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Growth by rectified diffusion of strongly acoustically forced gas bubbles in nearly saturated liquids
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The growth or dissolution of small gas bubbles (R0,15 mm) by rectified diffusion in nearly saturated
liquids, subject to low frequencies (20 kHz, f ,100 kHz) and high driving acoustic fields (1 bar,p
,5 bars), is investigated theoretically. It is shown that, in such conditions, the rectified diffusion threshold
radius merges with the Blake threshold radius, which means that a growing bubble is also an inertially
oscillating bubble. On the assumption that such a bubble keeps its integrity up to the shape instability threshold
predicted by single-bubble theory, a numerical estimation and a fully analytical approximation of its growth
rate are derived. On the one hand, the merging of the two thresholds raises the problem of the construction and
self-sustainment of acoustic cavitation fields. On the other hand, the lifetime of the growing inertial bubbles
calculated within the present theory is found to be much shorter than the time necessary to rectify argon. This
allows an alternative interpretation of the absence of single-bubble sonoluminescence emission in multibubble
fields, without resorting to the conventional picture of shape instabilities caused by the presence of other
bubbles.

DOI: 10.1103/PhysRevE.67.036610 PACS number~s!: 47.55.Bx, 43.35.1d, 78.60.Mq
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I. INTRODUCTION

The characteristics of the radial oscillations of a g
bubble in a sound field are mainly governed by three par
eters: the pressure amplitude of the acoustic field, its
quency, and the bubble ambient radius, related to the ma
gas contained in the bubble.

Two distinct dynamic bubble behaviors may be enco
tered: stable cavitation depicts possibly nonlinear, smo
oscillations, whereas inertial cavitation is characterized by
explosive growth of the bubble during the wave rarefact
phase, followed by a violent collapse. For sufficiently lo
frequency and small bubbles~more precisely for bubbles
much smaller than the resonant radius!, a quasistatic argu
ment may be used to derive the frontier between the
behaviors in the parameter space, the so-called Blake thr
old @1,2#. The relevance of this threshold to distinguish tw
different dynamic behaviors has been proved numeric
@3,4#.

The oscillatory convective-diffusive gas transfer betwe
the bubble and the liquid may reverse in some cases
natural tendency of a gas bubble to dissolve under sur
tension. This process known as rectified diffusion origina
from the nonzero average gas transfer between the bu
and the liquid over the expansion and contraction phase
the bubbles@1,5–8#. As surface tension still contributes t
the bubble dissolution, bubble growth occurs when
acoustic pressure exceeds some threshold value. This r
fied diffusion ~RD! threshold also cuts the parameter spa
into two parts: dissolving and growing bubbles.

Each threshold is generally defined as a critical value

*Electronic address: louisnar@enstimac.fr
†Electronic address: fgomezf2002@yahoo.es
1063-651X/2003/67~3!/036610~12!/$20.00 67 0366
s
-
-
of

-
th
n

n

o
sh-

ly

n
he
ce
s
le

of

e
cti-
e

f

the acoustic pressure for a fixed bubble radius. Howe
since the latter is not a free parameter in a cavitation exp
ment, it is more convenient to define a threshold radius fo
fixed acoustic pressure. Such thresholds may serve to
scribe the history of a bubble in the sound field@9#, referred
to as the cavitation cycle~see Ref.@10# for an extensive
discussion!. In nearly saturated liquids and sufficiently high
pressure drives, a commonly accepted scenario is th
small, smoothly oscillating bubble grows by rectified diffu
sion up to the Blake threshold, where it starts oscillati
inertially. In fact, as will be shown in the first part of thi
paper, for near-saturation conditions and low frequencies,
RD and Blake thresholds merge for decreasing bubble r
or, conversely, for increasing driving pressures. This me
that, in order to grow, a bubble should be driven above
Blake threshold and therefore oscillate inertially.

The next question arising is the lifetime of such
inertial-growing bubble, and this raises the issue of the sh
stability of inertial bubbles. Up to the first single-bubb
sonoluminescence~SBSL! experiments@11#, it was generally
accepted that an inertial bubble could only survive a f
collapses before bursting by shape instabilities. However,
lifetime of a SBSL bubble is in itself an experimental pro
of the existence of shape-stable inertial bubbles. This
been confirmed by recent theoretical work dedicated to sh
instabilities @12–15# based on earlier studies@16,17# and
confronted with experimental data in SBSL experime
@18,19#. For example, when submitted to an acoustic pr
sure of 1.5 bar and a frequency of 32.8 kHz@15,19#, any
single bubble smaller than about 5mm should be shape
stable. Since the Blake threshold is about 1mm in this case,
a relatively large range of sizes for shape-stable iner
bubbles is allowed.

There subsists some doubt on the existence of iner
shape-stable bubbles, in the context of multibubble fields,
©2003 The American Physical Society10-1
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O. LOUISNARD AND F. GOMEZ PHYSICAL REVIEW E67, 036610 ~2003!
which the single-bubble shape-stability theory may not
relevant, owing to perturbations caused by neighbor
bubbles@20#. However, several experimental results in
kHz cavitation fields report distributions of bubble ambie
radii ranging from 1mm to 10mm @21,22#, which is in
rough agreement with the above estimation. Therefore,
general hypothesis, we will assume that the instabi
thresholds calculated in the SBSL context keep their valid
in multibubble fields. Although not mentioned explicitly, th
hypothesis of the survival of inertial bubbles to many c
lapses has been used by other investigators dealing with
tibubble fields@21,23#.

In a nearly saturated liquid, the lifetime of the inerti
growing bubbles would therefore correspond to their grow
time by rectified diffusion between the common RD-Bla
threshold (1mm in the above example! and the shape insta
bility threshold (5mm in the above example!. The estima-
tion of this lifetime requires knowledge of the growth rate
an inertial bubble and the second part of this paper is d
cated to this topic. By using the results of Fyrillas and Sz
@8#, the growth rate will be calculated numerically by sca
ning the parameter space and a fully explicit analytical f
mula will also be proposed for practical applications.

