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In the present paper we perform stability analysis of stationaryXJ-dimensional cnoidal waves of cn and
dn types(anomalous group velocity dispersjoand sn typenormal group velocity dispersionThe math-
ematical model is based on the nonlinear Sdimger equation. With this aim we developed a method that
takes into consideration the properties of complex eigenvalues of Cauchy matrix for perturbation vectors. We
show that cnoidal sn-wave is stable in the whole domain of its existence, whereas cn- and dn-waves are
unstable. The instability of cn- and dn-waves is suppressed in the limiting case of strong localization when
waves evolve into a set of well-separated fundamental bright solitons.
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[. INTRODUCTION nonlinear Schrdinger equation is especially attractive from
the theoretical point of view because it enables to analyze the

The analysis of stability of solitary waves in the frames of propagation dynamics of solitary waves for the cases of dif-
various physical models is one of the most interesting anderent localization of the wave field energy. Cnoidal waves
important problems of modern nonlinear optics. Startingdescribe periodic arrays of the slit laser beaf@8-30,
from the pioneering paper of Vakhitov and Kolokolo¥K) trains of optical pulses in fibef81-34, and electron wave
[1] that was devoted to the derivation of a simple analyticafunctions in Bose-Einstein condensatg®5,36. Recently,
stability criterion(the VK criterion) for (2+1)-dimensional spatial cnoidal waves were observed experimentally in pho-
single solitons in focusing saturable media, a number of patorefractive crystals in the steady state regir86]. One of
pers were devoted to the investigation of stability of (1the most important features of the cnoidal waves is that in
+1)-dimensional multicomponent solitary waves in cubicthe limit of the strong localization they transform into the
and saturable media, surface and guided waves, waves in teell-known dark[37] and bright{ 38] solitons. The latter fact
media with quadratic and competing nonlinearities, etc. Theenables to treat cnoidal waves as more general objects than
concept of reading of dispersion or Hamiltonian-eneffgy ~ usual localized bright and dark solitons and to analyze the
Hamiltonian systemsdiagrams proved to be especially use- main features of propagation and interaction of pulse trains
ful. This concept enables one to make a conclusion abowind beam arrays from the unified point of view.
soliton stability directly from dependencies of soliton energy One of the most interesting problems connected with
on the propagation constafr Hamiltonian) without further  cnoidal waves is the problem of their stability. Note that
special analysi$2]. It was shown that the VK stability cri- upon the analysis of stability of the cnoidal waves one meets
terion remains valid in several simplest physical models inserious difficulties connected with nonzero asymptotics of
(1+1) dimensions, such as models describing surface wavdight fields and oscillating character of cnoidal waves. Re-
at the interface between a linear dielectric and a cubic meeently, stability of specific (% 1)-dimensional “cnoidal
dium[3-8§], surface waves at the interface between a dielecwaves on a ring” with respect to stochastic perturbations of
tric and a photorefractive crystal with drift and diffusion input profiles was investigated numerically in Bose-Einstein
nonlinearity [9,10], fundamental soliton states in unidirec- condensate35]. At the present moment, stability of cnoidal
tional fiber coupler$11,17, birefringent optical fiber§13—  waves was considered analytically only with respect to a
16], and type | quadratic solitori47]. However, for a variety rather narrow class of long-wavelength perturbatip®g—
of solitary waves such as multicomponent waves with num43] (the method of stability analysis in approximation of
ber of components greater than tyb8]; walking vector long-wavelength perturbations was first developed in Refs.
[19,20Q; type Il quadratic[21]; walking quadratid22] soli-  [44,45). This approach enables to treat perturbations only
tary waves; dark, gray, and cubic gap solitga8] the sta- with small growth ratesincrementy whereas it is com-
bility criterion can be more complicated than the usual VKmonly known that only perturbations with highest incre-
criterion or even no evident analytical criterion can exist.ments survive upon wave propagatipfé6]. Note also that
Note that paperf2—23] are connected with the investigation approaches used in papd@9—-42 lead to contradictory
of stability of localized (1 1)-dimensional solitary waves. conclusions about the stability of cnoidal waves. There is

Recently, a wide class of multicomponent periodical so-still no self-consistent approach to investigate the stability of
lutions of the (I+1)-dimensional nonlinear Schiimger (1+1)- and (2+1)-dimensional cnoidal waves for the case
equation in the form of cnoidal waves has gained steadyf arbitrary perturbation wavelengths.
attention[24—-27]. The concept of periodical solutions of the  In the present paper we perform accurate linear stability
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analysis of (& 1)-dimensional periodical cnoidal waves in (1+ 1)-dimensional waves. We leave this problem for future
optical fibers in the anomalousvaves of cn- and dn-typgs consideration. Note that the method presented here can be
and normalwave of sn-typgdispersion regimes. We devel- easily modified in the case of (21)-dimensional cnoidal
oped a method of solution of linearized equation for pertur-waves.

bation vector that is based on the construction of translation Equation(1) has two stationary periodic wave solutions in
matrix for perturbation vector and the analysis of evolutionthe anomalous dispersion regimeg={ — 1) [24,25 (here we

of eigenvalues of this matrix with changes in the parametersonsider only fundamental periodic solutions of nonlinear
of corresponding perturbed cnoidal waves. This approach iSchralinger equation

semianalytical: computer is used only for multiple calcula-

tions of trace of translation matrix. Results of the translation 9an( 7,£) = xdr x(7— 79— a§),m]

matrix approach are confirmed by direct numerical simula- ; S VPRI YR 250

tion of perturbed waves propagation. Our approach is free Xexiantiéy (1=m2) = (if2)ae+ iy,
from the restrictive assumption of long wavelengths of per- _ o

turbations and can be easily generalized to the cases of (chn(n,f) myerix(n=no—at).m]

