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Information transfer through disordered media by diffuse waves
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We consider the information conteht of a scalar multiple-scattered, diffuse wave fieldr) and the
information capacityC of a communication channel that employs diffuse waves to transfer the information
through a disordered medium. Bothand C are shown to be directly related to the mesoscopic correlations
between the values af(r) at different positions in space, arising due to the coherent nature of the wave. For
the particular case of a communication channel between two identical linear arragsloequally spaced
transmitters or receivergeceiver spacin@), we show that the average capadjty)=n and obtain explicit
analytic expressions fdiIC)/n in the limit of n—c andkf—o, wherek=27/\, \ is the wavelength, and
is the mean free path. Modification of the above results in the case of finite bunlamyek¢ is discussed as
well. If the signal to noise rati&/N exceeds some critical valu&/N)., (C)/n is a nonmonotonic function of
a, exhibiting maxima aka=m= (m=1,2, .. .). For sraller S/N, ka=m correspond to local minima, while
the absolute maximum ofC)/n is reached at somka~ (S/N)¥2< 7. We define the maximum average
information capacity C) ., as{C) maximized over the receiver spaciagnd the optimal normalized receiver
spacing ka)ep as the spacing maximizingC). Both (C)pa/n and (a),y scale as $/N)Y2 for SIN
<(SIN),, while (k&) p=mm and(C)max/n~log(SN) for SIN>(S/N)..
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[. INTRODUCTION transmission coefficient or conductancey (depending on
the details of the specific experimgnits properties with
Transport of coherent waves in disordered media has beaespect to transmission of information are characterized by
extensively studied during the past decafles6]. Remark-  the information capacity CThe latter gives the maximum
ably similar, diffusion behavior of multiple-scattered elec- rate of error-free information transfer through a disordered
tronic wave functions at low temperaturgk—3|, coherent sample using a given type of wavéascoustic, electromag-
electromagneti¢4] (optical[5] and microwavé7]), acoustic  netic, etc) and a given transmitter-receiver configuration
[8], and elasti¢9] waves has permitted impressive advancegsee Refs[12—-14 for a more rigorous definition of). In-
of the field[6]. Recently, multiple-scattered seismic waves information capacity of communication channels in disordered
the earth’s crust has been demonstrated to behave in a similaredia has recently received considerable atterjtléi+-21.
way [10,11]. In the context of these studies, the main quan-The most interesting and important result concerns a com-
tities of interest are the transport coefficients of disorderednunication system consisting of multiple transmitters and
samples, such as, e.g., the transmission coeffidiemt the  receiverd15-17,19-2% it has been found that the capacity
conductanceg. The average values, fluctuations, full prob- of such a communication system scales linearly with the
ability distributions, angular, spatial, and temporal correla-number of receivers (as long as the number of transmitters
tion functions ofT andg have been studied both theoretically m is of the same ordgr The authors of Refd16,19-21
and experimentallysee, e.g., Refl4] for a review. These have also studied the effect of correlations between the sig-
quantities are, without any doubt, very important, since theyals received by different receivers @ More specifically,
describe the transport of wawnergythrough a disordered the communication channel betweemtransmitters anch
sample and hence can be measured experimentally. On theceivers is described byrex m Green matrixG (G,; is the
other hand, in practical applications one rarely uses multiplesignal at the receives due to a unit signal emitted by the
scattered waves with a primary purpose of energy transmigransmitteri). Due to the multiple scattering of waves, in a
sion. Much more often, waves are used to transfelirif@-  disordered medium the entries & are random variables
mation Readily available examples are microwavewith certain correlations between them. These correlations
communicationgportable telephonyin cities, indoor wire- are often termed “mesoscopid4] because they originate
less local-area networks in buildings with complex structurefrom the fact that the phase coherence length of the consid-
and underwater acoustic communication systems. In facgred wave exceeds the length of the path that the wave trav-
one of the main motivations to study the multiple scatteringels inside the disordered medium. Mesoscopic correlations
of waves in disordered media is their possible use for transeomplicate significantly the theoretical calculation of capac-
mission or processing of information in electronic devices ority which otherwise(i.e., for uncorrelateds ;) is relatively
wireless communications. straightforward[15,19,2Q. Although it follows from Refs.
In the same way as the properties of a disordered sample.6,20 that nonzero correlations betweéh,, reduce the
with respect to transmission of energy are described by thinformation capacity of the communication channel under
particular conditions considered in those papers, no system-
atic study of the role of mesoscopic correlations in the con-
*Email address: Sergey.Skipetrov@grenoble.cnrs.fr text of information transfer is available at the time of writing.
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scattered signal, and adding up to the noise originating from
other sources. Only recently, it was realized that one can
make use of the multiple-scattered part of the signal to en-
hance the amount of information that can be transmitted
through a disordered mediuf25,15-17. The architecture
of the communication system based on this idea has been
transmitters receivers developed at Bell Laboratories and is called BLASell
_ _ _ ~ Labs Layered Space-Timg25-27. The experimental ge-