To illustrate the theory on a practical example, we w
consider in this paper air bubbles in nearly saturated wa
The following region of the parameter space will be studi
low frequencies~say lower than 100 kHz! and high driving
pressures~from 1 to 5 bars!, which are commonly used con
ditions in sonochemistry and cavitation experiments. In vi
of the order of magnitude of the shape-instability thresh
and of the experimentally measured size distributio
@21,22#, our calculations will be performed for bubble rad
ranging between the Blake threshold and 15mm.

II. THEORY

A. Bubble model

The radial oscillations of a gas bubble in a liquid may
described by the Rayleigh-Plesset~RP! equation

RR̈1
3

2
Ṙ25

1

r
S pg1

R

cl

dpg

dt
24m

Ṙ

R
2

2s

R
2pext~ t ! D .

~1!

In this equationpext(t)5p0(12pcosvt) is the oscillating
sound pressure in the liquid, withv angular frequency,p
dimensionless acoustic pressure, andp0 hydrostatic pressure
r, m, andcl are the density, viscosity, and sound speed
the liquid; s is the surface tension. The gas pressurepg(t)
may be reasonably assumed uniform@24# and to obey a van
der Waals state equation

pg5S p01
2s

R0
D S R0

32h3

R32h3D k

, ~2!

whereR0 is the ambient radius of the bubble andh the van
der Waals hard-core radius. We will also assume that
bubble follows isothermal evolutions (k51). This approxi-
mation may be considered as drastic in view of more co
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plete theories@25,26#, but has been used successfully
Hilgenfeldt et al. @4,12# to derive the phase diagram o
SBSL. In what follows we will make use of the dimensio
less time and dimensionless bubble radius

x5vt, R* 5R/R0 , ~3!

and we define the dimensionless Laplace tension

aS5
2s

p0R0
. ~4!

B. Blake threshold

The expression of the the Blake threshold, separa
smooth oscillating bubbles from inertial ones, may be o
tained by calculating the minimal pressurepext that the
bubble can withstand without fluid motion@1,2#. Expressing
the result as a critical dimensionless acoustic pressure yi

pB511S 4

27

aS
3

11aS
D 1/2

. ~5!

Conversely, for a given acoustic pressurep, a Blake
threshold radius can be obtained by solving Eq.~5!, which is
cubic for aS . The detailed calculation may be found in Re
@4#. Suffice here to note that the parameteraS becomesO(1)
for pB as low as 1.2. This means that Laplace tension
comes important for a bubble near the Blake threshold
dius, for any acoustic pressure greater than 1.2 bar. We
make use of this result in Sec. III B.

C. Rectified diffusion

The asymptotic time-averaged variation of the bubble
content can be calculated by use of the results of Fyrillas
Szeri @8#. In order to solve the convection-diffusion parti
differential equation~PDE! describing the movement of th
dissolved gas, they split the problem into a smooth one,
scribing the rectified mass variation of the bubble, and
oscillatory one, describing the zero-average-mass excha
occurring over one bubble oscillation. On the assumpt
that the time scales of the two process are well separa
they obtained

dmg

dt
54pDR0C0

C*̀ 2^pg /p0&4

I
, ~6!

wheret is the slow-mass-variation time scale (@2p/v), D
is the gas diffusivity in the liquid,C0 is the saturation con-
centration in the liquid separated from gas at pressurep0 by
a plane boundary, andC*̀ 5C` /C0 with C` the gas concen-
tration in the liquid far from the bubble. The quantityI,
whose evaluation will be detailed in Sec. III C, denotes
spatial integral

I 5E
0

1` ds

^~3s1R* 3!4/3&1

. ~7!
0-2
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The weighted averages^ & i occurring in the above expres
sions are defined by

^ f & i5

E
0

2p

f ~x!Ri~x!dx

E
0

2p

f ~x!dx

~8!

and can be calculated from the solutionR* (x) of the RP
equation~1!.

The fraction in expression~6! is the dimensionless
nonlinear-averaged gas concentration gradient betwee
infinitely far point and the bubble wall.

The locus of diffusive equilibrium in the parameter spa
(R0 ,p) is defined by

C*̀ 2^pg /p0&450. ~9!

For sufficient degassing, this equilibrium may turn to
stable. This is the case of a SBSL bubble, which adjusts
ambient radius to the driving level@12#. When it is unstable,
it defines the rectified diffusion threshold: any bubble larg
than this threshold will grow, and any bubble smaller w
dissolve. A successful comparison of Eq.~9! with experi-
mental data for saturated or near-saturated conditions ma
found in Ref.@8# for bubble radii down to 20mm. Besides, in
degassed conditions, the good agreement between the
retical phase diagrams and SBSL data@12,14# supports the
validity of Eq. ~9! also for inertial oscillations.

It should be added that the rigorous approach of Fyri
and Szeri@8# allows us to obtain a uniformly valid expres
sion of the growth rate, even far from the threshold, contr
to earlier results@5,6# whose derivation relied either on linea
oscillations or on near-threshold conditions. We refer the
terested reader to Ref.@8# for an extensive discussion of th
topic.

III. RESULTS

A. Merging of the RD and Blake thresholds

We consider through this paper air bubbles in ambi
water (p051 bar, r51000 kg m23, c51481 m s21, m
51023 Pa s,s50.073 kg s22, h5R0/8.76). The RD thres-
hold was computed by tracking the locus of the points f
filling condition ~9! in the (R0 ,p) plane. For each (R0 ,p)
point, the averagêpg /p0&4 was calculated from Eq.~2! us-
ing the steady-state numerical results of the RP equation

Figure 1 shows the RD threshold, computed from the
equation~thick solid line! for saturated water (C*̀ 51) in a
26.5 kHz acoustic field. Also shown is the threshold cal
lated from the linear theory of Crum and Hansen@7# ~thick
dot-dashed line!: it is readily seen that for bubbles of sma
ambient radii, the linear theory fails predicting the press
threshold value, but for larger bubbles the exact thresh
merges with the linear one, at least in the range of ra
considered here. More surprising is the comparison of
RD threshold with the Blake threshold, also displayed in F
1 ~thick dashed line!: it is seen that the two threshold
03661
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merges for acoustic pressure greater than, say, 1.4 bar
saturated water. Performing the same calculations for slig
degassed water (C*̀ 50.8) yields the same conclusion, a
attested by Fig. 1~the numerical RD threshold is represent
by a thin solid line and the linear one by thin dot-dash
line!. The computation was also repeated for 50 kHz and 1
kHz frequencies, leading to the same conclusion~not
shown!.