+1)-dimensional cnoidal waves, multicomponent waves, xexgian+iéx?(m?—1/2)— (i/2)a?E+i ],
and cnoidal waves in saturable optical media. @
Il. THEORETICAL MODEL and one stationary periodic wave solution in the normal dis-

) ) ] o persion regimed=1):
The propagation of optical pulses in the direction of lon-
gitudinal z axis in optical fibers is described by the dimen- s 7€) =mysn x(7— 79— a&),m]
sionless nonlinear Schidinger equation for the complex . .. 9 9 , 9
field amp|ltudeq(77,§), Xex[{—lan-f—lg)( (1+m )/2+(|/2)a g

aq d g +idho]. ()
i 9E 2977 lala. (D 1n expressiong2), (3) cn(z,m), dn(z,m), and sng,m) are

elliptic functions; 0=sm=1 is the modulus of the elliptic
. 172 —1/2. function that can be treated as a parameter describing the
A(7.€) =(Las/Lspm “AlmE)lo” " degree of localization of the wave field energyijs the ar-
bitrary form factor;z, is the initial coordinate shifty is the
angle between the propagation direction and the longitudinal
& axis (initial frequency shiff; ¢ is the initial phase. Note
_ ) ) 5 _ } ] that for the case ok, 7y, ¥y=0 cnoidal waves2) and(3)
malized propagatlo_n distanckeyis= 75/| 8| is the dlsperswn can be written in the general formy 7, £) =w( 7)exp(bé),
Ienggh, cozrrespondmg to the chosen pulse duratignB,  with w(7) being the real function that describes the wave
=(9°KI0w®) = wy; Ko=K(wo) is the wave numberpg isthe  profile, andb being the real propagation constant. We will
carrying frequency;Lg,,=2¢/(wgnylo) is the self-phase use the general expressiofiz, &) =w(7)expbé) (with a,
modulation length; anth,=37wqx® (we)/[k(wo)c] is the 7y, ¥o=0) for cnoidal wave fields in the following section
nonlinear coefficient that is proportional to the Fourier transthat is devoted to stability analysis. Besides the latter solu-
form x©®)(w,) of the corresponding element of nonlinear tion, Eq.(1) has a solution in the form of intrinsically com-
susceptibility tensor. The first term in E@L) describes the plex or “chirped” cnoidal waves q(7,§)
dispersion spreading and the second one accounts for sel=w(7)exdi®(zn)€], whereg() is the real function of trans-
focusing of optical pulse in the fiber. Parameter —1 cor-  verse coordinatey. Such waves are not considered in the
responds to the anomalous dispersion regime, whetdeas present paper.
=1 corresponds to the normal dispersion regime. Functions cnf,m) and sng,m) in expressiong2) and
Note that the distribution of the wave field on transverse(3) have a sign-alternating oscillating character; function
coordinates in optical fibers is defined by the profiles of thedn(z,m) is always positive and has the form of oscillations
guided modes. Hence the problem of stability of the cnoidakuperimposed on the constant background. Period of cn and
waves in optical fibers can be treated int{1) dimensions. sn-waves equals tokd(m)/y, whereK(m) is the elliptical
In the spatial case, E@l) should be modified to include the integral of the first kind, whereas period of dn-wave equals
derivatives with respect to two transverse coordinates. In thigo 2K(m)/y. The role of parametan (in the following we
case a number of new effects come into play. Among theswill call it the localization parametgrcan be easily inter-
effects are transverse necklike and snakelike instabi[i6s  preted for cn- and sn-waves. Whem—0 wave amplitudes
that can develop along one of transverse axes even if thgo to zero, provided that the nonlinear terms in Sdhwger
wave is stable in the frames of {11)-dimensional model equation(1) can be neglected. In this linear limiting case
described by Eq1) (which is valid also for slit laser beams  function cn(,m) is well approximated by cos, and func-
The analysis of stability for (2 1)-dimensional cnoidal tion sn(n,m) by sin# with periods equal to 2. This is the
waves(which are uniform, say, along theaxis and periodic case of a weak localization. With increaserofup to 1 the
along thex axis) is much more complicated than that for contribution of nonlinear terms in Eql) increases, wave

Here amplitude
A(7,€) is the slowly varying envelope of light fieldl; is the
input intensity; »= (t—2z/vy,)/ 7o is the normalized running
time; 7, is the characteristic pulse durationp,
=(9kldw) L . is the group velocityg=2z/L 4 is the nor-

w=w
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periods go to infinity, and waves are transformed into a set ofvhere functionw(#z)exp(bé) describes the evolution of the
hyperbolic secant type solitons for cn-wave and hyperbolicorresponding unperturbed wave as it was stated in the pre-
tangent type solitons for sn-wave. This is the case of strongeding section, functiont(#7,£) and V(#,£) are, respec-
localization. dn-wave fom—0 transforms into a wave of tively, the real and imaginary parts of the small,{/<w)
constant amplitude and fan—1 into a set of hyperbolic perturbation. For example, in the case of sn-wgjawith «,
secant type solitons, similarly to the case of cn-wave. Thus a#,, ;=0 and y=1 (these parameter values will be used
a, 19, Yo=0, one can write the following asymptotic expan- further in the papgrone hasw(z)=msn(»,m) andb=(1

sions for functions in expressior8) and(3): +m?)/2. For perturbations that are nonzero in the cnoidal
- wave nodes(for cn- and sn-waves inequality U, V<w
Aar( 7€) m—0= x eXQix“§), breaks down only in the small areas around zeros of the
-, cnoidal waves. For the wave of dn-type such difficulty does
Aanl 7:8)m-.1= x sechix n)explix“¢/2), not arise because dn-wave is not equal to zero. Substitution
-, of expression5) into Schralinger equation(1), subsequent
Aerl 7€) [m-—.0= My COLx 7)exp —ix°¢/2), linearization, and the derivation of the real and imaginary

