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Angular momentum dynamics of a paraxial beam in a uniaxial crystal
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The conservation law governing the dynamics of the radiation angular momentum component along the
optical axis g axis) of a uniaxial crystal is derived from Maxwell's equations; the existence of this law is
physically related to the rotational invariance of the crystal around the optical axis. Specializing the obtained
general expression for tlecomponent of the angular momentum flux to the case of a paraxial beam propa-
gating along the optical axis, we find that the expression is the same as the corresponding one for a paraxial
beam propagating in an isotropic medium of refractive indgx(ordinary refractive index of the crysjal
besides, we show that the flux is conserved during propagation and that it decomposes into the sum of an
intrinsic and an orbital contribution. Investigating their dynamics we demonstrate that they are coupled and,
during propagation, an exchange between them exists. This exchange asymptotically exhibits a saturation
process leading, faz— <o, the intrinsic part to vanish and the orbital one equates the total amount of angular
momentum flux. As an example, the evolution of the intrinsic and the orbital contributions to the flux is
investigated in the case of circularly polarized beams. Besides, the radiation angular momentum stored in the
crystal is also investigated, in the paraxial regime, showing that it is simply given by the product of the total
angular momentum flux by the time the radiation takes in passing through the crystal.
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I. INTRODUCTION mogeneity and isotropy of the space, respectively. In the
frame of electrodynamics of continuous media, the difficul-
Among the physical properties of the electromagneticties arise when we try to express each conserved quantity as
field, probably the most relevant ones are that it carries enthe sum of two contributions, one due to the matter and
ergy, linear momentum, and angular momentum; generallwnother due to the radiation, resulting in a substantial ambi-
speaking, these are the very features allowing us to regarguity in the definition of each quantity. As an example, fol-
the electromagnetic field as a physical reality, and not as bwing the standard Minkowski approach, one obtains an
merely mathematical machinery set up to describe the interexpression for the Maxwell stress tensor which, for aniso-
action among charges. The investigation of the electromagropic media, is not symmetric; this generates serious diffi-
netic energy and momentum has played an important roleulties about the definition of the angular momentum density
since the early development of the electromagnetic theorgnd flux. A way of escaping from these shortcomings con-
[1-3]; besides, quantum mechanics has furnished a more exists in resorting to a more refined treatment of the interac-
citing picture, associating at each photon an endrgy a  tion between matter and radiation based on a statistical-
linear momentunt:k, and an angular momentum# (de-  mechanical approad®].
pending on its state of polarizatibf4]. Notwithstanding the difficulty of defining what is meant
The investigation of energy and momentum is simple forwith angular momentum of the light propagating in an aniso-
an electromagnetic field propagating in vacuum. On the contropic medium, the investigation of its behavior is expected
trary, the problem of deriving the conservation laws for en-to be very interesting. In fact the angular momentum of ra-
ergy, linear and angular momentum associated with a field inliation generally has an intrinsic pair spin, associated
a material medium is a subtle one and it has been largelwith the polarization, and an orbital one associated with the
investigated[5]. If we consider the isolated system com- spatial distribution{7]. When propagating in vacuuior in
posed of matter and radiation, it is evident that the totalan isotropic mediumthe light does not suffer a change in its
energy, momentum, and angular momentum are conservesblarization state, so that its intrinsic angular momentum is
quantities, because of the homogeneity of the time, the hosonstant; therefore, in spite of diffraction, the orbital part is
also constant because the total angular momentum is a con-
served quantity. On the other hand, one of the peculiarities of
*Electronic address: ciattoni@fis.uniroma3.it anisotropic media is the change of the state of polarization of
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the light, so that we expect the radiation intrinsic angulartributions change during the beam propagation, their sum
momentum to undergo an evolution. Besides, we expect alsemaining constant. This implies that the polarization-
a nontrivial dynamics in the orbital part, because of the coudiffraction dynamics of the beam in the crystal yields to an
pling between polarization dynamics and diffraction in an-exchange of angular momentum between the intrinsic and
isotropic media. orbital contributions. Investigating the asymptotics of this
This behavior strongly encourages us to investigate thé€xchange, we show that, for any beam, the intrinsic part
angular momentum of radiation in anisotropic media. Nevervanishes at infinity while the orbital part equates the total
theless, if one does not want to overcomplicate the probler@Ngular momentum flux. ,
(for example, resorting to statistical mechapjdsis essen- I order to test our predictions, we consider the case of
tial to consider a medium exhibiting a rotational invariancecircularly polarized beams, recently investigafd®]. This
around some directions. In fact, it is well known that the ¢lass of beams is particularly suitable for our purposes as we
conservation of the component of the angular momentun{€monstrate that their intrinsic part of the angular momen-
along a direction is intimately related to the rotational invari- tum fluxis simply proportional to the difference between the
ance of the system around the same direction. This implie§nergies of the left-hand and the right-hand circular compo-
that, if the medium is rotationally invariant around thaxis, ~ "ent. Besides, in the case of an input left-hand circularly
the z component of its angular momentum is conserved s@°larized Gaussian beam, we analytically find that the satu-
that it cannot be coupled with thecomponent of the light ration of. the exchangg betwegn the intrinsic and the orbital
angular momentum; this absence of coupling establishes RA"t exhibits a Lorentzian profile. ,
clear distinction between the matter and radiation contribu- 1he beam angular momentum stored in the volume of the
tions, so that we expect to be able to precisely definezthe crystal is also considered and we find that it amounts to the
component of the radiation angular momentum. The onl)mtal angula_r momentum flown through the_ entrance facet of
anisotropic media possessing a rotational symmetry ard'€ crystal in a time equal to that an ordinary plane wave
uniaxial crystals and the rotational invariance is around thda@kes to cover the crystal length.
optical axis, so that we are led to investigate the dynamics of
the component of the light angular momentum along the op- |l. RADIATION ANGULAR MOMENTUM ALONG THE
tical axis. OPTICAL AXIS
In the present paper we derive, from macroscopic Max-
well's equations, a balance equation governing the conserva.,
tion of thez component of the angular momentum of radia-

