n

$ ln@~S/N!21/21j iu#1 ln@~S/N!21/21h iv#%2nuv

1n ln~S/N!. ~A10!

The variance of capacity can also be found in a similar w
~see Ref.@19# for details!, but we do not consider it here
Changing variables back fromG 8 to G we see thatA
5Q1/2KQ1/2 andB5K yielding j i5k iqi andh i5k i with k i
andqi the eigenvalues of the matricesK andQ, respectively.
Equations~A8!–~A10! then reduce to Eqs.~13!–~15! of Sec.
III.
1-9
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To maximize the average capacity^C& over the ensemble
of covariance matricesQ, we consider an infinitesimal varia
tion dQ of the maximizing matrixQ and required^C&<0.
This leads to Tr(FdQ)<0, where

F5^G@ I n1~S/N!G 1QG#21G 1&. ~A11!

The allowed variationsdQ of the covariance matrix shoul
keepQ1dQ positive definite and should not change the
tal emitted power: TrdQ50. If all eigenvalues ofQ are posi-
tive, the same is true forQ1dQ ~provided thatdQ is small!,
and Tr(FdQ)50 is achieved byF5fI n , where f is a
scalar: Tr(FdQ)5fTrdQ50. This can be also shown t
remain true if some eigenvalues ofQ are zero@19#. It then
follows from Eq.~A11! that for p nonzero eigenvaluesqi of
the matrixQ one has Eq.~16! of Sec. III. Finally, Eq.~17! is
simply the total emitted power constraint TrQ5n.

APPENDIX B: AVERAGE CAPACITY AT n\`

AND kø\`

In this appendix, we derive analytic expressions for
average information capacity in the limit ofn→` and k,
→`. We consider separately the cases of 0,ka,p, p
,ka,2p, and 2p,ka,3p. At ka.3p calculations can
be performed in a similar way.

1. 0ËkaËp

If 0 ,ka,p, the power spectral density takes a partic
larly simple form @see Eq.~8!#: f (m)5p/(ka) for 0,m
,ka or 2p2ka,m,2p, while f (m)50 for ka,m,2p
2ka. Integrations in Eqs.~19! and ~20! can now be easily
performed, sincef (m).(S/N)21/2v at 0,m,ka or 2p
2ka,m,2p and f (m)50,(S/N)21/2v at ka,m,2p
2ka. This yields

u5F S S

ND 21/2

1v
p

kaG21

, ~B1!

v5
ka

p

1

u F12
ka

p
vS S

ND 21/2G . ~B2!

We now solve these equations with respect tou, v and sub-
stitute the solution into Eq.~21!, where, again, the integra
tions are readily performed. This gives

^C&
n

5
ka

p
logF S

N

p

ka

1

fG2
f

ln 2
, ~B3!

where

f5
ka

p
2

1

2~S/N! S ka

p D 3FA114
S

N S p

kaD 2

21G , ~B4!

which are Eqs.~22! and ~23! of Sec. III.
03662
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2. pËkaË2p

In this case,f (m)5p/(ka) for 0,m,2p2ka or ka
,m,2p and f (m)52p/(ka) for 2p2ka,m,ka. We
now should distinguish two cases:~a! S/N.(S/N)1 and ~b!
S/N<(S/N)1, where

S S

ND
1

5
1

4 S ka

p D 2HA~ka/p!@2627~ka/p!#215

32ka/p
21J .

~B5!

In the case~a!, f (m).(S/N)21/2v for all mP(0,2p) and
Eqs.~19!, ~20! become

u5
22ka/p

v1~S/N!21/2ka/p
1

ka/p21

v1~S/N!21/2ka/~2p!
,

~B6!

v5
1

u F12
ka

2p S S

ND 21/2

vS 32
ka

p D G . ~B7!

The values ofu andv found from the two above equation
are to be substituted into Eq.~21! that reduces to

^C&
n

5S 22
ka

p D logH p

kaF 1

v~S/N!1/2
1

p

kaG J 1S ka

p
21D

3 logH 2p

ka F 1

v~S/N!1/2
1

2p

kaG J 2
uv
ln 2

1 log
S

N
.

~B8!

In the case~b!, f (m).(S/N)21/2v only for 2p2ka,m
,ka. Equation~B6! remains the same, while Eqs.~B7! and
~B8! become

v5
1

u S ka

p
21D F12S S

ND 21/2

v
ka

2pG , ~B9!

^C&
n

5S 22
ka

p D logH S S

ND 21/2F S S

ND 21/2

1v
p

kaG J 1S ka

p
21D

3 logH 2p

ka F 1

v~S/N!1/2
1

2p

kaG J 2
uv
ln 2

1 log
S

N
. ~B10!

3. 2pËkaË3p

We proceed as in the two previous sections.f (m)
53p/(ka) for 0,m,ka22p or 4p2ka,m,2p, while
f (m)52p/(ka) for ka22p,m,4p2ka. If S/N
.(S/N)2 @case~a!#, where

S S

ND
2

5
~ka/p!2@ka/~2p!21#

A~ka/p!~3225ka/p!235152ka/p
,

~B11!

f (m).(S/N)21/2v for all mP(0,2p) and Eqs.~19!–~21! re-
duce to
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u5
3~ka/p22!

3v1~S/N!21/2ka/p
1

32ka/p

v1~S/N!21/2ka/~2p!
,

~B12!

v5
1

u F12
ka

6p S S

ND 21/2

vS 52
ka

p D G , ~B13!

^C&
n

5S ka

p
22D logH 3p

ka F 1

v~S/N!1/2
1

3p

kaG J 1S 32
ka

p D
3 logH 2p

ka F 1

v~S/N!1/2
1

2p

kaG J 2
uv
ln 2

1 log
S

N
.

~B14!
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03662
If S/N,(S/N)2 @case~b!#, f (m).(S/N)21/2v for 0,m
,ka22p or 4p2ka,m,2p only and we have instead o
Eqs.~B13! and ~B14!

v5
2

u F ka

2p
212

ka

3p S S

ND 21/2

vS ka

2p
21D G , ~B15!

^C&
n

5S ka

p
22D logH 3p

ka F 1

v~S/N!1/2
1

3p

kaG J 1S 32
ka

p D
3 logH ~S/N!21/2F ~S/N!21/21
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ka
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uv
ln 2

1 log
S

N
.
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