_2 parts yields the following system of linear equations:
er 7,6)|m—1= X sectix n)explix*é/2),

: . au
Asrl 7€) lm—.0=Mx SiN(x ) expli x*¢£/12), et
Asrl 7€) lm—1= x tanh(x 7) expli x¢). 4 N
—=RU (6)
Such properties of the cnoidal waves of cn-, sn-, and dn- 113 RU.

types give one several intuitive hints about their stability. For

example, one can suspect the instability of dn-wave, since itlere the linear operator§=—(d/2)(d%/d7%) +w?(7)—b
contains constant background that is modulationally unstablendR = £+ 2w?( ) are both self-adjoint and depend on the
in the anomalous dispersion regime. Moreover, since in théransverse coordinatg parameted, and localization param-
limit of strong localization cnoidal waves are transformedeterm. The following propertiew=0, R(dw/d#») =0, and
into bright and dark solitons, instabilityf it presentg should  R(dw/db)=w can be easily verified by the direct substitu-
be suppressed for all types of cnoidal waves. Furthetion of functionsw, dw/d», anddw/db into the expressions
throughout this paper we consider the cgsel, since it is  for operatorsC andR.

known that the solutions of Eq1) can be rescaled to any We will search for solutions of syste(8) in the following
positive value ofy. form:

Ill. METHOD OF STABILITY ANALYSIS U(7,6)= R%j C(8)u( 7, 8)exp 5§)d5},

To investigate the stability of periodic cnoidal waves we
employ the well-known linear stability analysis that is valid
(at least for exponentially growing perturbatiorsly at the V(n,é&)= Re{j C(d)v(n,d)exp 6é)ds
initial stage of perturbation development. Note that earlier
linear stability analysis was used mostly for fundamenta
soliton state$1—23], since there exists a common belief that
for higher-order soliton statedaving one or more nodgs
the linear stability analysis enables to treat only very narro

: )

k/vherea is the complex incremer{growth rate of perturba-
tion; C(6) are arbitrary complex constantsi(»,5) and
\/\}’(77’5) are complex functions that describe the input profile

. , of the perturbation and depend also on the increment value.
class of perturbations that should go to zero in the nodeF . . )
ntegration goes over all possible increment values. Under

(zeros of th.e hlgher-o_rde.r sohton; state. Upon conS|derat|qn[he substitution of expressioiig) into linear systen{6) and
of the stability of periodical cnoidal waves one meets this . . .
the equation of underintegral terms with the same exponen-

difficulty from the very beginning, since waves of cn- and . . o )
sn-types periodically change their signs and have unlimiteéIal coefficients expg), one can get the following final sys

number of nodes. We show that our analysis enables to fing " of linear equations with real linear operatdrandR:
simultaneously perturbations that conform to the requirement Su=— Lo

of common zeros with corresponding cnoidal wave and per- ’

turbations that are nonzero in the wave nodes. Note also that

the usual procedure of derivation of the VK stability criterion
is inapplicable for the periodic cnoidal waves due to nonzer
asymptotics of the wave field at infinifi2]. We will search
for solutions of Eq.(1) that describe the propagation of the
cnoidal wave with perturbed input profile in the following
form: 4P ( o 5)

A(7.6)=[W(7)+U(7,6)+iV(7,6)lexpibe),  (5) ay B Bl o

Sv=TRu. ()
Ql'aking into account expressions for operatrandR, one

can rewrite the system of equatiof@® in matrix form that is
more convenient for subsequent analysis:
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(6w?—2b)/d -24/d © Mgix P(7>37;) satispfzies its own characteristic equatibr{P)
= 2 ) =P+ p1 PP+ pa P+ psP+pa.E=O. It also follows from
24ld (2w"—2b)/d equality detP(n)]=1 that coefficientp,=1. It is well
known that coefficientp, in expression14) are connected
with tracesT, = Tr[ P*()] by the following relationgNew-
ton’s formulas:

where® ={u,v,du/d»,dv/d7}" is the solution vector® is

the 2x2 zero matrix;€ is the 2<2 unity matrix; and only
matrix N depends on the transverse coordinaténcrement

6, and parameterd and m. As one can see from Eq9),
matrix B(z) can be presented in the form of Jordan’s blocks.
One of the most important properties of the mafixs that  \yhereT, andp, are independent of the transverse coordinate
Tr(B)=0. The general solution of E¢9) can be written in 7, as it was shown above.

