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Growth by rectified diffusion of strongly acoustically forced gas bubbles in nearly saturated liquids
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The growth or dissolution of small gas bubbleR,& 15 wm) by rectified diffusion in nearly saturated
liquids, subject to low frequencies (20 k<100 kHz) and high driving acoustic fields (1 kap
<5 bars), is investigated theoretically. It is shown that, in such conditions, the rectified diffusion threshold
radius merges with the Blake threshold radius, which means that a growing bubble is also an inertially
oscillating bubble. On the assumption that such a bubble keeps its integrity up to the shape instability threshold
predicted by single-bubble theory, a numerical estimation and a fully analytical approximation of its growth
rate are derived. On the one hand, the merging of the two thresholds raises the problem of the construction and
self-sustainment of acoustic cavitation fields. On the other hand, the lifetime of the growing inertial bubbles
calculated within the present theory is found to be much shorter than the time necessary to rectify argon. This
allows an alternative interpretation of the absence of single-bubble sonoluminescence emission in multibubble
fields, without resorting to the conventional picture of shape instabilities caused by the presence of other
bubbles.
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[. INTRODUCTION the acoustic pressure for a fixed bubble radius. However,
since the latter is not a free parameter in a cavitation experi-
The characteristics of the radial oscillations of a gasment, it is more convenient to define a threshold radius for a
bubble in a sound field are mainly governed by three paramfixed acoustic pressure. Such thresholds may serve to de-
eters: the pressure amplitude of the acoustic field, its frescribe the history of a bubble in the sound fig®d, referred
quency, and the bubble ambient radius, related to the mass tf as the cavitation cyclésee Ref.[10] for an extensive
gas contained in the bubble. discussion In nearly saturated liquids and sufficiently high-
Two distinct dynamic bubble behaviors may be encounpressure drives, a commonly accepted scenario is that a
tered: stable cavitation depicts possibly nonlinear, smootlsmall, smoothly oscillating bubble grows by rectified diffu-
oscillations, whereas inertial cavitation is characterized by asion up to the Blake threshold, where it starts oscillating
explosive growth of the bubble during the wave rarefactioninertially. In fact, as will be shown in the first part of this
phase, followed by a violent collapse. For sufficiently low- paper, for near-saturation conditions and low frequencies, the
frequency and small bubble@nore precisely for bubbles RD and Blake thresholds merge for decreasing bubble radii
much smaller than the resonant radjus quasistatic argu- or, conversely, for increasing driving pressures. This means
ment may be used to derive the frontier between the twdhat, in order to grow, a bubble should be driven above the
behaviors in the parameter space, the so-called Blake thresBlake threshold and therefore oscillate inertially.
old [1,2]. The relevance of this threshold to distinguish two The next question arising is the lifetime of such an
different dynamic behaviors has been proved numericallynertial-growing bubble, and this raises the issue of the shape
[3.4]. stability of inertial bubbles. Up to the first single-bubble
The oscillatory convective-diffusive gas transfer betweensonoluminescencé&SBSL) experiment$11], it was generally
the bubble and the liquid may reverse in some cases thaccepted that an inertial bubble could only survive a few
natural tendency of a gas bubble to dissolve under surfaceollapses before bursting by shape instabilities. However, the
tension. This process known as rectified diffusion originatedifetime of a SBSL bubble is in itself an experimental proof
from the nonzero average gas transfer between the bubbt# the existence of shape-stable inertial bubbles. This has
and the liquid over the expansion and contraction phases dfeen confirmed by recent theoretical work dedicated to shape
the bubbleqd1,5—-8. As surface tension still contributes to instabilities [12—15 based on earlier studigd6,17] and
the bubble dissolution, bubble growth occurs when theconfronted with experimental data in SBSL experiments
acoustic pressure exceeds some threshold value. This recft8,19. For example, when submitted to an acoustic pres-
fied diffusion (RD) threshold also cuts the parameter spacesure of 1.5 bar and a frequency of 32.8 kHz5,19, any
into two parts: dissolving and growing bubbles. single bubble smaller than about/&m should be shape
Each threshold is generally defined as a critical value obtable. Since the Blake threshold is abouytfn in this case,
a relatively large range of sizes for shape-stable inertial
bubbles is allowed.
*Electronic address: louisnar@enstimac.fr There subsists some doubt on the existence of inertial,
TElectronic address: fgomezf2002@yahoo.es shape-stable bubbles, in the context of multibubble fields, for
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which the single-bubble shape-stability theory may not beplete theorieq25,26, but has been used successfully by
relevant, owing to perturbations caused by neighboringHilgenfeldt et al. [4,12] to derive the phase diagram of
bubbles[20]. However, several experimental results in 20SBSL. In what follows we will make use of the dimension-
kHz cavitation fields report distributions of bubble ambientless time and dimensionless bubble radius
radii ranging from 1um to 10um [21,22, which is in
rough agreement with the above estimation. Therefore, as a x=owt, R*=R/Ry, 3
general hypothesis, we will assume that the instability
thresholds calculated in the SBSL context keep their validityand we define the dimensionless Laplace tension
in multibubble fields. Although not mentioned explicitly, the
hypothesis of the survival of inertial bubbles to many col- 20
lapses has been used by other investigators dealing with mul- as= PoRo’
tibubble fields[21,23.