Let us consider an arbitrary monochromatic electromag-
tic field propagating in a uniaxial crystal,

tion propagating in a uniaxial crystal, whose optical axis E(r,t)=RdE,(r)e '],
coincides with thez axis. The angular momentum density

coincides with the classical one derived by Minkowski, D(r,t)=eqe,E(1,1),
while we furnish a different expression for the flux of angu-

lar momentum. The treatment is fully electromagnetic with B(r,t)=RgB,(r)e '“],

no approximations. Specializing to a situation closer to op-

tics, we consider the case of paraxial light beams propagat- 1

ing along the optical axis, whose behavior has been recently H(r,t)=—B(r.t), (1)
studied[8]. The investigation of the angular momentum of #o

paraxial beams propagating in vacuum is a subject which haghereE, D, B, andH are the electric, the electric displace-
attracted much research interest recently. In fact, it has beafjent, the magnetic induction, and the magnetic field, respec-
demonstrated by Alleret al. [9,10] that paraxial Laguerre- tively, E, and B, are the electric and magnetic complex
Gaussian beamll] carry a well-defined angular momen- gmplitudes,s, and u, are the dielectric and permittivity

tum. The expressions for the intrinsic and orbital parts of thg;acuum constants, respectively, whig is the relative di-
angular momentum of a paraxial beam in vacuum have beegiectric tensor given by

derived by van Enk and Nienhuj42].

Particularizing our general expression for the angular mo- nf) 0 O
mentum flux to the case of a paraxial beam, we find that the 2
flux is the same at every transverse section of the beam; e= 0 nm 0, )
besides, we show that the expressions for the intrinsic and 0O O ng

orbital parts are the same as those pertinent to a beam propa-

gating in an isotropic medium of refractive index, (the n, and n, being the ordinary and extraordinary refractive
ordinary refractive inde This correspondence is physically indices respectively, for the frequenay, note that the ref-
related to the very structure of the paraxial field and to theerence frame has been chosen so that the optical axis of the
rotational invariance of the medium around the optical axiscrystal coincides with the axis. In the present approach we

In spite of this formal similarity between the isotropic and neglect the absorbtion, so thag and n, are real numbers,

the anisotropic case, we show that the evolution in the crystallowing the second of Eq$1) to hold.

of the intrinsic and the orbital part of the angular momentum The first step of our analysis consists in obtaining, from
is fundamentally different from the corresponding isotropicMaxwell’s equations, the proper expression for the compo-
one. In particular we show that the intrinsic and orbital con-nent along the optical axis of the angular momentum of the
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field and its flux. Let us start by considering an arbitrarywhereT is the well-known Maxwell stress tensor, given by
volume 7, inside the crystal, filled by charges, described by a

volume densityp and current density. Because of the in- B 1 1 1
teraction with the electromagnetic field, the charges experi- Vi = €oEileE);+ M_OB‘BJ_ | ok aEF M_OB' B3,
ence a total mechanical torqi# given by[14] (8

the indices andj running over the numbersx, 2=y, and

3=z and ¢§;; being the Kronecker delta function; the diver-
gence of the tensor is defined as a vector whose components
Following the standard procedure, we manipulate Bgby  are given by ¥ -T);=4;T;; where the convention of sum-

M:fdrrx(pE+J><B). (3)

employing Maxwell’s equations ming over the repeated indices has been used. Note that
V-D=p, 0 0 —E4
V-B=0 T-T'=€y(n;—n3)E,l 0 0 —Ey, 9
' Ex E, O
VXE=— ﬁ, where the superscriitindicates the transposition operation.
ot Equation(9) shows that the tensoF is not symmetric be-
causen,# n., that is to say because of the anisotropy of the
V><H—J+Q' " medium. The RHS of Eq(5) is the volume integral of the
B at’ vectorr X V- T which can be rewritten as
substitutingp andJ from the inhomogeneous equatidiise rXv.-T=V.F+g, (10

first and the fourth of Eq94)] into Eq. (3) and rearranging .
the obtained expression by means of the homogenous equ&here the tensofF and the vectog are defined by

tions[the second and the third of Eqgl)], we get
Fij = EimnXanj )

d
M+mfrdrrX(DxB):derr><(EV.D—D><V><E) 9i= €imnTimns (11)

and €, is the completely antisymmetric tensor of rank 3
+ f drr X(HV-B—BXV XH). (Levi-Civita symbo). Inserting Eqs(6) and(10) into Eq.(5)
T and exploiting the Green’s theorem to transform the volume
(5 integral into a surface one, we obtain