the form Using expressior{11) for Cauchy matrix7(7,%'), one
can easily show that Ti(n, 7" )]=Tr[J (#,7')] for ar-
bitrary values ofy and n’ (see Appendix A for detai)s
Since (5, 7')=J *(7',7n), it follows from the previous
expression that equality [TP*(7)]=Tr[P X(»)] and,
hence, equalityr,=T_, hold for all values ok, wherek is

an integer. Multiplying equatio® (P) = © with P~ ¥, where
k=1,...,4, and calculating traces of the left and right parts of
resulting equations, we get four expressifadditionally to
gxpressionsélS)] connecting parameters, andT,. Result-

ing system of eight equatiorisee Appendix Bfor p, and

Ty, together withp,=1, is consistent only when

Tt prTeor -+ p-1Ti=—kpe  (k=1,...,4, (19

O(np)=T(n,n")P(7n"), (10)

whereJ(#n,n") is the 4<4 Cauchy matrix that can be found
as a solution of the initial value problem7(7n,7n")/dn
=B(n)An,n"), T 7n',n")=E, where coordinate;’ serves
as a parameter. It is known tha{/(n,n')A 5 ,5")
=Jn,n") and J(n',5) =T (»n,7n"). Direct substitution
shows that two matriceB(») and5(#') are not commuta-
tive, and, hence, the general expression for Cauchy matri
can only be written in the form of “matrizant,”

” 7 7 k-1 [
Tnm')=E+ 2, J,dnlj,dnz"'f, dmB(71) P1=—Ta,
k=1 Jng n n . ,
=—3(T,—TD),
X B(m) - B( 7). (11) P2=—2(To= Ty
From expression Ti§) =0 it follows that the determinant of Ps=—Ta,
the matrix 7(»,n") [which is the solution of the equation D=1 16
4 4.

A, n')dn=B(n)I(n,n")] is equal to unity for arbi-
trary values of coordinates and »’. This important prop- TracesTa=T,(3+3T,/2—T2/2) and T,=4(T2—1)+T2/2
erty will be used upon the analysis of E@). Further, one | 120~ Za5 .0 aico exl ressible th lh | z q
. L . T,—T7 pressible through lowest-order
can take into account that(z) describing the cnoidal wave . :
tracesT,; andT,. Characteristic polynom of the translation

profile is the periodic function of coordinate, i.e., w(# . . , . s
+T)=w(7), whereT is the wave period. This means that matrix (14) and its roots take finally very simple form:

matricesB(n+T)=B(»n) and A n+T,7 +T)=Tn,7"). DOV=NA— T3 — L (Toe TON2— TN+ 1
Let us define the matrix of “translation” of perturbation (M=M= T3 (Tom TOM - Tid+,

vectord on one periodr,
P M= T+ (2T, T34 8))

7)( 7]):‘.7(77"‘1—,77), (12) +{%[T1+(2T2_T%+ 8)1/2]2_1}1/2,
and consider its properties. It follows from the definition of L ) u

the matrix of translation that de@(»)]=1 and J(7 No=3[T1—(2T,—Ti+8)"]
+kT,75)="*(7), wherek is an integer. Using the properties | 2 122 12
of the matrix 7(, '), one can show that {16l Ta= (2T~ T1+8)"2P -1},

P+ 10) =T n+ 10, PN T X+ 9,7 (13 Ng=1/M\q,

for arbitrary values ofp, andk. Characteristic polynom of Ng=1/\,. (17)
translation matrix D(\)=def{P(n)—\E] and trace

T P*(#5)] do not depend on coordinate Note that if\,,  EXpressions(17) give us nonzero eigenvalues, (n
(n=1,...,4) are roots of the characteristic polynom, then=1....,4) of the matrix of translatiorP(7). Eigenvectors
defP(5) 1= N Aohshg and TEP(7)]=A1+ Ao+ N3+ Ay, @ ,(7n) corresponding to the eigenvaluks can be found as
Since detP(7)]=1, all roots\ ,# 0. Characteristic polynom solutions of the linear problem®(7)®n(7)=\ P (7).
of the matrix of translation can be written in the following Note that eigenvectors of the matt¥ +kT, 7) =P(#) of

general form: translation ork periods coincide with eigenvectods, () of
the matrix P(7), whereas its eigenvalues are given Yy,
D(N)=N*+pA3+ poA2+ pah +p;. (14 NK,NK K,
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Let us consider two distinct situations when all eigenval-with arbitrary complex coefficient€,, instead of® (7).
ues\, of the matrixP(#) of translation on one period are Applying to vector(22) the matrix of translation ok periods
different and when repeated eigenvalues are possible. Sincg »+kT, ), after some simple algebra we arrive at a for-
eigenvectors of the matrig( »+ kT, ) coincide with eigen- mula
vectors® ,(#n) of matrix P(7), vectord(z) that is the solu-
tion of Eq. (9) and that satisfies expressidfi0) can be O(n+KT)=Tn+KT,7)P(7)

uniquely expressed through the eigenvectors of ma(i): r K
4 =2 M2 NG TTP(7) A€l (7).
O(9)=2, Co®n(n), (18)
n=1 (23)

because in the case of distinct eigenvaldgseigenvectors Here C'=k!/m!(k—m)! are the binomial coefficients and
®n(7) form basis in the vector space where Cauchy matrixye suppose that>0. Note that folk=4 summation omin
J(n,7m') acts. In expressiofil8) C, are the arbitrary com- Eq. (23) can be carried out from 0 up tm, since[P(7)

plex coefficients. Applying the matrix of translation d&n  _\ <™ (5)=0 for m>m, in accordance with expres-
periods to the vectof18), one obtains sion (21). An analogous expression can be easily obtained

4 for k< 0. It follows from Eq.(23) that similarly to the case of

O(n+kT)= FKT. D ()= C KD _ distinct eigenvalues, of matrix P(#) in the case of repeated