FIG. 1. We con5|d_er the transft_ar of |nformat_|on bgtween 'dent"ometry considered in the present paffég. 1) is close to the
cgl arrays ofn transmitters or receivers placedlln a disordered me1aboratory prototype developed at Bell Laboratories using
g::gﬁcvgebgs;gg mi gﬁg;?gt;fsce;\’gesrgft‘féngsy:oaldt:zgs_ BLAST architecture[26,27. The analysis presented below
SO ; . o : > is, therefore, of immediate applied importance in this con-
mitter i experiences multiple scattering in the disordered mediu . . . L
before reaching the receiver. The signal measured by the receiver ext. Alternatively, in acoustic underwater communlcatlon_s,
a due to the transmitteris given by the Green functio6 ;. The arrays of _transducers ha"? b_een already_used for some time
Green functionG,,, (a,i=1, ... n) form a Green matriG. .[28].. In th!s case, thg spatial inhomogeneity of sound veloc-
ity gives rise to multiple paths for a wave to propagate from
Mesoscopic correlations have been extensively studied dug given transmitter to a given receiver. The phenomenon may
ing the past decadésee, e.g., Refd.2,4,7] and references be further enhanced by scattering on fishes and ships and/or
therein, but their role in the context of the information trans- multiple reflections from the water-ground and water-air in-
fer has been completely ignored until very recentlyterfaces. The analysis presented below allows one to estimate
[16,19,2Q. Meanwhile, understanding the relation betweenthe maximum achievable rate of error-free information trans-
mesoscopic correlations and information capacity has namission in this case, as well as to choose the optimal trans-
only the practical importance but also a fundamental signifi-ducer spacing in the array. Finally, recent experim¢at§
cance, since the correlations are usually affected by the synshow that ultrasonic wave propagation in artificial disordered
metries of the problerttranslational symmetry, time-reversal media(random arrangements of metallic rd@d) provides a
symmetry, etg.and it might be interesting to study the in- “tabletop” means for efficient modeling of communication
fluence of these symmetries on the information-theoreticsystems that operate on a larger scale using different type of
guantities, such as the information capacity. waves and higher carrier frequencigsg., microwaves in a
The purpose of the present paper is to consider théuilding with complex structure or in a cityThe present
multiple-scattered wave field from the point of view of the paper provides a theoretical support for further development
information theory, to quantify its information content, and, of such model experiments.
finally, to provide a comprehensive study of the information The paper is organized as follows. We start by a study of
capacity of a communication channel in a disordered methe information content of the multiple-scattered wave field
dium with a proper account for mesoscopic correlations arisin Sec. Il. The information content of a random field is quan-
ing from the coherent nature of multiple-scattered waves thdified by its differential entropy. We show that mesoscopic
carry the information. To be specific, we limit our consider- correlations reduce the differential entropy, reducing the in-
ation to identical linear arrays of equally spaced transmit- formation content of the multiple-scattered wave field and
ters or receivergsee Fig. 1L Such a geometry is common for leading, in practice, to a smaller volume of computer
microwave|[7] and acousti¢8] experiments with multiple- memory required for its storage. After this somewhat intro-
scattered waves in disordered mef3&]. Besides, it is also ductory part of the paper, in Sec. Il we study the information
widely considered in connection with the time-reversedcapacityC of a communication channel between two identi-
acoustics[22]. We note that the time-reversal techniquescal linear arrays of transmitters or receivers in a disordered
seem to be very promising for wireless communications inmedium(see Fig. 1 Under certain approximations, we ob-
disordered and/or chaotic environmefi8,24. tain analytic expressions for the average information capac-
Before going into calculations, we would like to commentity (C). The latter expressions provide a reasonable estimate
on the applied aspects of the considered problem. Commuf (C) in real experimental situations, although one can do
nication systems, consisting of multiple transmitting- better using numerical methods. Next, we show that mesos-
receiving antennas, are currently under an active study due wopic correlations reduce the information capaciyg found
their potential importance for microwave wireless communi-in Ref.[16]) only if the signal power is strong enough. If the
cations, in particular, wireless local-area networks and wiresignal is weak, correlations play a positive role and allow a
less telephony in citiegl5-17,21,27. In the 2-GHz region, higher capacity as compared to that in the absence of corre-
the wavelength\ ~15 cm and the mean free paths of the lations. Finally, we define the maximum capacity as a capac-
order of meters for indoors and tens of meters for outdoority maximized over the transmittéreceivej spacing and the
propagation[16]. If the transmitter-receiver separatidn  optimal transmitter(receivej spacing as the spacing maxi-
=10 m indoors and-=100 m outdoors, the wave emitted mizing the capacity. Simple analytic expressions are found
by the transmitter is multiply scattered before reaching thdor these two quantities. We summarize the main results of
receiver. In the actual commercially available communicathe paper in Sec. IV. Derivations of some important equa-
tion systems, the multiple scattering of the microwaves idions used in the main text but not essential for its under-
treated as a nuisance, reducing the power of the useful, ustanding are provided in Appendixes A and B.
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( tion in Eq. (1) can be then carried out analytically, yielding