Since the mechanical torqué is equal to the rate of varia- d -

tion of the angular momentuni, of the charges NI &(LC’LLf):J’ZdS Fn+JTdrg, (12)
=dL./dt), we are tempted to read E¢5) as a balance

equation for the total angular momentum and to interpret the, , .o —

quantity Et nyéy+ n,e, is the unit vector pointing out-

ward from the surface. Equatigqii2) can be interpreted as
the balance equation for the angular momentum only if the
L¢= f drr X (DXB) (6)  volume integral of the vectay vanishes. In this perspective,
4 it is crucial to inspect the explicit expression gfwhich,

o from the second of Eq€11) and Eq.(8), is given by
as the angular momentum of the electromagnetic field stored

in the volumer. However, this is possiblg andonly if the Ty Tay —E,
right-hand sidg RHS) of Eq. (5) can be transformed into a I

surface integral over the bounda¥y= 9+ enclosing the vol- 9=| ~ Tt Tax| =eo(ng—n)E,| Ex |. (13
ume 7; only in this case Eq(5) would equate the rate of Tuy= Tyx 0

increasing of the total angular momentlrsL .+ L ; stored

in the volumer to the flux of incoming angular momentum This expression shows thgtin general, does not vanish and
through the surfac&. It is a well-known fact that for linear this is a consequence of the fact that the stress téhisonot
isotropic media, the RHS of Ed5) can be expressed as a symmetric or, equivalently, that the medium we are consid-
surface integral, but, for the case of linear anisotropic medi&ring is anisotropic. Therefore E(L2) does not allow us to

we are investigating, the situation is more involved. interpretL¢ and the surface integral as the angular momen-
Taking Eqgs.(1) into account and exploiting the symmetry tum and the flux of angular momentum, respectively, since
of the tensor, , it is straightforward to prove that there is an additional uninterpreted contribution in the bal-

ance equation. However, tlrecomponent ofgy vanishes be-
EV.-D-DXVXE+HV-B-BXVXH=V-T, (7) causerT,, =T, as a consequence of the rotational invariance
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around thez axis of the crystal. Therefore, if we consider dLs, ) )
only thez component of Eq(12), we obtain at Z—J d UFzz(M,OIHJ dr FaAry,zo,1),

d (15

gt (et L) LdS(FZXnXJFFzynyJF P, (19 wherer | =xe,+ye,, dr, =dxdy, and the integrals are ex-

tended over the whole transverse planes; note that we have

which is an expression exhibiting the desired structureneglected the contributions to the integral coming from the

therefore we are allowed to interpret the scdlgy as thez  surface at infinity since the paraxial beam is always a trans-

component of the angular momentum of the radiation storegerse localized entity and it rapidly vanishes for | —oe.

in the volumer and the surface integral in the RHS of Eq. The field we are investigating is monochromatic so that,

(14) as the flux of angular momentum incoming through therather than considering the instantaneous value of the flux of

boundarys.. angular momentum it is more convenient to investigate the
The obtained result deserves some discussion. At a firgforrespondent time average. In this perspective, we take the

glance, it can appear strange that we were easily able tme average of Eq15), that is to say,

tackle thez component of the angular momentum and, on the

contrary, not able to give a complete description ofttend dLs, 5 5

they components. The origin of this difference is intimately \ —57 /= _f d H<Fzz(fm0,t)>+J' dor (FzAry ,20,1),

related to the rotational invariance around thaxis of the (16)

uniaxial crystal. Propagating through the medium, the elec-

tromagnetic field exchanges angular momentum not onlyvhere the time averagéd) of any quantityf (t) is defined as

with the charges but also with the crystal. The charges

contribution to the angular momentum lis by definition, 1 (mke2

but it is not simple to properly distinguish the contribution of (fy= T_f : /zdtf(t) 17

the crystal from that one of the electromagnetic field, a task 4=

requiring more refined methods based, for example, on

statistical-mechanical approach to the interaction betwee

matter and radiation. The consequence of this difficulty is th

appearance of the volume integral of the vegtam the RHS

of Eq. (12). Therefore, in general, we are not able to give a

correct definition of the angular momentum of the radiation dd(2)

only within the frame of electrodynamics of macroscopic =0,

media. However, the situation we are analyzing is particular dz

in the sense that the crystal we are considering shows a ro- i

tational symmetry around the optical axis. It is well known Where we defined

that the existence of a rotational symmetry around a direction

is related to the conservation of the projectic_m of the an_gu_lar PB(z)= _f d2r, (F,Ar, ,z.0)). (19)

momentum of the system along the same direction. This im-

plies that the angular momentum of the crystal alarig a ) ) _

conserved quantity not mixing with the angular momentum®(2) has the physical meaning of the time-averaged flux of

of the light; the rotational invariance around thexis de- ~ thezcomponent of the angular momentum of the beam flow-

couples the contribution of the crystal and that of the field,ng through any fixedz plane from left to right. Equation

allowing us to correctly distinguish them. (18) expresses the conservation of theomponent of the

angular momentum. Note that the presence of the minus sign

I ANGULAR MOMENTUM FLUX OF APARAXIAL '3 SIS0 2o 2 o0 teoe 0 of angular

OPAG G ALONG OPTIC S momentum flowing from right to left, while we find more

The situation investigated in the above section is valid forfamiliar to think that the beam propagates from left to right.