(7 )= 7 ®(7) ngl A ®nl7) eigenvalues perturbation vectdr(#z) remains limited when

(19 one uses in formulé22) only such vectorsb,(#) that cor-

_ _ ] o _respond td\,|=1 and satisfy condition€21). Note also that
Expression(19) gives one an obvious criterion of searching inomia| coefficientC in Eq. (23) remains limited with
of perturbation vector@(n) that rema|nll|m|ted f_or a_rb|t_rary increase ofk only for m=0 andm=k. This fact put the
value of transverse coordln.atp According to this criterion, additional (except requiremerft,|=1) condition
upon construction of arbitrary perturbation vectors one
should choose in expansidi8) only eigenvectorsb (%) P()D (1) =Ny 7) (24)
that correspond td\,|=1. Inclusion into expressioK18)
eigenvectorsb () with [\,|#1 leads in accordance with on the vectorsb,(7) in Eq. (23) that is more general than
Eq. (19) to unlimited increase of the perturbation amplitude Eq. (21) and coincides with condition defining eigenvectors
at p— * oo, and eigenvalues of the matrix of translati®z).

The situation is more complicated in the case of repeated Thus for both cases of distinct and repeated eigenvalues
eigenvalues of matrifP(7), because eigenvectods,(7) in of translation matrix, perturbation vector can be obtained as
general case cannot serve as a basis in vector space whene expansion on the eigenvectors of translation matrix
matrix J(#n,n') acts. In the case of repeated eigenvalues

characteristic polynonil4) takes the following form: '

Plm= 2, Cn®n(7m), (25

r r neo

Al=1
p)=I1 A -r)™, 3, m=a, (20 o
" - where 1=r<4 is the number of distinct eigenvalues and
where I=r<4 is the number of distinct eigenvalugs, is  Summation goes over eigenvalues wjth|= 1.
the multiplicity of eigenvalue.,,. Using expressiof20) and See}rchlng for the_ proflles_ of perturbation vectors corre-
substituting in polynonD(\) the matrix of translatiorP( ) sponding to the various cnoidal waves, localization param-
instead of\, one can show that the vector spagevhere ~ €térsmand increments, we first constructed matri8, and
matrix J( 7, 7') acts can be decomposed into a direct sum ofhen calculated matrices( 7, ") andP(») numerically. Af-

subspaces; ,...,S, , where subspacs,, consists of vectors ter that eigenvalues of the matriR(z) conforming to the
satisfying the condition condition|\,| =1 were found and eigenvectois,(7) were

built.
[P(n) = NpE]™D ()= 0. (22) To search the areas on the compkeglane where one of
the conditiong\ ,|=1 is satisfied, we fixedid and scanned
Heref is the 4<4 unity matrix andO is a 4X 1 zero vector.  arg(s) with the fine step(typically ~27/1000. Then scan-
Arbitrary perturbation vectob(7) that belongs to vector ning procedure was repeated for a slightly increased value of
spaceS can, therefore, be expressed as a sum of vectors| (step~0.00); the segment ofs| scanning wag$0,100.
®,(7) belonging to subspaces, , For purely real or imaginary incrementx,(8)| may be
; equal to unity in the points where a@éodor arg|(5)=1-r/2,
correspondingly. To find the point in whigh ()| goes to
‘I’“i):n; Pn(n), (22) unity in the case of complex incremenisve arranged one-
dimensional search along afy(axis. In all practical cases
where all @, (%) satisfy conditions(21). Note that in the dependencg\,(d)| on arg@) has a single well-defined
right part of expansiorf22) one can use vectoi§,®(7) maximum, corresponding to conditign,|= 1.
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coordinate 7 coordinate n coordinate 7 coordinate 7 ment Im(@)=2.6244 and localization parameter=0.95.

FIG. 1. (a) Areas of existence of limited perturbations for dn- back dind that i dulati I table in th
wave in the case of purely real incremehtin the area below the ackground in dn-wave that Is moduiationally unstablé in the

line with circles both|\;|=1 and|\,|=1. In the area above the anomalqus dispersion regime. However, with incrgase of the
line with circles bothj\,|# 1 and|\,|# 1. (b) shows the profile of l0C@lization parametem up to unity when dn-wave is trans-
dn-wave form=0.95. Row(c) shows the profile of perturbation formed into the set of well-separated bright solitons and con-
corresponding to increment R§E0.283 22 and localization pa- Stant background vanishes, the width of instability area along
rameterm=0.95. Row(d) shows the profile of perturbation corre- 6 axis decreases. Fon=1 dn-wave becomes stable, which
sponding to Ref)=0.083 41 andn=0.95. is in consistence with the well-known stability of isolated
(1+1)-dimensional solitons in the cubic media. Figufb)1