r;
J b

V/
//

=
~

I'o
h(y)=log det weK). 3

.
:

7

=

It also can be showhl3] that the Gaussian density function
FIG. 2. (a) The diagram contributing to the average intensity (2) maximizes the differential entropy for a given covariance

(I(r,)) for a point source of radiation a§. The shaded rectangle is matrix K. Recalling thatk 5 is the correlation function of
the ladder propagator, the solid lines denote the retarded and ayje multlple-scattereq Waye field, we F:an readily CQthe
vanced average Green functiofis. The diagram for the correlation 1N the ladder approximatiofsee the diagrantb) of Fig. 2

function of the Green function&G,,;G3;). with r;=r;=r or Ref.[29]]:
Il. INFORMATION CONTENT OF THE _SIN(KAT 4p) p(_ Arwﬁ) @
MULTIPLE-SCATTERED WAVE FIELD BT KAT o 20 )

We start our analysis by considering a problem which iswhereAr ,;=|r,—r 4|. We now restrict ourselves to the case
somewhat simpler than the one depicted in Fig. 1. Namelypf measurement points, arranged in a line with a constant
we assume that there is only one transmittecated, say, at distancea betweerr, andr,, ;. As we already mentioned in
ro) that emits a monochromatic scalar spherical wave, anéec. |, such a measurement geometry is common for both
analyze the information content of the multiple-scatteredmicrowave[7] and acousti¢8,22] experiments. The covari-
wave field #(r). As a consequence of multiple scattering, ance matrixK is then Toeplitz:K ,3=K,_5, where K,
¥(r) is a random function of position (“speckle pattern).  =sin(yka)/(yka)exd —|{kal/(2¢)], and hence in the limin
Sincey(r) is a complex continuous random field, it contains —c the density of its eigenvalues tends to a limit, which is
an infinite amount of information or, in other words, an in- the spectrum of/. The differential entropy rate can be then

finite volume of computer memory would be required to expressed through the power spectral density [80],
store its values at alf with absolute accuracy. In reality,

however, one usually measurgér) at some finite number - ]

of positionsr,, (a=1, ... n). In the following, we identify flu)= ;w K,expliyu). ®)

the information content of such a measurement with the in- 7

formation content ofy(r), keeping in mind that this is The resultingh(y) appears to scale linearly withand hence
strictly true only forn—c. A measurement of in n points it is convenient to consider thifferential entropy rater the

r, results in a random complex vectge={y,}, wherey, differential entropy per receiver,
=(r )/{1)Y? and we normalize the fiel¢(2r) by the square )
root of the average intensityl )=(|(r,)|°) given by the . y 1 (2=
diagram(a) of Fig. 2 and as§u>me<(|j to be| 'Ehe same fornall H(y)=r1Ieron=log(we)+ Efo logf(x)du. (6)
receivers. From here on the angular brackets denote averag-
ing over disorder. |b(y) isa probablllty density function of Equation([]_) allows us to Computé(ﬂ) exp|icit|y:
the random vectoy, the differential entropyof y is defined
as[12,13 ()= 1 sin(ka+ u)

(W)= 1 | AR Tkl (2k€)] = cogka+ )

— n
h(y)= —f p(y)logp(y)d"y. @ sin(ka— )
A, fkal(2k6)]—coska—m) | "

The logarithm is to base 2 aridis hence measured fits.
The differential entropyh is a measure of uncertainty of the This expression simplifies greatly in the linkit —oo:
random vectol and reflects the average amount of informa-
tion that one receives when some valug/é$ observed. The ™
larger the differential entropy, the larger the information con- flw) =5 (me+m_+1), 8
tent of the vectoy, and we will therefore ush to quantify
the information content ofy and, consequently, of the wherem. denotes the greatest integer not larger thiaa (

multiple-scattered wave field(r). *w)/(27). We show the differential entropy rate following
Under conditions of strong multiple scattering and pro-from Egs.(6)—(8) in Fig. 3 by solid lines fork¢ =10, 100,
vided that|r,—rq|>¢ for all @=1,...n and thatk¢>1  andk{—«. In order to demonstrate the convergence of the

(wherek=2m/\, N\ is the wavelength, and is the mean exact formula3) to the asymptotic Eq6), we also show the
free path, the wave field/(r) can be considered Gaussian to curves following from Eq(3) for n=50 (dashed linegsand
a good accuracy, and hengés a circularly symmetric com- the same values ok¢. It is worthwhile to note that the
plex Gaussian random vector described by a Gaussian probntropy rateH{ reaches its maximum value logf) at ka
ability density function =mm (wheremis a positive integgrand that forka> 7 the
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AT in Eq. (4), the correlation range is infinite and the decrease of
w I ] h(y) with n is faster than linear.
s I ]
¥ 2 . I1l. INFORMATION CAPACITY OF A COMMUNICATION
,g r 1 CHANNEL IN A DISORDERED MEDIUM
§ o A. General definitions
= ° * After having considered the information content of the
° ks multiple-scattered wave field, we are now in a position to
ug - analyze the central problem of the present paper. We con-
o -2 7 sider a communication channel between two identical linear
?E; I n o ] arrays ofn equally spaced transmitters or receivers shown in

---- n =250 | Fig. 1. The vector of emitted signals and the vector of
gqlid e received signaly are related by=Gx+z, whereG is an
0.0 : 1.0 1.5 2.0 X n complex Green matrixG@,,; gives the signal measured at

the receivere due to a unit signal emitted by the transmitter
FIG. 3. Differential entropy raté{ as a function of normalized 1), andz is a noise vector. We consider scalar waves and
receiver spacing for the multiple-scattered wave field measured by assume that the noiseg at different receivers are statisti-
linear array ofn—o (solid line§ andn=50 (dashed lingsreceiv-  cally independent, normally distributed random variables
ers atk€ =10, 100, anck{—co. with powerN: (z,z;)=Né&,;. Before defining the informa-
tion capacity of such a communication channel, we first re-

variations ofH{ with ka are extremely weak. Exact analytic mind the definitions of theconditional differential entropy

result for H can be obtained in the limikt{—o by substi- [13]

tuting f(«) given by Eq.(8) into Eq.(6) and performing the

integration. We findH— —o for ka<w and H=ka/m h(yIX)=—f f p(x,y)logp(y[x)d"xd"y C)
+log[(7e/2)(m/ka)] for m<ka<2mw. At ka>2, H shows

only weak deviations from its maximum value log. andmutual informatiorbetween two random vectoxsandy