This singular result can be interpreted more easily in vi
of the average bubble pressure^pg /p0&4 curves represented
in Fig. 2: the equilibrium points defined by Eq.~9! for a
given gas concentrationC*̀ are the intersection of thes
curves and the horizontal linêpg /p0&45C*̀ . For degassed
water (C*̀ !1, dot-dashed line!, a stable equilibria may be
obtained~right intersection point!, a result largely mentioned

FIG. 1. Exact RD threshold for saturated water (C*̀ 51) calcu-
lated from the RP equation and Eq.~9! ~thick solid line!, Blake
threshold from Eq.~5! ~thick dashed line!, and linear theory RD
threshold calculated from Ref.@7# ~thick dot-dashed line!. The thin
lines represent, respectively, the exact~solid line! and linear~dot-
dashed line! RD thresholds calculated for slightly degassed wa
(C*̀ 50.8).

FIG. 2. Time-average pressure^pg /p0&4 vs ambient radius for
driving pressuresp51.2, 1.3, 1.5, and 2 from top to bottom. Th
horizontal lines represent gas concentrations in the liquid: thin s
line, C*̀ 51; dot-dashed line,C*̀ 50.001. The vertical dashed line
represent the Blake threshold for the different driving pressurep
51.2, 1.3, 1.5, and 2 from right to left. The arrows on the low
curve (p52) indicate bubble growth or dissolution regions.
0-3
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O. LOUISNARD AND F. GOMEZ PHYSICAL REVIEW E67, 036610 ~2003!
in the SBSL literature@3,4#. For C*̀ 51 ~thin solid line!, it
can be seen that the intersection points almost merge with
Blake radius~represented by vertical dashed line for ea
driving pressure!.

More physically, this behavior should be understood as
effect of surface tension which is important for bubbles
small radii @aS5O(1)#. Bubbles lower than the Blake
threshold radius are prevented to expand and stay in a
silinear oscillation state. In this case the average gas pres
^pg /p0&4 is dominated by surface tension and the bub
dissolves. Thus, the only way for a such a small bubble
gain some gas on average over an acoustic cycle is to o
late inertially, which of course is possible if the acous
forcing is sufficiently high.

Conversely, bubbles much larger than the Blake radius
that surface tension plays a negligible role (aS!1), will be
allowed to grow freely for moderate driving pressures, th
rendering the linear theory valid. This is why the exact re
tified diffusion threshold merges with the linear one in t
right part of Fig. 1.

B. Analytical justification

The merging between the RD and Blake thresholds m
be explained by the following analytic arguments. Let us fi
reformulate the threshold condition to make clear the role
surface tension:

C*̀ 2~11aS!^pg /pg0
&450, ~10!

where pg0
5p012s/R0 is the ambient gas pressure in th

bubble.
We first consider the case of smooth quasilinear osc

tions: in this case, the bubble radiusR(t) departs only
slightly from its ambient radiusR0 and so does the bubbl
pressure. Therefore,pg(t).pg0

and we may write

^pg /pg0
&4511e, wheree is a small parameter. The thres

old condition, Eq.~10!, reads in this case

C*̀ 2~11aS!~11e!50, ~11!

which can only be fulfilled ifC*̀ 5O(1) and aS5O(e).
This brings the conclusion that a weakly oscillating bub
can grow only in near-saturated water and for small Lapl
tension.

Now, in the case of an inertial bubble, the average
pressurê pg /pg0

&4 may be shown to scale as@4,27#

^pg /pg0
&45j~R0 /Rmax!

3, ~12!

whereRmax is the maximum radius of the bubble over th
acoustic cycle andj5105/64. SinceRmax is several times
greater thanR0 for inertial cavitation,̂ pg /pg0

&4 is therefore

a small parametere so that the threshold condition now rea

C*̀ 2~11aS!e50 ~13!

and can only be fulfilled ifC*̀ 5O(e): this is the SBSL case
and shows why degassing is necessary to get diffusive e
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librium ~which turns to be stable in some cases!. Conversely,
if C*̀ 5O(1), the quantity C*̀ 2(11aS)e is always posi-
tive, so that the inertial bubble grows.

From the above discussion, the diffusive behavior o
bubble near the Blake threshold forC*̀ 5O(1) may now be
inferred: from Sec. II B,aS5O(1) for a bubble near the
Blake threshold radius. Therefore, the above analysis tell
that ~i! a weakly oscillating bubble dissolves and~ii ! an in-
ertial bubble grows. The RD threshold is thus the limit b
tween smooth and inertial oscillations, and this is precis
the definition of the Blake threshold.

The occurrence of crossing between the RD and Bl
thresholds has been mentioned in the literature@28#, but to
our knowledge, the merging of the two curves for satura
water in the present parameter range has never been repo

Having shown that a growing bubble in near saturat
water should also be an inertial bubble, we now turn to c
culate its growth rate.

C. Growth rate

1. Approximation for integralI

The calculation of the growth rate involves the evaluati
of the definite integralI. To our knowledge, only two refer
ences report results involving the computation of this qu
tity: Fyrillas and Szeri@8# reports growth rates without indi
cating the method of calculation; Hilgenfeldtet al. @12#
mention its slow convergence and propose an empirical
mula involving adjustable parameters with few compu
tional details. We present below both approximate analyt
and numerical calculations of this integral for a large para
eter set.