Careful numerical analysis shows that for mixed incre-shows the typical profile of dn-wave, whereas Figg) and
mentss with Re(8)Im(8)#0 conditions|\,|=1 are satisfied 1(d) show profiles of perturbations corresponding to this
only in the case of cn-wave for small values|éf For the wave, eigenvalug,, and two different increment values. All
waves of sn and dn-types conditiops,|=1 are satisfied perturbations are presented in a normalized form for conve-
only for purely real or purely imaginary increments. More- nience. Since the spectrum of possible increment values is
over, in contradiction with the case of localized fundamentalcontinuous, it is possible to find perturbations with various
soliton pulses in the case of periodic cnoidal waves, the spegeriods. The most interesting are the perturbations with pe-
trum of possible increment values is continuous, i.e., forriods that are divisible by period of the cnoidal wave. Per-
fixed localization parameten there exists unlimited number turbation with period that is two times bigger then the period
of perturbations corresponding to different increments. Furof dn-wave is shown in Fig. (t) and it has the minimal
ther throughout this paper we consider perturbations corrgpossible period. Period of perturbation from Figd)lis eight
sponding to eigenvalues, and\, from formula(17) since  times higher than the wave period. Two characteristic scales
from |\,|=1 it follows that |\5|=1 and from|\,|=1 it  are clearly seen from this figure: one is equal to the pertur-
follows that|\,| = 1. Moreover, profiles of perturbations cor- bation period, whereas second equals the period of dn-wave.
responding to eigenvaluesz, can be easily found from Figure 2a) shows the areas of existence of limited pertur-
known profiles of perturbations for eigenvalugs, if one  bations for dn-wave in the case of purely imaginary incre-
take into account the following relations:u,(»)  menté. In this figure|\,|#1 everywhere, whereds,|=1

=Up.o(— 7) andvn(7)=v,.(— 7), wheren=1,2. in the area above the line with circlgthis line is very well
described by the equation 1§)E&n?/2]. Perturbation shown
IV. RESULTS AND DISCUSSION in Fig. 2(b) has the same period as the dn-wave. Once again,

two characteristic scales are clearly visible; however, now

First we concentrate on the case of dn-wave described bgeriod of dn-wave defines the highest of these two scales.
the first of expression§2). Figure 1a) shows the areas of Note that wherm—0 the profiles of perturbation are very
existence of limited perturbatioriareas at the plana(, ) well described by harmonic functions.
where at least one of eigenvalues conforms to the require- Results obtained with the aid of linear stability analysis
ment|\,|=1] for dn-wave in the case of purely real incre- are confirmed by the results of direct numerical integration
ment 8. One can see from the figure that in the area belowof Eq. (1) by split-step Fourier method. Initial conditions
the line with circleg[this line is very well described by the were set in the form(5) with U(7,£=0) andV(%,£=0)
equation R 8)+nmP=1] both|\; J/=1. This fact means that being the small perturbations of the input wave that are
dn-wave isunstablein the whole range of its existence. In- found from Eqs(7)—(9). Figure 3a) shows the evolution of
stability can be associated with the presence of the constattte perturbatior] §q(7,£)| with propagation in the case of
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06 12 18 24

coordinate & FIG. 4. (a) Areas of existence of limited perturbations for cn-
wave in the case of purely imaginary incremeéhf\,|=1 in the
area between the horizontal line and the line with cirdlegl=1 in

FIG. 3. Row(a) shows the initial stage of evolution of pertur- the area above the horizontal line and the line with circl&s.

bation of dn-wave depicted in rofe) of Fig. 1 and corresponding shows the profile of cn-wave fon=0.95. Row(c) shows the pro-

to the real increment Ré(=0.283 22. Row(b) shows the evolution file of perturbation obtained from the linear combination for #n(

of perturbation of dn-wave depicted in rai) of Fig. 2 and corre- =1.3967. Row(d) shows the profile of perturbation that was used

sponding to the imaginary increment I6)&2.6244. Localization for the construction of perturbation depicted in régy. Parameter

parametem= 0.95. Two-dimensional plots show the dependence ofm=0.95 for rows(c) and (d).

perturbation amplitude on the propagation distance.

pco
o

6=1/2 and the line with circles. The latter line ends at the
purely real incremend. Perturbatior) 5q( », £)| grows expo-  point wherem=2"%2. |\,|=1 everywhere in the area above
nentially upon propagation. Two-dimensional plots show thethe horizontal lines=1/2 and the line with circles. Figure
dependence of amplitud#gy=|5q(%=0,£)| of perturbation  4(b) shows the typical profile of cn-wave. As it was men-
on the distancé. Figure 3b) shows the evolution of pertur- tioned above upon consideration of the stability of waves of
bation corresponding to purely imaginary increménfer-  cn- and sn-types, one faces the difficulty connected with the
turbation periodically restores its input profile and “drifts” justification of the applicability of linearization procedure
along the dn-wave in the process of propagation. As one caaround the wave nodes. Analysis shows that perturbation
see from the two-dimensional plot in rol) frequency of componentsi,(#) andv,(#) calculated for cn-wave in ac-
oscillations of 5qqy(¢) is exactly two times higher than the cordance with the procedure described above aveays
actual increment valué. This discrepancy is connected with nonzero in the wave nodes. However, it follows from expres-
the procedure of modulus calculation for the complex fieldsion (25) that linear combination of eigenvectors can also be
8q(7,€). treated as a perturbation instead of single eigenvektdn,)

Note that in the limiting case dfs|—0, when perturba- that was used in the case of dn-wave. Taking into account the
tion period greatly exceeds the period of corresponding dnsymmetry properties Uy(7)=uU,+2(—7%) and v,(7)
wave, our results are in excellent agreement with the results v, ,(— %), wheren=1, 2, we used for the further analy-
of paperq 39,42 devoted to the analysis of stability of cnoi- sis vector combinations X (7)=[®,(7)+D3(7)]/2,
dal waves in the approximation of long-wavelength pertur-3,( %) =[®,(5)+ P 4(%)]1/2, A () =i[P(7n)—Ds(7)]/2,
bations. and Ay(n)=i[P,(n) —DP4(7n)]/2. These vector combina-

Next we concentrate on the analysis of stability of cn-tions have components:
wave. In the case of cn-wave conditipx,| =1 is satisfied
for purely imaginary increments and for complex increments s
with nonzero real and imaginary parts. Complex increments b
corresponding td\,|=1 can be found for all values of lo-
calization parameter except the limiting case whar 1. o, S3=(Up+Uy)/2, s,=(v,y+v4)/2,

Thus one can conclude that cn-wavesisstablein the whole (26)
domain of its existence.