Let us now discuss the implication of Fig. 3 for experi- [13]:
mental measurements. In an experiment, the valueg,of
cannot be measured with an absolute accuracy.nfbit Z(x,y)=h(y)—h(y|x), (10)
guantization of Re, and Iy, with a quantization steph
~2~™is a common procedufi@3] and the measured quan- wherep(x,y) andp(y|x) are the joint and conditional prob-
tized y!, can take~A~2 discrete values. The vector ability density functions ok andy, respectively. In our case,
={y’} can therefore take-A~2" different values. One can y=Gx+z, and one find$1(y|x)=h(z) and
show that the entropy(y’) of y' is approximatelyh(y)
—2nlogA for A—0. The number of bits required on aver-
age to describe a given componemjtof the random vector
y' is thenH(y")/n~H(y)—2 logA. It can be now easily
seen that the smaller differential entropy ra#y) means Herel, is thenXn unit matrix and we assume thatis a
that less bits will be required in an experiment to record allcircularly symmetric complex Gaussian random vector with
the relevant information about the multiple-scattered wavea covariance matrixQ: Qisz[xix]*], where E[ - - -] de-
field. As follows from Fig. 3, at large receiver spaciag notes the averaging over all possible emitted sigmadsd
(ka>r), H is very close to its maximum value. At such a should be contrasted from the disorder averaging that we
large receiver spacing, the signals measured by different retenote by the angular brackets.
ceivers are only weakly correlated and hence each signal If we assume that the Green matii&is known at both
contains a relatively large amount of information. One theretransmitters and receivers, the Shanintformation capacity
fore needs a relatively large number of bits per receivelC (or simply capacity for brevity of the communication
H(y")/n to record the speckle pattegf(r) in this case. In  channel is found by maximizing the mutual informatici®)
contrast, at smak (ka<), H decreases, since the signals over all possible distributiong(x) of emitted signalx. The
measured by different receivers become significantly correfundamental importance df is that it gives the largest in-
lated and hence the information contained in each of thdéormation transfer rateR that can be realized for a given
signals on averagé](y’)/n, is smaller than ata> 7. If k¢ information channeln principle with infinitely small prob-
or n is finite, the value ofH at ka<w can be small but ability of error[12,13. Although no general procedure exists
remains finite. If, in contrast, we take the limitlof - and  to realizeR=C in practice, in many real situations one can
n—o, H——o at ka<s. This means that an infinitely achieve information transfer rates that are quite clos€ to
small amount of information is contained in the signal meaq{34]. Since the Gaussian distribution maximizes the differen-
sured by a given receiver and is a direct consequence of tht@l entropy h (and hence the mutual informatidf) at a
fact that in the absence of exponential damping of correlatiogiven Q (see Sec. Il and Ref.13]), maximizing Eq.(10)

. (1)

1
I(x,y)=logde{ln+ NG+QG
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over p(x) amounts to maximize E@11) overQ. In practice,
however,G is often known only at the receivers, but not at
the transmitters, where only statistical information al@us

PHYSICAL REVIEW &7, 036621 (2003

available. It is the case that we consider in the remaining part

of the paper. The optimaD is then the matrix maximizing
the averagemutual information(Z(x,y)). To accomplish the

averaging, we need to specify the statistical properties of the

Green matrixG. In the considered case of strong multiple
scattering, provided that the distaricbetween the arrays of

transmitters and receivers is much larger than the mean free

path¢ and thatké>1, G, is a circularly symmetric com-
plex Gaussian random variable with zero mean and covari-
ance given by the diagranib) of Fig. 2: (G,Gj)
=(I )KC,BK”, where K .5 is defined in Eq.(4) and (l)
=(|G,|?) is assumed to be independentw@fandi. In the
following we adopt the total emitted power constrainQTr
<n and introduce a normalized Green matrig
=G/((1)n)Y2. In the present paper we will only be inter-
ested in the average capacft®), although it should be kept
in mind thatC exhibits random fluctuations as disorder is
varied. As follows from the above reasoning, the averag

capacity is

whereS/N plays the role of the signal to noise ratio a8d

(C)=ma
Q

><<Iog de{lnwL ;Q*Qg (12

12 KiQ;
v (SIN)~ 24 gqu” 19
Kiu
¢:(S/N)’1’2+Kqu i=1...p, (16)
P
=i§1q (17)

In principle, the above equations are sufficient for the calcu-
lation of the average capacity at givee-1, S/N, andka. It
should be noted, however, that the total number of equations
is p+3 (with p that can be as large ag), and that the
equations are nonlinear. Hence, the numerical solution re-
quires considerable computational resources at largge-
sides, the interpretation of numerical results is known to be a
rather difficult task. Below we show that in the limit of
—o0, EQgs.(13)—(17) can be significantly simplified and even
that S|mpleanalyt|c expressions fofC) can be obtained in

ecertaln cases.

C. Average capacity atn— o

As we already mentioned in Sec. Il, the covariance matrix
K is Toeplitz and hence fon—o one can use the limit
theorems known for this class of matrid&@]. Of particular

=n(l) is the average power received by each receiver agise for us is the fundamental eigenvalue distribution theorem
suming independent signals from transmitters. When Eoof Szegothat states that iK is annxn Hermitian Toeplitz

(12) is applied to a real situation, it gives the maximum

matrix andF(x) is some continuous function theminder

amount of information that can be transferred through thecertain conditions fulfilled in our cage

considered communication channel per second using a uni
frequency bandwidth12,13. The units of{ C) are therefore
bits per second per Hertor bps/Hz for brevity.

B. Average capacity atn>1

For a small number of transmitters and receiversl,
the averaging and maximization ovérin Eq. (12) can be
carried out by a numerical simulatideee, e.g., Ref20] for
n=2 and Ref.[21] for n=2 and 3). At largen such an

approach becomes inadequate. It appears, however, that ana-
lytic methods can be applied to estimate the asymptotic be-

havior of capacity forn>1 (see Appendix A and Refs.
[16,31,19). In the limit of largen the capacity per receiver is
given by

<c> 12I

[(S/IN)~ 1/2+K,q|u]+ 2 log[ (S/N) 12

t-

2w
fim - EF(x.)— fo Flf(wlde, (19

n— oo

wheref(u) is the power spectral density defined in Eg).
We now admit that the right-hand sides of E§$3)—(15)

can be readily simplified using E{L8). After some algebra

this leads to the following set of equations for the auxiliary
variablesu andv:

1 2m S —-1/2 -1
u=s—- . f(M)[(ﬁ +vf(M)} du, (19
11 (2= S\ Y2y
U=——f 1—(—) du,
U2 Jo f(u)>(sIN)~ Y2 N f(u)
(20)

while the expressior{l3) for the average capacity per re-

ceiver becomes

+ kjv]—uv/In2+1og(S/N), (13
wherek; are the eigenvalues of the matix while the aux- (C) I f(u) q
iliary variablesu, v, andp=<n nonzero eigenvalueag of the N 270 f(u)>(SIN)~ 1/ZU v |
matrix Q are solutions of the following system of equations 1 2 g\ -1 S
(see Appendix A for derivations = = =
+2ﬂ_ log N +vf(w)|du+log N
1 n
-n >, S/N 1/2+ : (149 X o d - (21)
~ = _
=1 (SN K 47 )0 f(u)y<(IN)~ V2 72
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~ FIG. 4. Average information capacity per receiver of a commu- g1, 5. Average information capacity per receiver of a commu-
nication channel between two identical linear arraysiaqually  pication channel between two identical linear arraysafqually
spaced transmitters or receivers as a function of normalized receivghaced transmitters or receivers as a function of normalized receiver
spacing forkf —o~ andn—~ (solid line), n=100 (dashed ling spacing forn— andk¢— (solid line), k¢ =100 (dashed ling
andn=10 (dotted ling. The signal to noise ratio /N=100. The 504 k¢ =10 (dotted line. The signal to noise ratio i§/N=100.

inset is a zoom of the main plot. The inset is a zoom of the main plot.

where the integral in Eq20) and the first integral in EQ.  ¢qrresponding to finite andn— o remains satisfactory even
(21) are over the part of the interval (073 where f(x)  for n as small asi=10. The analytic results corresponding
>(SIN) M, while the last integral in Eq'21)7{/5 overthe 4 the limit of n—x can therefore serve as a reasonable
part of the same interval wherf(u)<(S/N) %. Once approximation in real situations with large but finite

f(u) is known, Egs.(19)—(21) allow one to calculate the

average capacity per receiveC)/n, in the limit n—oo. 2. Average capacity at+» % and finite k¢

Although k¢ is large in the experiments performed in the

] ) o ) diffusion regime[7,8,22,21, its value remains finite and it is

~ We first consider the limik¢ —ce. Although particularly  therefore of interest to consider its effect on the average ca-
simple reSL_lIts_ can be obtained in this case, we _W|II Sho"\bacity. At finite k¢ the power spectral densify x) is given
later that this limit can serve as a good approximation to reaﬂ)y Eq. (7) and Egs.(19—(21) can be solved only numeri-
situations with large but finite¢. If 0<ka<m, we find(see  cajly. The solution is, however, quite simplified by the fact
Appendix B that the result corresponding ké — o« is known analytically
(see Appendix Band can be used as a good starting point

1. Average capacity at s> and k€ — o

(C) ka |S=w1 b ) ! _
= og = — —|— —=, (22 for the numerical algorithm. The average capacity per re-
n m “|Nkag¢| In2 ceiver obtained from Eqg19)—(21) at k¢ =100 and 10 is
h shown in Fig. 5 by dashed and dotted lines, respectively. The
where solid line shows th&{ — o result, the same as in Fig. 4. As
ka 1 ka3 ST A2 follows from Fig. 5, at finitek¢ the capacity is somewhat
= | = 1+4_(_ - 1}. (23)  higher than ak{—co. This is explained by a lower degree of
7 2(8IN)\ 7 N\ka correlation between the entries of the Green ma@ixor

. . smallerk¢ [see Eq.(4)]. Also, the derivative of C) with
ﬁntal%tlc resull;[_s for(C)/n can also be t?]btalned te)kla> T respect toka exhibits no jumps aka=mz (m=1,2,...)
ut the resulting expressions are rathér CUMDErSome ang, .,y is finjte. In general, however, the average capacity

Iehngth% and we present _tthem in Ap_penc7|x B. Ian|g.t_4, Weis only slightly affected by the finiteness kf as long ak¢
show the average capacity per receif€y/n, as a function remains much larger than unity.

of normalized receiver spacinga/ = at a fixed signal to
noise ratioS/N=100. The solid line shows our analytic re-
sult, corresponding to the limih—o [Eg. (22) at 0<ka

< ar and more lengthy but analytic formulas given in Appen- It follows from Figs. 4 and 5 that as long &1 and

dix B at ka> ], while the dashed and dotted lines are ob-k¢>1, the average capacity per receiver is very close to its
tained by a numerical solution of Eq&l3)—(17) at finite  value forn—« andkf—o. We therefore limit the rest of
number of receiver; (n=100 and 10, respectivelyAs this section to the discussion of the latter limiting case, as-
follows from our analysis, &t{ —«~ andn—«, the deriva- suming that the behavior ¢iC)/n remains similar at finite
tive of (C) with respect toka exhibits a discontinuity at but largen andk¢. The typical behavior of the average ca-
ka=mm (m=1,2,...).Although the discontinuity disap- pacity per receiver shown in Figs. 4 and 5 can be summa-
pears at finiten, the overall agreement between the resultsrized as follows:(C)/n has its absolute minimum dta

D. Maximum capacity and optimal receiver spacing
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Optimal ka/m

Signal to noise ratio S/N

FIG. 6. Average capacity of a communication channel between FIG. 7. Normalized optimal receiver spacing, maximizing the

two identical linear arrays af transmitters or receivers, normalized
to its value atka=msr, is shown as a function of the normalized

information capacity, as a function of the signal to noise ratio. The
inset shows the maximum average information capacity per receiver

receiver spacing for five different values of the signal to noise ratio{C)./n. The dashed line i§C)/n at ka=mw (m=1,2,...),

S/N. We assumé{ —o andn—oo for this plot.

—0 while it reaches its maxima &a=m#w (m=1,2,...)
and becomes almost independentkaf for ka> . It ap-
pears, however, that such a behavior is typical onlyldage
signal to noise ratio§/N>(S/N)., where §&/N). is some
critical value of S/N that we define below. To study the
capacity as a function dfa at various values of/N, we
plot the capacity normalized to its value les=m in Fig.

6.