The derivation of the analytical approximation follows th
spirit of Ref. @4#: we propose a scaling law for integralI in
terms of the maximum radius attained by the bubble. T
underlying idea of our derivation is made clear in Fig.
which displays, for a typical inertial cavitation bubble, th
bubble radiusR* (x) and the bubble volumeR* 3(x), which
is the quantity involved in expression~7!. It is seen that the
global pulse like shape of the bubble volume is dominated
the expansion and collapse phases and that the afterbou
are of minor importance. Thus, it may be expected that
time average involved in expression~7! will be controlled
mainly by Rmax* , but also by the half-widthDx of the
‘‘pulse.’’ We therefore approximate the bubble volume by
parabola of maximum (Rmax* )3 and half-widthDx, and intro-
duce this approximate bubble dynamics in Eq.~7!. The de-
tailed calculation is shifted in Appendix A and it is show
that integralI is written approximately,

I .
1

3Rmax*

A

~xm2ax1!e
, ~14!

whereRmax* 5Rmax/R0 is the dimensionless maximum bubb
radius,xm is the time of maximum expansion of the bubbl
x15arccos(1/p) is the zero crossing of the acoustic pressu
@see Fig. 3~c!#, anda is a correcting factor to take into ac
count the nonparabolic shape ofR* 3(x). Both parametersA
0-4
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ande originate from the power-law fit of an integral involv
ing hypergeometric functions@see Eq.~A11!#.

In order to obtain a full analytical expression forI, which
can be evaluated in terms of the parameters (R0 , p, v), we
further make use of approximate expressions ofRmax* andxm

obtained by Hilgenfeldtet al. @4#. The method used by thes
authors and the refined formulas we use in this paper
reported in Appendix C. We simply recall below the gene
form of these approximate expressions:

Rmax* 5F f ~p!1S 12
4

9A3

aS

p21D g~p!S Rres

R0
D 2G 1/2

,

~15a!

xm5h~p!, ~15b!

whereRres5(3p0 /rv2)1/2 is the isothermal resonant radiu
and f , g, and h are given by Eqs.~C3a!, ~C3b!, and ~C6!,
respectively.

Besides, the numerical calculation ofI is obtained by
scanning the parameter space and solving the RP differe
equation up to a steady state. The bubble dynamicR* (x)
thus obtained is then used to calculate integral~7!, using a
Gauss quadrature method described in Appendix B.

It is shown in Appendix A that the set of approximatio
~14! and ~15! shows excellent agreement with the exact n
merical value of integralI ~Figs. 7 and 8!.

2. Approximation for the growth rate

With the above analytical formula forI, the growth rate
itself may now be calculated easily. From Eq.~6!, the slow
time variation of the bubble radius reads@7#

FIG. 3. ~a! Bubble radiusR* , ~b! bubble volumeR* 3, and~c!
dimensionless driving pressurepext(x)/p05(12pcosx). The case
considered is a 5mm air bubble in water andp51.3. The timesx1

andxm are, respectively, the instant of zero crossing of the driv
pressure and the time of maximum expansion of the bubble.
dashed curve in~b! is the parabolic approximation, Eq.~A5!, with
Dx defined by Eq.~A13!.
03661
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dR0

dt
5

DRGTC0

p0

1

R0~112/3aS!

C*̀ 2^pg /p0&4

I
. ~16!

Using Eq.~14! for integral I and Eq.~12! to approximate
the average gas pressure, we get

dR0

dt
5

3

A

DRGTC0

p0
@C*̀ 2~11aS!jRmax* 23#

3
Rmax*

R0~112/3aS!
F1~p!, ~17!

whereRmax* is calculated from Eq.~15a! and

F1~p!5@h~p!2aarccos~1/p!#e. ~18!

Figure 4 displays a comparison between the exact num
cal result, calculated by injecting the RP solution in Eq.~16!
~thick solid line! and the approximation~17! ~thin solid line!.
It is seen that our approximation yields very good results
acoustic pressures up to 5 bars and ambient radii up
20 mm, apart for the wiggles appearing on theR0510 mm
and R0520 mm numerical curves. These wiggles find the
origin in the mode locking of the bubble afterbounces@4#
and are not accounted for by approximation~15a! of Rmax* .

In the specific case of cavitation field experiments, wh
generally the liquid is gas saturated@C*̀ 5O(1)#, the above
formula may be further simplified: as mentioned above,
inertial cavitation,Rmax* @1, so that it may be neglected i
the brackets of Eq.~17!. It is interesting to note that this
approximation should hold only far from the RD thresho
but as seen in the first section, the RD and Blake thresh
are the same. Since the average gas pressure curves ne
threshold are very steep~see Fig. 2!, any bubble driven just
above this threshold may be considered far from it, in
sense that̂pg /p0&4@C*̀ .

Moreover, for sufficiently low frequency, the Blake radiu
is much smaller than the resonant radius so thatR0!Rresand
f (p) may be safely neglected in Eq.~15a!. Replacing the
obtained value forRmax, we get the approximation

g
e

FIG. 4. Calculated value of the bubble growth rate for differe
bubble sizes from the exact result~16! ~thick solid line!, from Eq.
~17! ~thin solid line!, from Eq.~19! ~dashed line!, and from Eq.~21!
~dot-dashed line!. From top to bottom:R053, 5, 10, and 20mm.
The left figure is a magnification of the right one.
0-5
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dR0

dt
5

3

A

DRGTC`

p0

AS 12
4

9A3

aS

p21D
~112/3aS!

Rres

R0
2

F2~p!,

~19!

where

F2~p!5Ag~p!@h~p!2aarccos~1/p!#e. ~20!

For sufficiently largep and largeR0, the square root may
be further replaced by 1, yielding the simpler expression

dR0

dt
5

3

A

DRGTC`

p0

1

~112/3aS!

Rres

R0
2

F2~p!. ~21!

Figure 4 also shows the growth rates given by Eqs.~19!
~dashed line! and ~21! ~dot-dashed line!. Both approxima-
tions yield acceptable results for sufficiently high drive le
els and small bubble radii, as expected by neglecting te
of orderR0 /Rres.