any monochromatic electromagnetic field propagating in a To go further, we have now to compute the time average

uniaxial crystal. In this section, we want to apply the generakF .2,

treatment to the particular case of a paraxial beam propagat- L

ing along the optical axis of the crystal; let us now specialize 2

Eq. (14) to this case. The standard situation in optics is that (Fad =(=yTotxTyp) = —y( goNe(ExE) + %<BXBZ>>

of light traveling in a medium without charges; this implies

that we can sek.,=0. Besides, since the beam propagates

along thez axis, we are interested in the total amount of the

z component of the angular momentum of beam flowing

through any plane=z,; therefore we choose the volume where use has been made of the first of E§$) and of Eq.

to be the stripe 8.z<z,. With these prescriptions, E¢L4) (8). The time average of the product of two monochromatic

becomes fields is easily given by the half of the real part of the prod-

4nd T, is an integration time much greater than the period
B7lw of the radiation. Since the time average of a time
%erivative vanishes, we get, from E@.6) and from the ar-
bitrariness ofz,, the relation

(18

1
+x| gonX(EyE,) + M_o<ByBZ>) : (20)
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uct between the complex amplitude of one of them and the Kon 1 GAY  GAR
conjugate of the complex amplitude of the other; therefore (Fap=—— 2 Re{_—(—yAer xAy)( o +—y)
Eq. (20) becomes 20 LI ox dy
! +i(yAy+XA (—aA; i 26
(F2)= 5RE 002~ Y Byt XEoy) EL,] YA oy )| (@8

Note that this expression relates, the average density current
' (21) of z component of the angular momentum of the beam only
to its slowly varying amplitudeA, . Substituting Eq.(26)
where E,, and B, are the electric and magnetic complex into Eq.(19) we obtain, after some manipulatiofsee Sec. 1
amplitudes defined in Eqél). Using Maxwell’s equations of  Of the Appendiy,
Egs. (4) (where we sep=0 andJ=0) and Egs.(1), it is
easy to prove that

1 1
+ ER%%(_wax'FXBwy)BZZ

— 8oC|. 2 * *
@(z)—noz | dr (AAY —ALA)

i

1 (aEwy B awa)

wZ

1 d d 1
X ay +i—f dzrlAf(x@—ya—X A+ i—J d’r A
i JB JB J J
E..= vl ‘"X)- 22) x( . —)A . 2
‘ wso,uong( X ay ( X(?y yr?X y @7

Inserting Eqs(22) into Eq. (21) we succeed in eliminating This equation constitutes one of the main results of the
the longitudinal components of the electromagnetic fieldpresent paper. It is interesting to note that this expression

thus obtaining coincides with that one valid for a paraxial beam propagating
in a homogeneous isotropic medium with refractive indgx
1 dBy, By [7,12]. The physical interpretation of this intriguing coinci-
(Fzp= Zw,uoR i_(_ywa+XEwy) X  ay dence is related to the very structure of a paraxial field and,
again, to the rotational invariance around theaxis. A
1 i aEfoy IEX, paraxial beam propagating in an isotropic medium can be
+2wMoR H(=YBuxtXBuy)| 7~ ~ oy || thought of as a superposition of plane waves whose wave

vectors slightly differ from the main one that gives the main
(23 direction of propagation, say tteaxis. This implies that the
beam can be expressed Bs=exp(kon2A, wheren is the
flfractive index and | is a slowly varying amplitude; the
field is then a plane wave carrier modulated by an envelope.

A paraxial beam propagating in a uniaxial crystal is also a

thezaxig), for which the tr_ansverse size is much greater t.harguperposition of plane waves whose wave vectors are nearly
the wavelength. These kind of fields have been extensivel o A .
tv)arallel to a main direction, say but, due to the existence of

:er}\e/f:tsrtilg?iteelg[gé?bel aexir;gstsr;% [;gmplex amplitude of the two different ki_nds o_f plane_: Wa_ve(&;he ordinary and extraor-
dinary waves in a given direction there are two main wave
E,(r, ,z)=ekA (1, ,2), (24)  vectors. This implies that the field can be expresse as
=exfdikgno(s)z]A | o+ exdikgne(s)z]A o, whereny(s) and
where kg=w/c and the fieIdAlexéanAyAey is a slowly ng(s) are the ordinary and extraordinary refractive indices
varying transverse amplitude. From the third Maxwell's for the directions. Therefore, the beam in the isotropic me-
equation we obtain the transverse components of the magtium and that in the uniaxial crystal show, in general, differ-
netic induction field, that is to say ent structures and consequently no simple relation can exist
between their angular momenta. However, for a beam propa-
gating along the optical axis, the situation is very particular

since in this case=¢, and, due to the rotational invariance

’ around thez axis we haven,(e,) =ng(e,) =n,, that is to say
_Kolo iy n the two carriers share a common wave vector, experiencing
Buy(11,2)= w AdrL.2) (25) the same refractive indem, ; this allows us to express the
field as in Eq.(24). Therefore, the beam along the optical
where we have neglected the transverse derivative gf  axis exhibits the same structure of a beam propagating in an
since the longitudinal component is much smaller than thésotropic medium of refractive index,. The coincidence of
transverse parE,, , in paraxial regime. Substituting Egs. the expressions for the flux of tkemomponent of the angular
(24) and(25) into Eq.(23), we get momentum in an isotropic medium and in the crystal follows