As follows from Fig. 6, at larges/N (S/N=10 andS/N
—o0) the behavior of capacity witkka is similar to that
shown in Figs. 4 and 5. Interestingly, in the lin8tN— o
we find a very simple result:C)/n=(ka/)log(SN) at ka
< and{C)/n=log(SN) atka>, i.e., the capacity grows
linearly with ka for ka<# and then remains constant for
ka> . At finite but largeS/N the behavior of capacity is
less simple but is qualitatively very similaC)/n first
shows a monotonic increase wilta for ka<s and then
oscillates weakly wittka for ka> 7 (see also Figs. 4 and.5
As we noted above, such a behavior is typical only $6x
>(SIN).. At smaller values of the signal to noise ratio,
(C)/n exhibits a nonmonotonic behavior witka for ka
<. More precisely, it reaches a maximum at soke
<, as can be seen from Fig. 6 f8fN=0.05, 0.1, and 1.
We call the value oka maximizing the average information
capacityoptimal and denote it by Ka),,. In addition, we
define themaximumcapacity(C) ., as the capacity maxi-
mized overka:

(CYma= ma>ma>< log de[ I+ ;g Qg > . (29

ka Q

It follows from Eq. (22) that (ka)op; and(C)max depend on
the signal to noise rati® N in a very simple way:

A1VSIN, SIN<(SIN).

S/IN>(S/N)., 9

(ka) opt— |

mar,

coinciding with (C)ma/n for SIN>(S/N).~=3.35 but smaller than
the latter for SSN<(S/N).. The vertical dotted line isS/N
=(SI/N).

(Chmax | A2VSIN, SIN<(SIN),
N 1ol (S/N)/ dmad — dmad N2, SIN>(SIN),,
(26)

where G/N).=3.35,A;=1.72 andA,=0.92 are numerical
constants, and

1
Pmax=1— ZS/N(\/1+4S/N_1)- (27)

The normalized optimal receiver spacingg o is shown
in Fig. 7, while the maximum capacitC) .y is shown, in
the inset. For comparison, we also show the capacity corre-
sponding toka=msr (the dashed line in the inset of Fig) 7
which coincides with the maximum capacity fds/N
> (SIN). but is smaller than the latter & N<(S/N).. It is
interesting to note that aka=ms the average capacity
scales linearly withS/N for S'IN— 0, while the average ca-
pacity maximized oveka is proportional to the square root
of S/N in the same limit. Hence, the latter can exceed the
former significantly for small signal to noise ratios.

Qualitatively different behavior of the average capacity at
small and large signal to noise ratios, illustrated in Figs. 6
and 7, can be understood without any lengthy calculations.
We first remind that aka< s, according to Eq(4), smaller
ka means stronger correlation between the Green functions
G,i- Next, we map the quite complicated communication
channel shown in Fig. 1 onto an equivalent senofinde-
pendent communication channels, the capacity of each
equivalent channel being log(1+S'/N’), whereS" andN’
denote the signal and noise powers in each’ahdependent
channels. Obviously, the numbef of equivalent indepen-
dent channels grows with decreasing the correlations be-
tween the entries of the Green matéx Consequently, since
the total capacity isn’log(1+S'/N’), it seems that having
zero correlationgand hencé&ka=mar) should always maxi-
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mize the capacity because it ensures the largestThis  achieved atkka=mz (m=1,2,...). If SIN<(S/N)., the

reasoning, however, is not correct, since the signal p&ber pehavior of the average capacity per receif@)/n is not
is also sensitive to the correlations between the entries of the, ;notonic for Ocka<s and an absolute maximum of

Green matrixG. Indeed, partially correlated Green functions
G,i lead to a constructive interference of scattered waves
the receivers, thus increasing the power of the received si%
nal, while the noise poweN’ remains unchanged. There-
fore, when changing the receiver spaciag from 0 to r,

C)/n is reached at somka<w. We define the maximum
verage capacityC).x as the average capacity maximized
ver the receiver spacing and the normalized optimal re-
ceiver spacingKa) ., as the spacing maximizing the average

one gradually switches from a small number of e uivalentcapadty' BOth(C)max/n and ka)op are proportionql to
indep?endent)::hannetd with relatively large signal t(gnoise (SIN)¥2 for SIN<(S/N)c. At SIN>(SIN);, we find
ratio S'/N’ to a larger number of equivalent independent(K&)op=Mm and(C)ma,/N<log(SN). o
channelsn’ with weakerS'/N’. If S'/N’ is large (which is To conclud_e, let us illustrate the appllcatl_o_n of the theo-
only possible ifS/N is large, the capacity of each indepen- retical analysis developed above on a specific example. As-
dent channel log®S/N')~log(S/N’) depends onS'/N’  Sume that one wishes to establish a wireless microweare
only logarithmically, while the dependence of the total ca-fier frequencyr~2 GHz) communication link between two
pacity onn’ is linear. To achieve the maximum capacity onelocations separated by a distanceof several hundreds of
therefore needs to choose the largestn/.., (which corre- ~ meters (say, L=500 m) in an urban environmenity)
sponds toka=mm), the decrease of capacity of each where the waves are multiply scattered by numerous build-
equivalent channel being negligible due to its wélaiarith-  ings. The simplest choice is to install a single antenna at each
mic) dependence on the signal to noise ratio. In contrast, ibf two locations =1 using our notation If a high signal to
S’'/N’ is small(which corresponds to sme#N), the capac- noise ratio(say, SSN=100) can be obtained on the receiver
ity of each equivalent channel log{5'/N")~S/N’ depends (thanks to a powerful transmitbethe maximum average rate
linearly on the signal to noise ratio. In this case, the maxi-of error-free information transfe(i.e., average capacityof
mum capacity is achieved by choosing some optimal numbethe resulting communication channel will tieee Eq.(12)
of independent equivalent channet$é<n/,, (and hence with G being scalar or Ref.20]) ~5.9 bits per second and
some optimal value oka< ), which is large enough, but per Hertz of the available bandwidthv. To be specific, let
less thamy,,, to ensure a reasonable valueSfN’ in each  us assume »=30 kHz as in Ref[26], yielding the average
of n" equivalent channels. This explains the origin of thecapacity(C)~180 kbps. There are not much ways to in-
optimal receiver spacing and its behavior shown in Fig. 7. crease this number: using larger bandwidth is too expensive
[17], while increasing the transmitter power is not only ex-
pensive but also does not yield much gain siq€ is
IV. CONCLUSION roughly logarithmic inS/N: increasingS/N by an order of