3. Frequency dependence

Equation~21! suggests that the growth rate is proportion
to the resonant radius and therefore scales as 1/v. This owes
to the decrease of the bubble expansion ratio for increa
frequencies. To check this scaling and explore the valid
range of our approximation, both numerical and analyti
computations were repeated for frequencies of 50 kHz
100 kHz. The results are displayed in Fig. 5 and confirm t
frequency dependence. Clearly, both approximations~19!
and ~21! ~dashed line and dot-dashed line, respectively! be-
come worse, since the resonant radius decreases with
quency, so that the approximationR0 /Rres!1 becomes un-
justified. However, we emphasize that our full analytic
formula~17! ~thin solid line in Fig. 5! still yields an excellent
approximation for the bubble growth rate at these high f
quencies. The noisy features of the numerical curves w
found to originate from period-doubling bifurcations of th
bubble dynamic@29–31#. In this case, rigorously, the tim
averages used in the calculation of the growth rate shoul
calculated on the smallest period of the system. We did
pursue further such a refinement, since it can be seen
even in this case, Eq.~17! still yields acceptable results.

FIG. 5. Calculated value of the bubble growth rate for differe
frequencies:~a! f 526.5 kHz~same as Fig. 4!, ~b! f 550 kHz, and
~c! f 5100 kHz. The line-style conventions are the same as Fig
03661
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4. Estimation of the growth time

Finally, in view of practical applications, it is interestin
to calculate the time necessary for an inertial bubble to gr
between two ambient radiiR1 andR2. To that aim, the ap-
proximate expression of the growth rate~21! may be inte-
grated analytically, which yields

Dt~R1 ,R2!5
A

9

p0

DRGTC`

1

F2~p!Rres

3FR2
3S 11

2s

p0R2
D2R1

3S 11
2s

p0R1
D G .

~22!

Thus we get the surprisingly simple result that, apart from
surface tension correction, the growth time of an inert
bubble between two sizes is directly proportional to the d
ference between the final and initial volume. To take a pr
tical example, we calculate the time necessary for a bubbl
grow from 1 mm to 5 mm, the former being roughly of the
order of the Blake threshold~and therefore of the RD thresh
old! and the latter corresponding to an approximate value
the shape instability threshold for drive levels of the order
1.5 bar@15#. The results are presented in Fig. 6 which re
resents the growth time in numbers of acoustic cycles for
three frequencies 26.5 kHz, 50 kHz, and 100 kHz.

Although the value of the fragmentation threshold is pro
ably lower than 5mm for pressures higher than 1.5 bar, t
present calculation yields an order of magnitude of the li
time of a growing inertial bubble: for a 26.5 kHz frequenc
and an acoustic pressure ranging between 1.2 and 5 bars
growth time ranges approximately from 20 to 150 acous
cycles.

IV. DISCUSSION

The above results bring several immediate conseque
for multibubble fields in saturated water. First, since the r
tified diffusion threshold radius merges with the Bla
threshold radius~for acoustic pressures greater than 1.4 b

t

4.

FIG. 6. Growth time between 1mm and 5mm of an air bubble
in water expressed in numbers of acoustic cycles, calculated f
Eq. ~22!. From bottom to top:f 526.5 kHz, f 550 kHz, and f
5100 kHz.
0-6
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GROWTH BY RECTIFIED DIFFUSION OF STRONGLY . . . PHYSICAL REVIEW E67, 036610 ~2003!
see Fig. 1!, the existence of growing smoothly oscillatin
bubbles is unlikely. This result casts some doubts on the
of rectified diffusion to initiate the cavitation cycle at hig
drive levels. Indeed, a small gas nucleus escaping fro
solid crevice or a fragmentation debris falling below t
common threshold would dissolve and never become in
tial. Coalescence of such dissolving microbubbles driven
der the Blake-RD threshold may constitute an alterna
scenario of the construction and sustainment of the bub
field. This raises the issue of the dynamical competition
tween dissolution, which tends to destroy the bubble po
lation, and coalescence, which would restore bubbles ab
the unique Blake-RD threshold.

In addition, the authors suggest that the above results s
a new light on the absence of SBSL emissions in multibub
fields. Rectification of argon in air bubbles has been pro
essential to obtain SBSL@32,33# and, as proposed by Matul
and Crum @32#, ‘‘multibubble sonoluminescence bubble
~MBSL! probably do not survive for more than a few cycle
so that argon rectification cannot occur in saturated mu
bubble fields. The point we would like to discuss is the re
son for such a short lifetime of cavitation field bubbles. It
generally attributed, without clear theoretical grounds,
early asymmetrical collapses caused by perturbations
neighboring bubbles@20#, which would burst the bubble afte
a few collapses. Now, our calculation of the growth tim
from the Blake threshold to the shape instability thresh
yields an order of magnitude of tens or acoustic cycles
26.5 kHz acoustic fields. This is still much lower than t
time necessary to rectify argon~several thousands of acoust
cycles following Ref.@32#! and may also explain why SBS
cannot be observed in multibubble fields: we propose that
locus of shape instability of a cavitation field bubble cou
be the same as for a SBSL bubble~of course in the same
conditions of amplitude and frequency!, but that a cavitation
field bubble, owing to the high gas concentration, grows
to this locus too rapidly to rectify argon. Therefore, our i
terpretation differs from the conventional picture in that t
shape instabilities destroying the cavitation bubbles need
be ascribed to the presence of other bubbles.

It might be argued that the case of a diffusively unsta
SBSL bubble @12,34# is apparented to cavitation fiel
bubbles, as it also undergo cycles of growth phases follow
by a fragmentation. However, unstable SBSL appears in
gassed water and the growth time in such conditions is m
larger. Following Fig. 11 of Ref.@12#, this time ranges be
tween 2500 and 16 000 cycles, depending on the degas
level, which is of the order of magnitude of the argon rec
fication time@32#. Therefore argon rectification can still tak
place for unstable SBSL.