Up to now, all the expressions we have considered are exa
and valid for any monochromatic field. Let us now restrict

koo .
wa(rL 12)2 - %elkonosz(rL Z),
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immediately by observing th_at E_qzsg (which is exact does K, =k + kyéy andd?k, =dk,d k. In Eq.(3D), the fieldA
not depend on the refractive indices and consequently i rejated to the boundary distribution of the electric field by
holds for both an isotropic medium and the uniaxial crystal.eans of the relation

Another interesting property of E¢27), which has been
pointed out in the case of isotropic medigl12], is retrieved 1
by noting that the fluxP can be expressed as A (k)=

(2m)?

fdzrie’ikrrLEi(ri,O), (33
D(2)=P(2)+Do(2), (28)

which is a standard two-dimensional Fourier transform. In

having set order to study the dynamics df, and®,, we substitute the

0 -1 field of Eq. (31) into Egs.(29) and we obtain, after some
<I>|(z)=iyf dzriAI( 10 )Al, algebra(see Sec. 2 of the Appendix
y 9 9 d(2)=iw(2 2f d2k. At e(iAz/Zkono)sz_"
%(Z):i‘f @ AT Xﬁ_y&)’“’ 29 (2)=iy(2m) AT Qo

. . . . ) —(iIAZ2kgn)K2 A 1R
where the superscript T indicates the Hermitian conjugation te N Qe]AL,

operation and we defined for convenience

ot Do2)=—iy(2m)? [ ok, Al[el> om0 Q,
Y= noz_- (30)
w . 2 A _~
+ e—(|Az/2k0n0)lee]Al
From Eq.(28) we observe that the flux of the angular mo-
mentum is the sum of two contribution®, and ®, which
are commonly called the intrinsi@r spin and the orbital

part, respectively, of the angular momentum. The first one is

- o ozt (1O ? 9
+iy(21) jd k Al 0 1 kyaT_kxﬁT
X y

mainly related to the state of polarization of the field whereas N 0 -1 i (34
the second is essentially related to the shape of the field. 1 0 Lo

IV. EVOLUTION OF THE INTRINSIC AND ORBITAL where we have set =n3/nZ—1 and we have introduced the

ANGULAR MOMENTUM FLUXES matrices

In the above section, we have demonstrated that the ex- 1 kyky —k2 1 —keky —k§
pressions for the angular momentum fldx of a paraxial Q== .2 , e~ 5 2 .
beam propagating in a uniaxial cryst@long the optical K ky —kiky kT Kx kyky
axig) and in an isotropic medium are the same. The main (39

common features are that the flux is conserje=k Eq(18)] ) _ )
and that it is given by the sum of the intrinsic and the orbitalEquations34) constitute the main result of the present paper
contributions®, and®,, respectively. However, the propa- and thgy deserve a special .d|scqssmn. The first striking effect
gation of a beam in a uniaxial crystal shows some uniqu€merging from these equations is tdatand®q depend on
features, absent in the isotropic counterpart, the most ref SO that they are not conserved quantities; at the same time,
evant being the change of the polarization state. We wari{1€ir sum®=®,+ @ does not depend an in unavoidable
now to investigate how this effect affects the dynamicdpf —agdreement with Eq(18), expressing the conservation of the
and®. total angular momentum flux. Therefore, the dynamic®pf
The expression for a generic paraxial beam propagating”d ®o presents an exchange of angular momentum flux
along the optical axis of a uniaxial crystal has been deducefetween the intrinsic and the orbital contributions. It is worth

in Ref.[8] and it is shown there that its slowly varying am- noting that this exchange is fundamentally mediated by the
plitude [as defined in Eq(24)] is given by anisotropy, since in an isotropic medium the intrinsic and the

orbital contributions are separately conserved quantities;
note that this well-known fact concerning isotropic media
can be easily retrieved from Eq§34) simply putting n,
=n, or, equivalentlyA=0.

A (r, ’Z):f dzkieikl-rL[ef(iZIZKOnO)kEI’:‘)O

+e (o220 B 1K (k). (31 From a physical point of view, the exchange of angular
momentum between the two contributions is easily under-
where stood by taking into account the change of the state of po-
1 K2 koK 1/ K kk larization of a bearr_1 traveliljg t_hrough the. crystal. The main
,50:_( y ; y), ”e:_( x Xzy), consequence of this polarization dynamics on the angular

K2 | — kK ks k2 \keky, Kk momentum is that the intrinsic pas, generally changes

(32  because of its dependence on the polarization state. Since the
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total angular momentum flux is a conserved quantity, theThis is an interesting result since we have demonstrated that

evolution of d, corresponds to that ob,, explaining the

origin of the exchange.

the asymptotical amount of the angular momentum flux
flowing from the intrinsic contribution to the orbital one co-

In order to mathematically describe this exchange of anincides with the boundary value of the intrinsic contribution.

gular momentum flux, note that, puttings=0 into Eqs.(34),
we get

) ~4 0 —1\._.
CDI(O):VY(ZW)ZI dszAL<1 0 )AL,

17

X 0~,_ky) Al (36)

_ 2| 421 At J
Do(0)=iy(2m)? | d?,Al|k, -~k
X

relating the boundary values df, and ®, directly to the
spectrumA, . Comparing Eqs(34) and (36), it is straight-
forward to see that

D(2)=2,(0)-AD(2),
Po(2)=Po(0) +AD(2), (37

where we defined

~.(0 -1 . R
A@(z):iy(zﬂ.)Zf dszAI (1 0 )_e(mzlzkono)kao

_ e (822 R IR (38)

Computing the limit forz—o0 in Egs. (37) and exploiting
Eq. (40), we finally obtain

lim®,(z)=0,

z—®

lim ®(z)=®,(0)+D(0)=,

Z—®©

(41)

revealing, for these two quantities, a very interesting kind of
saturation. Asymptotically, the intrinsic angular momentum

flux vanishes whereas the orbital one equates the total
amount of angular momentum flux carried by the beam.