In the present paper, we study the information content of’@gnitude(i.e., from 100 to 100pwill increase(C) by less
coherent multiple-scattered wave fields in disordered medifan a factor of 2. A reasonable way to increq€s is then
and the capacity of multiple-scattered waves to transfer thé€0 use multiple antennas on both transmitting and receiving
information through a disordered medium. We show that theénds of the channel. For the same total transmitted power,
information-theoretic quantities, such as the differential eni=10 antennas arranged in a line and separated=bj/2
tropy h of the multiple-scattered wave field and the informa-~8 cm will yield (C)~1.6 Mbps[see Eq(22) and Figs. 4,
tion capacityC of a communication channel in a disordered 5], which is an order of magnitude higher than the value,
medium, are directly related to the mesoscopic correlationsorresponding tmm=1. Note that such a gain in capacity is
between the scattered waves. Mesoscopic correlations reduneade possible by multiple scattering of microwaves on their
the information content of the coherent, multiple-scatteredvay from transmitters to receivers. In the absence of scatter-
wave field in a disordered medium, leading to a smaller numing, all receivers would measure essentially the same signals,
ber of bits required to store all the relevant information abousince the small aperturd=(n—1)Xx(\/2)~70 cm of the
it. To consider the transfer of information by multiple- receiving array is much smaller thanl()*?~9 m, and
scattered waves, we limit ourselves to the case of communhence the array cannot resolve different transmitting anten-
cation between two identical linear arrays of equally  nas(Fresnel limi}. Therefore, increasing would only in-
spaced transmitters or receivereceiver spacing). The  crease the total received power, leading to a roughly loga-
average information capacityC) of such a communication rithmic increase ofC with n. In the case of low signal to
channel is shown to scale linearly with analytic expres- noise ratio(e.g., SN=0.1), we obtain[see Egs(12) and
sions for (C)/n are obtained in the limih—c~ and k¢ (22)] (C)~4 kbps in then=1 case and a ten times larger
— oo, For finite but large values of andk¢ the capacity per capacity(C)~40 kbps in the case ofi=10 anda=A/2.
receiver(C)/n is somewhat greater than at>o, kf —, Optimizing a using Eq.(25) shows that one can double the
but the latter limiting case proves to be a fairly good approxi-latter result for{C) by choosinga=0.1\ instead ofa=\/2
mation as long ag>1 andk{>1. Our analysis shows that (see also Figs. 6 and).7The resulting channel capacity is
if the signal to noise raticS/N exceeds the critical value roughly 20 times higher than in the casenst 1, illustrating
(S/N)=3.35,(C)/n grows monotonically witta as long as  the utility of the theoretical analysis presented in this paper
ka<w and then oscillates slightly below its maximum value in the context of practical applications.
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We now perform the integrals ovetandY in Eq. (A3) and
APPENDIX A: AVERAGE CAPACITY AT n>1 are left with

In this appendix, we follow Ref§16,19 to calculate the
average capacityC) in the largen limit. The idea of the F(V)I(S/N)nyf du(U)du(V)exg —Indef(SIN)~ 12
calculation stems from the fact that the moment generating
function of the random variable C=Indefl, +AU]—Indef(S/N) Y2+ BV]+n Tr(UV)},
+(SIN)G*QG], F()=(exp(-¥C)), writes F(y)=exp (A5)
(—y(C)) in the limit of y—0%. We start therefore by a
calculation ofF(y), keeping in mind that taking the limit whereAU andBYV are the outer products of matrices.
y—0" will allow us to obtain the average capaci{Z) Introducing the eigenvalueg and »; of the matricesA
=(C)/In2. We admit that  F(y)=([detl, andB, respectively, we can rewrite the exponent in Eb)
+(S/IN)GTQG)]™ ), and that for integey we can represent as
[dell,+(SIN)G"QG)]"” as

(el 4 (SN)G OG- 21 {Indef(S/N) Y2+ &U]+Indef (S/N) 2+ 7, V]}

1 —nTr(UV). (AB)
=(S/N)'Wf du(x,v)exp[ — —(SIN)~ %2
2 In the limit n—o the integrations in Eq(A5) can be per-
formed using the saddle point method. Assuming that the
x 2 (XEX 4 YEY ) — E replica symmetry is not broken at the saddle point, we have
m= m m U=ul, andV=uvl, with | , the yX y unit matrix. Equation
(A6) then becomes

Y
x> (Y;g'xm—xag’wmﬁ, (A1) n
m=1 yi; {In[(S/IN) ™ Y2+ £u]+In[(SIN) " Y2+ v ]} — ynuo.

where G’ =QY%G and we introduce 2 auxiliary complex (A7)

vectorsX,, andY,, (m=1, ... ,y), the procedure known as At the saddle point the partial derivatives of H&7) with

the * repl|ca trick,” and du(X,Y) is the appropriate integra- respect tou andv should be zero. This yields the following
tion measure. We now average E41) over disorder, inter-  equations foru andu:

changing the order of averaging and integration on the right-

hand side of the equation: 1" 7,
=52 (YN Y2 (A8)
) Ni=1 (SIN)" "+ pv
1
FO=(SIN)™ [ duOxY)exg 5 (SIN) 23 (XiXe n
2 m=1 1 g
D R T (A9)

= (SIN) g

+Y Y ) - x Z (Y LAY X, BXm) |, (A2)

Relaxing the condition of integey, we take the limity
—07 and put Eq(A5) in the formF(y) =exp(—¥C)) with

where(G ;G ;7 )=(1n)A,zBj; . The last term in Eq(A2) n
precludes the direct integration ovérandY. We can, how- <C>=2 {In[(SIN) Y2+ &ul+In[(SIN) " Y2+ pv]}—nuw
ever, reduce it to a sum of quadratic terms by defining =1
Xy complex matrices) andV and introducing integrations +niIn(SIN). (A10)
along appropriate contours in the complex plane:
The variance of capacity can also be found in a similar way
1 (see Ref[19] for detaily, but we do not consider it here.
F(y)=(S/N)”7f d,u(X,Y)dM(U)d,u(V)ex;{—58), Changing variables back frong’' to G we see thatA
a3 QYKQY? andB=K yielding &= k;q; and 7;= «; with ;
andq; the eigenvalues of the matricsandQ, respectively.