Besides, it has been mentioned that the background e
sion spectrum of MBSL bubbles shares some similari
with the SBSL spectrum, which would indicate the presen
of a few SBSL-like bubbles in cavitation fields@35,36#. If, as
suggested in this paper, such SBSL emission would be
ited by the short lifetime of growing inertial air bubbles, th
use of higher frequencies would allow larger lifetimes,
attested by Eq.~22!, and may allow a greater number o
growing inertial bubbles to rectify argon before they hit t
03661
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shape instability threshold. The author also share Matula
co-worker’s suggestion@35# of MBSL experiments in suffi-
ciently degassed liquids in order to enlarge the lifetime of
bubble.

It should be mentioned that the above results rely on
assumption of a unique pressure amplitudep, which is unre-
alistic in the case of multibubble fields, owing to standin
wave effects. In fact, bubbles feel different drive levels
they travel in the acoustic field. A typical phenomenon
lated to this issue is the formation of filamentary stream
structures investigated by Lauterborn and co-work
@23,37,38#. If, as suggested by these authors, the bubb
constituting these filaments are inertial bubbles, wh
should be the case in view of the drive levels reported,
above theory predicts that these bubbles should be grow
Furthermore, their growth might be further accelerated
they approach pressure antinodes under the influence
Bjerknes forces. From the above estimation, their lifetim
would amount to several tens of cycles until they hit t
shape stability threshold and burst. This raises the ques
of whether the bubbles constituting the filaments keep th
spherical shape. It should be added that bubble collisi
may also restrict the bubble lifetime. Indeed, from the resu
of Luther et al. results@37#, it can be conjectured that th
time between collisions in a multibubble field configuratio
is of the order of hundreds of periods, so that this proc
may compete with the above-described one. In view of
time resolution of their experiment, the authors neither
clude that, on their way to the pressure antinode, bubb
may split off microbubbles. Numerical simulation may he
to obtain a clear picture, and taking into account rectifi
diffusion in theoretical models of this phenomenon@23# may
be a simpler matter by using the analytical formulas p
posed in the present paper.

Besides, it is known that cavitation itself produces so
level of degassing of the liquid, so that the quantityC*̀ in the
above expressions may decrease slowly during an exp
ment. Taking a generic value of 80% saturation at the end
the experiment, Eq.~22! shows that the growth time would
increase by a factor of 5/4, which does not change sign
cantly the above conclusions.

Concerning the estimation of the surface instabil
threshold, one might argue that the choice of 5mm is rather
rough, in view of the wide parameter range considered h
Following Lin et al. @15# ~see their Fig. 2, dot-dashed curve!,
direct numerical simulation at 32.8 kHz yields this order
magnitude for drive levels ranging between 1.2 and 1.6 a
in agreement with experimental results@19#. For higher-
pressure levels, the surface instability threshold radius
probably lower, so that our estimation of the bubble lifetim
for 20 kHz frequencies is probably overestimated, which
inforce our conclusion. Conversely, for higher frequenci
the authors are not aware of reported calculated or meas
data, apart from the SBSL phase diagrams calculated
Prosperetti and Hao@14#. Their Fig. 19 suggests in indirec
form that the surface instability threshold increases with f
quency. This would mean that our estimation of the bub
lifetime for 50 and 100 kHz may be underestimated, at le
for moderate drive levels, and further supports our sugg
0-7
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O. LOUISNARD AND F. GOMEZ PHYSICAL REVIEW E67, 036610 ~2003!
tion of possible higher SBSL-like emission for higher dri
frequencies. Real calculations of the surface instabi
threshold at such frequencies would allow a firmer conc
sion.

Finally, we would like to discuss the validity of th
bubble model used throughout this paper. Concerning
isothermal assumption, we recall that the growth rate
mainly dominated by the expansion phase of the bub
During this expansion, the liquid inertia predominates a
the gas pressure is very low~and is indeed neglected in th
analytical approach of the expansion phase in Ref.@4#!, so
that it should be quasi-insensitive to thermal effects ins
the bubble. There exists of course a frequency limit to t
assumption since the linear and nonlinear resonance
approach the Blake radius for increasing frequency. T
may be put on more quantitative ground by repeating
above calculations by switching from isothermal to adiaba
behavior when the heat-diffusion time scale becomes sm
@39#.

Vapor exchange was also neglected in the present ca
lations. Recent calculations show that water may be trap
in the bubble during the collapse, mainly owing to fini
diffusion between the center and the wall of the bubble, a
also to nonequilibrium phase change@26#. This water-
trapping process may influence the bubble growth ra
which in our approach is only due to gas accumulation,
its correct representation would also require the modeling
the chemical reactions occurring in the bubble and the di
sion of the reaction products out of the bubble.

V. CONCLUSION

The rectified diffusion threshold has been computed
numerical simulations of the Rayleigh-Plesset equation,
small bubbles (R0,15 mm) and low frequency~20 kHz
, f , 100 kHz! in a strong acoustic field~1 bar ,p,5
bars!. It appears that for near-saturated water, a grow
bubble is necessarily oscillating inertially.

The growth rate for such growing inertial bubbles has a
been calculated, assuming that such bubbles may keep
integrity up to the shape instability threshold inferred fro
single-bubble theory. We also derived a fully explicit analy
cal formula for the growth rate, showing excellent agreem
with the exact numerical solution in a wide parameter ran

The merging of the two thresholds in near-saturat
bubble-field experiments raises the question of how
crobubbles driven under this single threshold can contrib
to the construction of the cavitation field. Coalescence w
proposed as a competing process to drive small nuclei ab
the common threshold.

An order of magnitude of the lifetime of growing inertia
bubbles, from their inception at the Blake threshold, up
the instability threshold, has been calculated. It has b
found to be much shorter than the time necessary to rec
argon. It was therefore suggested that the non occurrenc
single-bubble sonoluminescence emission in multibub
fields may be due to this rapid growth phase, without invo
ing any shape instability process caused by the presenc
neighboring bubbles, as generally stated in the literature.
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difference between single-bubble and multibubble emiss
has thus been interpreted in an alternative framework, ba
on the most immediate difference between the two situatio
the gas saturation.