Areas of existence of limited perturbations for cn-wave in
the case of purely imaginary increments are shown in Fig.
4(a). Here|\4|=1 in the area between the horizontal line Ay, az=i(Uy—Uy/2, a,=i(v,—vy,)/2.

$1=(u;+Uuz)/2, s;=(vi+v3)/2,

Ar, a;=i(up—Uu3)/2, a;=i(v1—v3)/2,
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FIG. 5. Upper plot shows curves at the plane of complex incre-
ments where one of the conditiofs; J = 1 is satisfied for cn-wave.
For the left parts of these curvélsefore points marked by circles

[Ni|=1, |\, #1, whereas right parts of these curv@dter points 9 0B
marked by circlescorrespond tox,| =1, |\4]| # 1. Four lower plots — 10
show the profile of perturbation corresponding to incremént Lg? 81
=0.07515+0.223 58 and cn-wave witm=0.95. g 6
=
One of the advantages of using such combinations is tha % ‘
usually one of the real or imaginary parts of functiegéz), % i

an(7) goes to zero. Figure(d) shows the perturbation pro-
file for vector combination,(#) [with componentss;( %) %& o
and s,(7)], cn-wave depicted in Fig. (%), and eigenvalue "

Ao=—1. Only nonzero perturbation components are pre- . .
2 y b b P FIG. 6. Row(a) shows the evolution of perturbation of cn-wave

sented. One can see from the figure that functgng») are . : . . L
zero in the nodes of corresponding cn-wave. This is thedeplcted in row(c) of Fig. 4 and corresponding to the imaginary

. . . . increment Im@)=1.3967. Row(b) shows the evolution of pertur-
method of construction of perturbations that formally satisfy 0 () P

I o d in th f d f bation of cn-wave depicted in rovd) of Fig. 4 and corresponding
Inearization procedure in the case of cn- and sn-waves %% the same increment value. Evolution of perturbation that is plot-

arbitrary values of coordinatg. Finally, Fig. 4d) shows the .4 i Fig. 5 for 5=0.075 15+ 0.22358 is presented in rowc).
componentsip(7), va(7) of vector dy(7) that were used | gealization parametem=0.95. Two-dimensional plots show the
for the construction of vectak,(#) having components de- gependence of perturbation amplitude on the propagation distance.
picted in Fig. 4c).

The case of cn-wave is unique in the sense that only for ) , N
such waves one can find perturbations corresponding to conffoPagation. For comparison, in Figbg we presented the
plex increments with Reéjim(s)#0. Numerical analysis €volution of perturbatiorP,(7) with componentsuy(7),
shows that at fixed localization parameter all possible v,(7) that are nonzero in the wave nodese Fig. 4d)] and
increments lie on the certain curve at fiRe(d),Im(s)] plane  that were used for the constructiond§( 7). Note that per-
(see Fig. 5. Note that left parts of the curves in Fig.(be-  turbation®,(») “drifts” along the cn-wave, whereas ,( 7)
fore points marked by circlescorrespond tdhq|=1, |\, “follows” the cnoidal wave upon propagation. Moreover, de-
# 1, whereas right parts correspondig|=1,|\,|#1. One  spite the fact that formally linearization is inapplicable for
can see that conditions.,|=1 are satisfied only for rela- ®,(#) in the wave nodes, numerical simulation gives abso-
tively small|d. Instability of cn-wave is suppressed in two lutely identical results fo,(7) and=,(%). This conclu-
limiting cases whem— 0 andm— 1. Typical profile of per- sion holds for all values of localization parametarand
turbation corresponding to mixed incremefitand vector incrementd. Therefore, one can make important conclusion
combination (%) is also shown in Fig. 5. that linearization techniquean be usedfor waves and

Results of the numerical integration of Ed) confirm the  higher-order solitons with nodes. Figur&&bshows the evo-
predictions of analytical approach. Figuréa6 shows the lution of perturbation® (#) of cn-wave depicted in Fig. 5
evolution of perturbatior®,(#%) depicted in Fig. &) upon and corresponding to complex incremehtOne can clearly

coordinate &
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FIG. 8. Row(a) shows the evolution of perturbation of sn-wave

FIG. 7. (a) Areas of existence of limited perturbations for sn- depicted in row(c) of Fig. 7 and corresponding to the imaginary
wave in the case of purely imaginary incremehtX;|=1 in the  increment Im§=0.7808. Row(b) shows the evolution of pertur-
area below line with circles, whereda,|=1 everywhere.(b) bation of sn-wave that was used for the construction of perturbation
shows the profile of sn-wave fan=0.95. Rows(c) and(d) show  depicted in row(c) of Fig. 7. Localization parameten=0.95. Two-
the profiles of perturbations obtained from linear combinations fordimensional plots show the dependence of perturbation amplitude
Im(8)=0.7808 and Im§)=0.374 25, respectively. For perturbations on the propagation distance.
shown in rows(c) and(d), localization parameten=0.95.

small perturbations of input profiles. The width of instability

see the exponentially growing oscillations of perturbationarea for dn-wave decreases whar-1 and in the limit of
amplitude. strong localization when dn-wave transforms into the set of