In a nearly saturated liquid, the lifetime of the inertial
growing bubbles would therefore correspond to their growth B. Blake threshold
time by rectified diffusion between the common RD-Blake  The expression of the the Blake threshold, separating
threshold (1xm in the above examplend the shape insta- smooth oscillating bubbles from inertial ones, may be ob-
bility threshold (5um in the above exampleThe estima-  tained by calculating the minimal pressupg,, that the
tion of this lifetime requires knowledge of the growth rate of pubble can withstand without fluid motidt,2]. Expressing

an inertial bubble and the second part of this paper is dedithe result as a critical dimensionless acoustic pressure yields
cated to this topic. By using the results of Fyrillas and Szeri

[8], the growth rate will be calculated numerically by scan- 4 a%
ning the parameter space and a fully explicit analytical for- ps=1+ 271+ as
mula will also be proposed for practical applications.

To illustrate the theory on a practical example, we will Conversely, for a given acoustic pressyse a Blake

consider in this paper air bubbles in nearly sqturated Wf"‘tefhreshold radius can be obtained by solving &), which is
The following region of the parameter space will be studied'cpic for . The detailed calculation may be found in Ref.
low frequencieqsay lower than 100 kHzand high driving [4]. Suffice here to note that the parameterbecome(1)

pressuresfrom 1 to 5 bar which are commonly used con- o a5 low as 1.2. This means that Laplace tension be-

ditions in sonochemistry and cavitation experiments. In VieW.;mes important for a bubble near the Blake threshold ra-

of the order of magnitude of the shape-instability thresholdy; ;s tor any acoustic pressure greater than 1.2 bar. We will
and of the experimentally measured size distributiong,ake use of this result in Sec. I B.

[21,22, our calculations will be performed for bubble radii
ranging between the Blake threshold and d%.

4
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C. Rectified diffusion

Il. THEORY The asymptotic time-averaged variation of the bubble gas

content can be calculated by use of the results of Fyrillas and
A. Bubble model Szeri[8]. In order to solve the convection-diffusion partial

The radial oscillations of a gas bubble in a liquid may bedifferential equationfPDE) describing the movement of the

described by the Rayleigh-PlessBP) equation dissolved gas, they split the problem into a smooth one, de-
) scribing the rectified mass variation of the bubble, and an

. 3., 1 R dpg R 2¢ oscillatory one, describing the zero-average-mass exchange
RR+ ER :; pg+aﬁ_4 ﬁ_ﬁ_pext(t) : occurring over one bubble oscillation. On the assumption

(1)  that the time scales of the two process are well separated,
they obtained
In this equationpe,(t) = po(1— pcoswt) is the oscillating
sound pressure in the liquid, with angular frequencyp dm, C%—(Pg/Po)4
dimensionless acoustic pressure, ggdydrostatic pressure; F:A”TDROCO I ' ®
p, m, andc, are the density, viscosity, and sound speed of

the liquid; o is the surface tension. The gas pressigft)  wherer is the slow-mass-variation time scale 27/w), D
may be reasonably assumed unifdi24] and to obey a van s the gas diffusivity in the liquidC, is the saturation con-

der Waals state equation centration in the liquid separated from gas at prespgrby
5 R3_p3\| a plane boundary, an@* =C.,/C, with C,, the gas concen-
p :(p0+ _U)( 0 ) ' ) tration in the liquid far from the bubble. The quantity
¢ Ro/| R®—h3 whose evaluation will be detailed in Sec. Il C, denotes the

spatial integral
whereR, is the ambient radius of the bubble ahndhe van
der Waals hard-core radius. We will also assume that the toe ds
bubble follows isothermal evolutionsc& 1). This approxi- | =J’ _—
mation may be considered as drastic in view of more com- 0 ((3s+R*3)43),

)
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The weighted averagés; occurring in the above expres- i
sions are defined by . :

fzwf(x)Ri(x)dx

0 p

2w (8)
j f(x)dx
0

and can be calculated from the soluti&f (x) of the RP
equation(l).

The fraction in expression6) is the dimensionless
nonlinear-averaged gas concentration gradient between an
infinitely far point and the bubble wall. Ry (pm)

The locus of diffusive equilibrium in the parameter space
(Rg,p) is defined by

(Fi=

FIG. 1. Exact RD threshold for saturated wat&(= 1) calcu-
lated from the RP equation and E@) (thick solid line, Blake
c* —(p /p > -0 ) threshold from Eq(5) (thick dashed ling and linear theory RD

* g'rFo/4— % threshold calculated from Réf7] (thick dot-dashed line The thin
lines represent, respectively, the exésulid line) and linear(dot-

For suﬁiCi_em degassing, this equilibrium m{_:ly turn_ to b_edashed ling RD thresholds calculated for slightly degassed water
stable. This is the case of a SBSL bubble, which adjusts |t§c* -0.8).