Finally, our analytical expression of the growth rate
ready to use to account for the rectified diffusion in theor
ical studies of cavitation clouds based on population bala
models@38,40# or particle models@23#. It is interesting to
note that the initial rather crude approximation of the bub
volume yields such a good approximation. This is due to
fact that the bubble dynamics only occurs as time average
the expression of the growth rate. The method of approxim
tion used in this paper is therefore promising for derivi
analytical formulas of other quantities involving time ave
ages, such as primary and secondary Bjerknes forces
example. This may be the matter of a future work.
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APPENDIX A: APPROXIMATE FORMULA
FOR INTEGRAL I

First, for simplicity, we will denote byRmax* the expansion
ratio:

Rmax* 5
Rmax

R0
. ~A1!

In order to extract the main dependency of the integral
Rmax* , we first make the following variable change in integr
~7!:

3s5~Rmax* !3u ~A2!

to obtain

I 5
1

3Rmax*
E

0

1` du

G~u!
, ~A3!

where

G~u!5
1

2pE0

2pFu1S R* ~x!

Rmax* D 3G 4/3

dx. ~A4!

We first focus on finding an approximation of the tim
averageG(u). It only involves the quantityR* (x)/Rmax*
which by construction is bound in@0,1#. Figure 3~b! sug-
gests that we could approximateR* 3(x) by a parabola of
maximum (Rmax* )3 betweenxm2Dx andxm1Dx, and by 0
anywhere else, so that we set
0-8
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GROWTH BY RECTIFIED DIFFUSION OF STRONGLY . . . PHYSICAL REVIEW E67, 036610 ~2003!
R* 3~x!

.H ~Rmax* !3F12S x2xm

Dx D 2G if x2xmP@2Dx,Dx#,

0 elsewhere.

~A5!

The time intervalDx should be chosen of the order of th
characteristic time for the bubble expansion. We report
ther below the appropriate choice for this quantity.

We now calculate the time average~A4! using this ap-
proximation. Cutting the acoustic cycle@0,2p# into three
subintervals @0, xm2Dx#, @xm2Dx,xm1Dx#, and @xm
1Dx,2p# we obtain

G~u!.~12Dx/p!u4/31
1

2pExm2Dx

xm1Dx

3Fu112S x2xm

Dx D 2G4/3

dx. ~A6!

Then, by the variable change

v5S x2xm

Dx D 2

, ~A7!

the second integral in Eq.~A6! becomes

Dx

p
~u11!4/3E

0

1S 12
v

u11D 4/3 dv

Av
, ~A8!

which may be recognized as the integral form of a hyperg
metric function:

1F2~a,b;c;z!5
G~c!

G~b!G~b2c!
E

0

1vb21~12v !c2b21

~12vz!a
dv.

~A9!

We finally obtain, as an approximation of the time-avera
quantity ~A4!

G~u!.S 12
Dx

p Du4/31
Dx

p
~u11!4/3

31F2S 2
4

3
,
1

2
;
3

2
;

1

u11D , ~A10!

and integralI may be written as

I .
1

3Rmax*
E

0

1`

3
du

S 12
Dx

p Du4/31
Dx

p
~u11!4/3

1F2S 2
4

3
,
1

2
;
3

2
;

1

u11D .

~A11!
03661
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Any further progress may look difficult, but it is worth
recalling thatDx is of the order of magnitude of the expan
sion time of the bubble, so that it belongs anyway to t
interval @0,p# ~except for very-high-pressure drives!. We
thus calculated the integral~A11! for values of the paramete
Dx in this interval. The numerical method used is presen
in Appendix B. Fitting the result by a power law we finall
obtain

I .
1

3Rmax*

A

Dxe
, ~A12!

with e50.37 andA50.90. We emphasize that this fit is no
linked to any specific choice of parametersR0 or p and that
the approximate expression~A12! is accurate provided the
expansion phase dominates the bubble dynamics, that
say for any inertial bubble.

The last step is to choose the intervalDx so that Eq.
~A12! yields a good approximation ofI. It should be said
first that the dependence of the integralI on the bubble
dynamics is mainly caught by the scaling lawI

FIG. 7. Comparison of the exact value ofI calculated numeri-
cally ~thick solid line! with approximate expressions ofI for p
51.2 ~upper set of curves!, p51.5 ~middle!, and p52 ~lower!.
Thin solid line: Eq.~14! with Rmax* andxm calculated from the RP
equation. Dot-dashed line: Eq.~14! with xm calculated from Eq.
~15b!. Dashed line: Eq.~14! with Rmax* andxm calculated from Eqs.
~15a! and~15b!. The three vertical thin dashed curves represent
Blake radii corresponding top52, 1.5, and 1.2~from left to right!.

FIG. 8. Same as Fig. 7 with driving pressure in abscissa
fixed R0. From bottom to top:R053, 5, and 10mm.
0-9
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O. LOUISNARD AND F. GOMEZ PHYSICAL REVIEW E67, 036610 ~2003!
5O„(Rmax* )21
… and that the dependence onDx is weaker, as

attested by Eq.~A12!. As mentioned above, the length of th
interval is of the order of the expansion phase of the bub
which was studied analytically in Ref.@4# ~see also Appendix
C!. We choose

Dx5xm2ax1 , ~A13!

wherexm is the time of maximum expansion of the bubb
x15arccos(1/p) is the zero crossing of the acoustic press
@see Fig. 3~c!#, anda is a correcting factor to take into ac
count the nonparabolic shape ofR* 3(x). The final approxi-
mation of I was found weakly sensitive to the precise val
of a. A value ofa50.6 yielded an excellent uniform agree
ment over the parameter range studied. Combining E
~A12! and ~A13! yields the final result, Eq.~14!.