V. CIRCULARLY POLARIZED BEAMS

The above considerations are very general and it is diffi-
cult to discuss the details of the angular momenta evolution
because of the involved dynamics of the polarization state.
However, in the particular and interesting case of circularly
polarized beams, the analysis can be generally further devel-
oped. In order to investigate the angular momentum dynam-
ics of this kind of beams, we introduce the fields

N N (]

(42

Equations(37) describe the exchange of angular momentum

flux in a particularly transparent way. We recognize inwhich are the standard left-hand and right-hand circularly
A®(z) the amount of angular momentum flux which, after apolarized components of the field. The propagation of circu-
distancez, the intrinsic componen®, has transferred to the larly polarized beams have been recently investigate]

orbital oned,. Note that in the isotropic limiti.e., A=0)

and it has been shown that they undergo an interesting be-

A® uniformly vanishes, expressing again the absence of afiavior concerning the coupling among the vortex compo-

gular momentum flux exchange in isotropic media.
Because of the presence &f in the expression foA®

nents of each circular component. Substituting &@) into
Egs. (29) and using polar coordinatex€r cose and y

of Eq. (39), the evolution of the angular momentum fluxes =" Sin®) inside the integral, we obtain

cannot be characterized in general, since it is strongly depen-
dent on the beam shape. However, there is a particular fea-
ture of the angular momenta dynamics which is the same for
any beam traveling through the crystal and it is related to the
asymptotics of the exchange. In order to discuss this point,
note that ifz is very large, the integral of E438) contains

two highly oscillatory functions so that their contributions to
the integral are expected to be very small; it is possible td-rom the first of Eq(43), we note that the intrinsic contri-
prove that forz— o their contributions exactly vanish so that bution to the angular momentum is proportional to the dif-
ference between the energies of left-hand and the right-hand
circular components of the beam; the second of &®)
shows that the orbital contribution to the angular momentum
is highly related to the dependence of the field components

Note that, because this limit always exists, we find a satura@" the polar angle. The saturation process df, outlined

tion process in the evolution of the angular momentum fluxed? the above section can now be conveniently reinterpreted
analogous to that one of the energy dynamics ofxtaedy by means of Eq943). The first of Eqs(41) and the first of
components of the beam discussed in R&8]. Comparing Egs.(43) allow us to state that the intrinsic contributions to
Eq. (39) with the first of Eqs(36), we conclude that the angular momentum due £, and toA _ are, asymptoti-
cally, equal with opposite sign; this is equivalent to saying
that the asymptotical values of the energiesAof and A _
coincide.

® 2w
@@=y drr [ Taedapo1a o),

y (= 27 L AL L OA-
(DO(Z)Ii— Odrr o de A+W+A,W. (43

_.[0 —1\_
IimA@(z)ziy(ZTr)zf deLAI(l O)AL. (39)

Z—®©

IMA®(z)=d,(0).

z—®

(40)
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In Ref.[13], the authors considered the particular case of 1
a beam which, on the plare=0, is purely left-hand circu-
larly polarized and exhibits circular symmetry, that is to say 075! -
' B @)D (0)
E+(r 1(P10): E(r)1
0.5
E_(r,¢,00=0. (44)
o @ (2)/D(0)
It is interesting to investigate the evolution of the angular 0.25
momenta for this beam since, far=0, its orbital contribu-
tion vanishes,®,(0)=0 [see the second of Eq$43)], 0
A o . 0 2 4 6
whereas its intrinsic contribution is proportional to the en- zZ/L
ergy of the beanpsee the first of Eqg43)]. In Ref.[13], it is .
shown that FIG. 1. Plots of®,(z)/®,(0) and®(z)/P,(0) of a Gaussian
beam vs the normalized propagation distande
A.(r,2)= wfﬁdk |{e_(i2/2k0no)k2 with spot sizes, admits an analytical treatment, and we have
0 (see Ref[13))

+ e (o209 3o k) E k), 1 1
W=(2)=5W(0)| 12— |, (51)
Af(r,qo,2)=we‘2<°dek K e~ (iz/2gno)k? 1+([)

0

i a2 - where L =2kgn,s%/A. Substituting Eq(51) into Egs.(47)
—e N3, (kr)E(k), (45  and noting thath,(0)= YW, (0), we straightforwardly get

whereJ, is the Bessel function of first kind of orderand
®,(2)=P,(0)

z\%|
~ _ 1 * 1+ —
E(K)=z—] drrdo(kr)E(r). (46) L
21 0
Equations(45) show that the left-hand circular component do(2)=D,(0)| 1— 1 , (52)
A, keeps its circular symmetry in propagation, while the 1+ Z
right-hand circular componert_ grows and it carries a to- L

pological charge 2, since it depends gronly by means of o ) o
the factor expiQy). Substituting Eqs(45) into Egs.(43), we  €xhibiting a Lorentzian saturation; in Fig. 1, the plots of Eqgs.