Equationg A8)—(A10) then reduce to Eq$13)—(15) of Sec.
where 1.
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To maximize the average capaci{t¢) over the ensemble
of covariance matrice®, we consider an infinitesimal varia-
tion Q of the maximizing matrixQ and require5{C)=<0.
This leads to Trp 6Q) <0, where

D=(g[1,+(SIN)G"QG] G ™). (Al1)

The allowed variation$Q of the covariance matrix should

keepQ+ 6Q positive definite and should not change the to-

tal emitted power: T6Q=0. If all eigenvalues o) are posi-
tive, the same is true fdD + 5Q (provided thatsQ is smal),
and Tr@@®8Q)=0 is achieved by®=¢l,,, where ¢ is a

scalar: TrP 6Q)= ¢Tré6Q=0. This can be also shown to

remain true if some eigenvalues @f are zero[19]. It then
follows from Eq.(A11) that forp nonzero eigenvalues; of
the matrixQ one has Eq(16) of Sec. IlIl. Finally, Eq.(17) is
simply the total emitted power constraint@+ n.

APPENDIX B: AVERAGE CAPACITY AT n—o®
AND k{— o0

In this appendix, we derive analytic expressions for th

average information capacity in the limit of—o~ and k¢
—o. We consider separately the cases ofka<w, 7
<ka<2, and 2r<ka<3w. At ka>3 calculations can
be performed in a similar way.

1. O<ka<m

If 0<ka<, the power spectral density takes a particu-

larly simple form[see Eq.(8)]: f(u)=/(ka) for O<pu
<ka or 2m—ka<u<2m, while f(u)=0 for ka<u<2m
—ka. Integrations in Eqs(19) and (20) can now be easily
performed, sincef(u)>(S/IN) Y% at O<u<ka or 27
—ka<wp<27 and f(u)=0<(SIN) Y% at ka<u<2w
—ka. This yields

S —-1/2 T -1
u= (N +UE& , (B1)
ka1 ka (S| Y2
U_?G —?U N . (BZ)

We now solve these equations with respectito and sub-
stitute the solution into Eq.21), where, again, the integra-
tions are readily performed. This gives

<c>_kaI Sw1] ¢ 53
7 9Nkagl 2 (B3)

where
_ka 1 [ka)\® 4S m\? | s
R CIE AR R e e

which are Eqs(22) and(23) of Sec. Ill.
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2. w<ka<2mw

In this case,f(n)=/(ka) for O<u<2mw—Kka or ka
<wpu<27 and f(u)=2w/(ka) for 2m—ka<u<ka. We
now should distinguish two case& S/N>(S/N); and(b)
SIN<(S/N),, where

tE

In the casda), f(u)>(S/N) Y% for all ue(0,27) and
Eqgs.(19), (20) become

ka

w

3—ka/m

2[ J(ka/ 7)[ 26— 7(ka/7-r)]—15_1

(B5)

2—ka/m ka/m—1
u= + ,
v+(SIN) Y%kalm v+(SIN) Ykal/(2)
(B6)
1 ka (S| ? 2 ka 57
v=ultT RN U3 B7

eThe values ofu andv found from the two above equations

are to be substituted into ER1) that reduces to

(C) ) kaI T 1 u ka 1
T w Yk g ka| |l
x| 2w 1 +277' UU+I S
i@ ,gny? ka|| in2 O

(B8)

In the caseb), f(u)>(S/N) Y% only for 2mr—ka<pu
<ka. Equation(B6) remains the same, while Eq87) and
(B8) become

_1(ka A S\ 12 ka 89

ulm TN v B9
(C) ) kaI S\"¥q/s\"¥2 g ka L
P T N Vi) Tl E T

1 2
—+_
U(S/N)llz ka

wlogl 27 Y g, (B10
og Ya ﬁ‘f‘ ogﬁ. (B10)
3. 2n<ka<3mw

We proceed as in the two previous sectiorfgu)
=3/ (ka) for 0<u<ka—2m or 4m—ka<u<2m, while

f(u)=2n/(ka) for ka—2m<u<4m—ka. If S/N
>(S/N), [case(a)], where
(§) - (ka/m)qkal(2m)—1]
N/, (ka/m)(32—5ka/m)—35+5—ka/m
(B11)

f(u)>(SIN) Y% for all u e (0,27) and Eqs(19)—(21) re-
duce to
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B 3(kalm—2) 3—kalw
3v+(SIN) Ykalm v+ (SIN) Y%kal/(27)
(B12)
1 ka[S|* 5_ka 813
=t emin) VST B
(C) [ka 5|, 37 1 +37T <3 ka
n |7 ng_aU(S/—N)l/Z ka o
o 2 1 21 uv | S
“9 @y ka|| in2 O
(B14)
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If SIN<(SIN), [case(b)], f(u)>(SIN) Y% for 0<u
<ka—2m or 4m—ka<u<2w only and we have instead of
Egs.(B13) and(B14)

2[ka L ka[S\ Y2 [ka L B1s
"ulze YaRlN) vlzp Tt B9
(C) [ka 5|, 37 1 37 3 ka
ol w )Y al y Ny kal| T
wlog| (SIN)~12 (/N 124 2T, || U +Iog—
ka’l[ " In2
(B16)
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