Figure 7 shows the evolution of the integralI vs R0, cal-
culated directly from the RP equation~thick solid line! and
from the approximate expression~14!, for which the param-
etersRmax* andxm were extracted from the numerical solutio
of the RP equation~thin solid line!. It is seen that the two
curves are in excellent agreement in most of the param
range above the Blake threshold~represented by the dashe
vertical lines for eachp value in Fig. 4!. Figure 8 displays
the same quantities withp in abscissa for fixedR0.

Figures 7 and 8 also show the values ofI calculated from
~i! Eqs.~14!–~15b!, the expansion ratioRmax* being deduced
from the numerical RP solution~dot-dashed line!; ~ii ! from
the fully analytical set of equations~14!, ~15a!, and ~15b!
~dotted line!. It appears that the latter choice yields an exc
lent, fully analytic approximation forI, except below the
Blake threshold, where the approximation~15a! of the ex-
pansion ratio becomes less accurate.

APPENDIX B: NUMERICAL METHOD

The numerical method was designed to calculate both
exact integralI given by Eq.~7! and the approximate on
~A11!. In both cases, we are to compute integrals of the fo

J5E
0

1` du

H~u!
, ~B1!

whereH(u) is either given by Eq.~A4! or by Eq.~A10!. The
integral~B1! is first transformed to an integral from21 to 1
by the variable change

x52e2u21, ~B2!

to obtain

J5E
21

1 dx

~11x!HF2 lnS 11x

2 D G . ~B3!

Then the integral was recast to fit to a Gauss-Jac
quadrature formula
03661
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E
21

1

~12x!a~11x!bg~x!dx5 (
n51

N

wng~xn!, ~B4!

wherewn are the weights andxn the evaluation points, andg
reads

g~x!5
1

~12x!a~11x!b11HF2 lnS 11x

2 D G . ~B5!

The choice ofa andb is free ~provided they are greate
than21) but good convergence of Gauss formulas stron
depends on the polynomial character of functiong. We adjust
thea andb exponents by testing the polynomial character
g for H given by Eq.~A10!. Figure 9 shows the evolution o
g with a50 andb520.8 for Dx50.1, 0.3, and 0.5. It is
seen that with these values, the function is very smoo
which ensures the quality of the Gauss-Jacobi formula.

Equation~B4! was therefore used with such values ofa
andb for the evaluation of both integrals~A3! and~A11!. A
convergence study showed that 11 terms in the sum~B4!
were sufficient in all cases.

APPENDIX C: APPROXIMATE FORMULAS
FOR xm AND Rmax*

Hilgenfeldt et al. @4# showed that during the expansio
phase, the gas-pressure, radiation, and viscous terms c
be neglected in the RP equation, so that it could be redu
to the simpler form

RR̈1
3

2
Ṙ25

p0

r Fpcosvt2S 11
aS

K~p! D G , ~C1!

where the last term accounts for surface tension effects, w
aS52s/p0 /R0. They observed numerically thatRR̈!Ṙ for
vtP@2x1 ,x1#, while RR̈@Ṙ for vtP@x1 ,xm#, where
x15arccos(1/p) andxm is the time of maximum expansio
of the bubble~see Fig. 3!. Further observing thatRR̈1Ṙ2

5d2(R2/2)/dt2, the simplified ordinary differential equatio
~ODE! ~C1! could be integrated in these intervals. By matc
ing the boundary conditions at2x1 , x1 , andxm , they ob-
tained the following expressions for the maximum radius a
the time of maximum expansion@41#:

FIG. 9. Evolution of functiong in the interval@21,1# for Dx
50.2p, 0.6p, andp ~from top to bottom!.
0-10
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Rmax* 5 f ~p,xm!1g~p,xm!F12
4

9A3

aS

p21GRres
2

R0
2

,

~C2a!

psinxm2xm1
1

3
~psinx12x1!13z2S R0

Rres
D 2

50,

~C2b!

where z51.6 is an adjustable parameter,Rres
5(3p0 /rv2)1/2 is the isothermal resonant radius, and fun
tions f andg read

f ~p,xm!5z2@112~xm1x1!#, ~C3a!

g~p,xm!5
2

3 F12pcosxm2
1

2
~xm

2 2x1
2 !

1
1

3
~psinx12x1!~xm13x1!G . ~C3b!

Equation~C2b! is implicit in xm and Hilgenfeldtet al. @4#
deduced several particular cases for either small or large
ues ofp. Here, we seek an explicit approximation uniform
valid at least in the intervalpP@1, 5#. We follow the method
of Ref. @4# by expandingxm aroundp/2, but here, we use a
expansion up to second order and obtain forxm,

xm5
p

2
1

A11p@Q~p!2p16z2R0
2/Rres

2 #21

p
, ~C4!

where

Q~p!52p1
2

3
~psinx12x1!. ~C5!
or

n,

,

J.

03661
-
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In order to eliminate the dependence ofxm in R0, we
further neglect theR0

2/Rres
2 term in the square root of Eq

~C4!, since for low frequencies bubbles near the Bla
threshold are much smaller than the resonant radius, and
finally get

xm5h~p!5
p

2
1

A11p@Q~p!2p#21

p
. ~C6!

Replacingxm by Eq. ~C6! in Eqs. ~C3a! and ~C3b!, Eq.
~C2a! becomes an analytical expression forRmax* , which is
used throughout this paper. The result~dashed line! is com-
pared to numerical exact solution~solid line! in Fig. 10: the
two curves are indistinguishable. Also shown is the appro
mation obtained by takingxm5p in Eq. ~C2a! ~dot-dashed
line! @4#. It is seen that expandingxm aroundp/2 up to the
second order, as we did here, improves drastically the
proximation for largerp.

FIG. 10. Expansion ratioRmax* calculated from the numerica
solution of the RP equation~solid line! and from approximation
~C2a!–~C6! ~dashed line! for R053 mm, 5 mm, and 10mm ~from
top to bottom!. The dot dashed curves are calculated from Eq.~C2a!
with xm5p ~see Ref.@4#!.
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