obtain (52) are reported.
D,(2)=9y[W,(2)—-W_(2)], VI. VOLUME ANGULAR MOMENTUM
Do(2)=2yW_(2), (47 For the sake of completeness, we now investigate the
_ _ amount ofz component of the angular momentum of the
where we have defined the optical powers radiation stored in the crystal that, in the first section of the
. o present paper, we showed to be given lby=e,-L;. In
W*(Z):J drr de|AL(r,¢,2)|% (48  order to obtain the expression corresponding to a paraxial
B 0 0 a beam, we consider thecomponent of Eq(6),

From Eqgs.(47) we note that the orbital contribution to the

_ 2 2
angular momentum depends only on the right-hand compo- sz—soﬁdr[ No(XExtYEy) B+ ne(XBy+yBy)E,)],

nent and that it grows, while the intrinsic contribution dimin- (53)
ishes. Note also that, in this particular case, the total angular
momentum where the second of Eqggl) has been taken into account; in

this equation,r is the volume filled by the crystal. Also in
D(2)=D(2)+Po(2)=y[W, (2)+W_(2)] (49 this case, we are interested in the time average;pthat is
given by
is proportional to the total energy of the beam which is a

constant because the crystal is lossless. _ %o 2 *
The particular case of a Gaussian beam (L= 2 Reder[ No(XEuxtYEuy)Ba,
E(r)=Eqe "/, (50) +N2(XB oy +YBay)EX,], (54)
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where use has been made of the rule for obtaining the timexpressions to the case of a paraxial beam propagating along
average of the product of two monochromatic quantities. Irthe optical axis and have demonstrated that the radiation an-
order to handle this expression, we follow the same procegular momentum in the crystal has the same expression as
dure used for the angular momentum flux. Inserting E2@®.  the isotropic counterpart. In particular, the distinction be-
into Eq. (54) we eliminate the longitudinal components of tween the intrinsic and the orbital parts of the angular mo-
the field; subsequently, using Ed24) and(25) for describ- mentum flux is the same as that existing for a beam propa-

ing a paraxial beam, we obtain gating in a isotropic medium. Investigating thevolution of
5 these quantities, we have found that the dynamics of the
goNg 1 IRy IA] intrinsic and orbital contributions reveals the existence of an
(Lig=- 2w Reder i—(—yAX+xAy) IX + ay exchange between them, a noticeable feature which is com-

pletely absent in the isotropic case. It is also interesting to
_ oAy 9A% note that this exchange saturates fes and we have pre-
HIYAFXAI| — -~ oy || (59 dicted the asymptotical values of the two contributions: the
intrinsic part asymptotically vanishes whereas the orbital part
Comparing Eq(55) with Eqg. (26), we note that equates the total amount of the angular momentum flux. As
an example, we have investigated the two angular momen-
No tum fluxes dynamics in the case of circularly polarized
<sz>:_FJTdr (Fz2), (56)  peams. For these beams, the intrinsic part of the angular
momentum flux is simply proportional to the difference be-
which is a relevant expression relating, in paraxial regimefween the energies of the left-hand and the right-hand circu-
the radiation angular momentum stored in the crystal to théarly polarized components. This fact simplifies the investi-
flux. If we model the crystal as the slab between the plangation of the evolution of the angular fluxes. We have also
z=0 andz=D, D being the length of the crystal, the inte- evaluated the amount of the beam’s angular momentum
grals overr, and that over can be splitted so that stored in the crystal and we have demonstrated that it is
given by the total angular momentum flux multiplied by the

Ny (D Ny (D time an ordinary plane wave takes to pass through the
?ofo dzf dzrl<Fu):?°fo dz®(z), (57) crystal.

where use has been made of Etp) to introduce the fluxb.

<sz>: -

Taking Eq.(18) into account(conservation of the total flux APPENDIX
@), Eq.(57) readily yields 1. Derivation of Eq. (27)
n,D Equation(26) can be conveniently rewritten as
(Li=—. (59)
gpC . (?A\;/c (9A:
. . . . . . <Fzz>:no_R IX Ax__Ay
which is the simpler expression we can obtain relating the 20 X IX
angular momentum and its flux. Note thgfD/c is the time IA* IA*
that an ordinary plane wave takes to go fraw0 to z +iyl Ai—L —A—| +iA y——xi *
=D; therefore Eq(58) admits a simple physical interpreta- Y Yoy “\Tax Tay)
tion regarding the volume angular momentyty,) as the p
amount of angular momentum flown througi O during the + iAy( y—— x—) A% } (A1)
time spent by the radiation to pass through the crystal. The ax - dy

fact that Eq.(58) containsn, only (and notn,) is related to

the structure of the paraxial field traveling along the optical )

axis of the crystal and, more specifically, to its main pIainWhere/(ZUS§ Ihas geet” rr]na%?‘ (t)r: the relaticqg¥(20°) o
. - Lo =goc/(2w). In order to handle this expression we resort to

wave (with wave vectorkyn,e,) whose velocity isng/c. the identity(easily deduced with some algepra