Areas of existence of limited perturbations for the case ofocalized bright solitons, it becomes stable. Instability of cn-
sn-wave are presented in FigaY. For real and mixed incre- wave is suppressed fon—0 andm— 1. We showed that the
ments 6 there are no eigenvalues conforming to the condidinearization technique is applicable for the analysis of sta-
tions|\,|=1. This means that sn-wavesgablein the whole  bility of waves with nodes. The method of analysis of stabil-
domain of its existence. It is interesting that nw|=1 in ity of periodic waves developed here is based on the con-
the whole plane 11, 8), whereas\;|=1 in the area lying struction of Cauchy matrix for perturbation vector and
below the line with circlegthis line is well described by the calculation of eigenvalues of this matrix. It enables one to
equation Img§)=(1—n?)/2]. Typical profile of sn-wave is formulate the criteria of existence of limited perturbations
shown in Fig. Tb) whereas characteristic perturbation pro-for a given increment value and hence to make a conclusion
files are depicted in Fig.(€) [perturbation corresponding to about stability or instability of the corresponding cnoidal
vector combinatiorA,(#)] and Fig. 7d). Evolution of per-  waves. This method can be readily applied for the investiga-
turbation presented in Fig.(@ is shown in Fig. &), tion of stability of multicomponent and multicolor
whereas Fig. &) illustrates the evolution of perturbation (1+1)-dimensional cnoidal waves, as well as for
d,(n) that was used for the construction A§(»). In the (24 1)-dimensional waves.
case of sn-wave we once again got the confirmation of the
applicability of linearization technique for the analysis of
stability of cnoidal waves with nodes since frequencies of
oscillations of perturbation amplitudggy coincide for per- Yaroslav V. Kartashov acknowledges support from the
turbationA,( ) that is zero in the wave nodes and perturba-Generalitat de Catalunya. Financial support from CONA-
tion ®,( ) that is nonzero in the wave nodes. CYT under Grant No. 34684-E is gratefully acknowledged

by Victor A. Wsloukh.
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V. CONCLUSION

- - . APPENDIX A
We analyzed the stability of periodic cnoidal waves of

cn-, dn-, and sn-types. It was shown that dn- and cn-waves In this appendix we show that equality [TR 7,7')]
are unstable whereas sn-wave istablewith respect to the =Tr[ 7 (7, 7')] holds for all values of coordinateg and
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n'. It can be easily shown that inverse matiix *(7,n')  Moreover, simple analysis shows that
satisfies the equation 47 Y #u,n")on= _
—J YNn.n")B(n), since matrix J(7n,n') satisfies the TLB(71)B(72)" Bl 7120+ 1) ]=0, (A4
equationd J(n,n' ) dn=B(n) J(n,n'). Analogously to ex- _
pression(11), a general expression for the inverse CauchyTr[B( 1) Bn2) - Blr1an) 1= TIM ) M) - Mmn 1)
matrix can be written in the form of “matrizant:” + M) M 14) N 1920) 1,

)

. N ” K 7 where matrix V() is introduced in Eq.(9). One can see
J (gm)=E+ kz_:l (-1 f ,dﬂlf , Ao from expressiongA4) that in the formulagA2) elements of
= 7 U .
the sums corresponding to odd valuekafre zero, whereas
Mk-1 elements corresponding to even valueskafoincide, since
Xf - AnBm) B(me—1) - Blo1). (—1)>"=1. Thus one can readily conclude that
7 (AD) T A9, 7' )]=T T X n,75'")] for arbitrary » and 7".
Here £ is a 4X4 unity matrix. Note the inverse order of APPENDIX B
arguments of matriceB(7,) under the integral signs in ex-
pression(Al) in comparison with expressiaiil). Consider-
ing traces of matrices(n,7') and 7 (5,7'), one gets

In this appendix we present the whole system of eight
equations whose compatibility condition is Ed6). The first
four are given by Newton’s formulad5):

” n 71 Mk—1 —
THLA m,m')]=4+ 2, f,dﬂlf,dﬂz“'f, d P1=—Ta,

e ’ ’ H(Tpy+Ty)

P2=—=3(11P17 1),
X THLB(71) B(72) - B(mi)], i (B1)
" (A2) P3=—5(T1pa+Tops+Ta),
T 1=+ 3, (~ 0¥ Ty [ Mg :
K k=1 el Rk Pa=—a(T1p3+Topa+Tapy+Ty).

Mk-1 Next four equations are obtained by multiplication of equa-
X J AT B(m) B(me-1)"B(71)]. tion D(P)=0 by P, calculation of traces of resulting ma-
K trix equations, and using propertigg=T _:
It is well known that T{B(7)B(792) - -B(m)]

=TI B (7)) B (n¢_1)---B"(51)]. It can be checked by di- T3+ piTotpaT1+4ps+p,T1=0,
rect substitution that matri8'( ) =K~ 1B(#5) K, where ma-
trix K is given by To+piTi+4patpsTi+paTo=0,
(B2
0 I 1 0 Ty +4p;+poTa+ psTo+ paTa=0,
= I ' (A3) 1T 4P1 T P2liTP3laTPals
7 O 0 -1

4+ piT1+poTo+psTs+paT,=0.

This fact enables us to conclude that o N
The compatibility conditions for these two systems of equa-

T B(71)B(m2)- - Bl 1= T B(m) B(17¢—1)" - B( 1) . tions are given by Eq(16).
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