VII. CONCLUSIONS

A

* *
We have discussed the conservation of optical angular R%ix(A ﬂ_/_\ IAX +iy
momentum in a uniaxial crystal, demonstrating that a bal- X ox Yoox

ance equation can be derived only for the component of the

ra(_jiation _angular momentum along the optical _axis_, sayzt_he_ =.—(AXA; ~AXA)+V U, (A2)
axis; besides, we have pointed out that this situation is inti- I

mately related to the rotational invariance of the crystal

around its unique optical axis. Consequently, we have fur- )

nished the proper expressions for theomponent of angular Where ~we  introduced the transverse vectod,
momentum and the angular momentum flux of the radiation=Im(AJ A,)(xe,+ye;). Combining Eqs(A2) and (A1) we

propagating in the crystal. We have specialized these generabtain

oAy IAY
gy Yoy
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Soc 1 % % . Jd Jd %
<Fzz)=noz i_(AXAy_AxAy)+R IAX y&—XW AX

(A3)

_ a9
+iA, y&—xW)A;‘ +Vl~UL},

which, inserted into Eq(19), yields

&oC 2, i * *
(I)(z)=noz dory I(AA] —ALA))

-R sz iA A A*
€ 1A yé’X X(?y X
_ J d
—RefdzmAy(y&—xW)A;}. (A4)

Note that we have dropped the ter¥h -U, of Eq. (A3),

since its integral over the whole transverse plane vanishes

PHYSICAL REVIEW E 67, 036618 (2003

Inserting Eq.(A5) into Egs.(29) and exploiting some prop-
erties of the Fourier integrdbeneralized Parseval theorem
we obtain, after some algebra,

-1
0

al,

_.[0
cp,:iy(zw)zf d’k, al 1

q>o='7/(277)2J d%k, | k it i —k —I (A7)
| a a |.
ok, Y dky

Substituiting Eq(A6) into the first of Eqs(A7) and exploit-
ing the propertie®2="P,, P2=P,, andP,P.=P.P,=0 of
the projectors, the first of Eq$34) is easily obtained. In
order to handle the second of EgA7), we use the relations

IPon P | 1[0 K
k| =Pt - Pe| = ., ],
Ky Ky k2 ky 0

because of the Green’s theorem and the fact that the field
vanishes at infinity. It is simple to show that the second and
third integrals of Eq(A4) are real quantities so that we can

P,  P,. 1[0 -k
nteqrati - P Tielke o )
drop Re symbol. After integrating by parts these two inte- Ky Ky ki\ky O

grals, Eq.(27) is obtained.

2. Derivation of Egs. (34)

The paraxial field in Eq(31) can be expressed as
AL(rL,z)=f d?k, e’k (k. ,2), (A5)

where

2= [e—(iz/zkono)kf B+ o (ingZ/2kgn2)k? PJA . (A6)

’ &'Sels . a'sels .
Xo'?_ky o~ yo"_kx 0__Q01

k als"f: k ﬁﬁ)(’ﬁ =—C A8
X(9_|(y e yo”_kx e__Qe- ( )
Substituting Eq(A6) into the second of Eq$A7) and taking
Egs. (A8) into account, the second of Eq84) is obtained
after some tedious but straightforward algebra.

[1] J.C. Maxwell,A Treatise on Electricity and Magnetis(@am-
bridge University Press, Cambridge, 1998

[2] J.H. Poynting, Proc. R. Soc. London, Ser82 560 (1909.

[3] J.H. PoyntingCollected Scientific Papef€ambridge Univer-
sity Press, Cambridge, 1920

[4] A. Messaiah,Quantum MechanicgNorth-Holland, Amster-
dam, 1970.

[5] I. Brevik, Mat. Fys. Medd. K. Dan. Vidensk. Selskl, 13
(1970.

[6] L.D. Landau and E.M. LifshitzElectrodynamics of Continu-
ous Media(Addison-Wesley, Reading, MA, 1950

[7] S.M. Barnett, J. Opt. B: Quantum Semiclassical OphtS7
(2002.

[8] A. Ciattoni, B. Crosignani, and P.D. Porto, J. Opt. Soc. Am. A

18, 1656(2001).

[9] L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, and J.P. Woer-

dman, Phys. Rev. 45, 8185(1992.
[10] L. Allen, M.J. Padgett, and M. Babiker, Prog. O39, 291

(1999.

[11] A.E. SiegmanLasers(University Science Book, Mill Valley,
1998.

[12] S.J. van Enk and G. Nienhuis, Opt. Comm@4, 147 (1992.

[13] A. Ciattoni, G. Cincotti, and C. Palma, J. Opt. Soc. An2@
163 (2003.

[14] J.D. JacksonClassical Electrodynamic$Wiley, New York,
1999.

[15] A. Ciattoni, G. Cincotti, and C. Palma, Opt. Commu®5, 55
(20012).

[16] G. Cincaotti, A. Ciattoni, and C. Palma, IEEE J. Quantum Elec-
tron. 12, 1517 (2009).

[17] A. Ciattoni, G. Cincotti, and C. Palma, J. Opt. Soc. Am1%
792 (2002.

[18] G. Cincaotti, A. Ciattoni, and C. Palma, J. Opt. Soc. Am1@

1680(2002.

[19] A. Ciattoni, G. Cincotti, C. Palma, and H. Weber, J. Opt. Soc.
Am. A 19, 1894(2002.

036618-10