ambient radius to the driving levgl2]. When it is unstable,

it defines the rectified diffusion threshold: any bubble Iargermerges for acoustic pressure greater than, say, 1.4 bar, for
than this threshold will grow, and any bubble smaller will satrated water. Performing the same calculations for slightly
dissolve. A successful comparison of E) with experi- degassed waterQt =0.8) yields the same conclusion, as
mental data for saturated or near-saturated conditions may be. < q by Fig. ithe numerical RD threshold is represented
found in Ref[8] for bubble radii down to 2m. Besides, in |\, 5 thin solid line and the linear one by thin dot-dashed

degassed conditions, the good agreement between the thg@ye) The computation was also repeated for 50 kHz and 100
retical phase diagrams and SBSL dfi2,14] supports the kHz frequencies, leading to the same conclusiomot
validity of Eq. (9) also for inertial oscillations. shown

It should be added that the rigorous approach of Fyrillas ™ g gingular result can be interpreted more easily in view

and Szeri8] allows us to obtain a uniformly valid expres- ¢, bubbl / ted
sion of the growth rate, even far from the threshold, contran{?‘ Fig.a;/:ertﬂzeeql:""b?iupr;espili(% zgc?nglérv;ys Irzig)re%ernae

to e_arll_er result$5,6] whose derivation r_e;hed either on Imea_r given gas concentratio€* are the intersection of these
oscillations or on near-threshold conditions. We refer the in-

. . . .. curves and the horizontal ling,/po),=Ci . For degassed
terested reader to RgB] for an extensive discussion of this 9 *
topic. 48] water (Cx <1, dot-dashed line a stable equilibria may be

obtained(right intersection point a result largely mentioned

Ill. RESULTS

A. Merging of the RD and Blake thresholds 10°

We consider through this paper air bubbles in ambient
water  (po=1 bar,p=1000 kgm 3, c=1481 ms?, u

=103 Pas,0=0.073 kg $2, h=R,/8.76). The RD thres- 107
hold was computed by tracking the locus of the points ful- <&> ]
filling condition (9) in the (Ry,p) plane. For eachRy,p) e

point, the averagep,/po)4 Was calculated from Eq2) us- 107

Figure 1 shows the RD threshold, computed from the RP

ing the steady-state numerical results of the RP equation.

equation(thick solid line for saturated waterGx=1) in a 107° 05 " 5 5 10
26.5 kHz acoustic field. Also shown is the threshold calcu- :
lated from the linear theory of Crum and Hang@ (thick Bo (um)

dot-dashed ling it is readily seen that for bubbles of small £ 2. Time-average pressupy /po)4 Vs ambient radius for
ambient radii, the linear theory fails predicting the Pressur€yriving pressurep=1.2, 1.3, 1.5, and 2 from top to bottom. The
threshold value, but for larger bubbles the exact threshol@orizontal lines represent gas concentrations in the liquid: thin solid
merges with the linear one, at least in the range of radijine, c* =1: dot-dashed lineC* =0.001. The vertical dashed lines
considered here. More surprising is the comparison of theepresent the Blake threshold for the different driving pressyres:
RD threshold with the Blake threshold, also displayed in Fig.=1.2, 1.3, 1.5, and 2 from right to left. The arrows on the lower
1 (thick dashed ling it is seen that the two thresholds curve (p=2) indicate bubble growth or dissolution regions.
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in the SBSL literaturd3,4]. For CX =1 (thin solid line, it librium (which turns to be stable in some casé&Zonversely,
can be seen that the intersection points almost merge with thié C%=0(1), the quantity C% —(1+ ag)e is always posi-
Blake radius(represented by vertical dashed line for eachtive, so that the inertial bubble grows.
driving pressurg From the above discussion, the diffusive behavior of a
More physically, this behavior should be understood as amubble near the Blake threshold 16 =O(1) may now be
effect of surface tension which is important for bubbles ofinferred: from Sec. Il B,ag=0(1) for a bubble near the
small radii [as=0O(1)]. Bubbles lower than the Blake Blake threshold radius. Therefore, the above analysis tells us
threshold radius are prevented to expand and stay in a quénat (i) a weakly oscillating bubble dissolves afit) an in-
silinear oscillation state. In this case the average gas pressugétial bubble grows. The RD threshold is thus the limit be-
(Pg/Po)4 is dominated by surface tension and the bubbletween smooth and inertial oscillations, and this is precisely
dissolves. Thus, the only way for a such a small bubble tahe definition of the Blake threshold.
gain some gas on average over an acoustic cycle is to oscil- The occurrence of crossing between the RD and Blake
late inertially, which of course is possible if the acousticthresholds has been mentioned in the literaf@@, but to

forcing is sufficiently high. our knowledge, the merging of the two curves for saturated
Conversely, bubbles much larger than the Blake radius, swater in the present parameter range has never been reported.
that surface tension plays a negligible rotes<1), will be Having shown that a growing bubble in near saturation

allowed to grow freely for moderate driving pressures, thusyater should also be an inertial bubble, we now turn to cal-
rendering the linear theory valid. This is why the exact rec-culate its growth rate.
tified diffusion threshold merges with the linear one in the

right part of Fig. 1. C. Growth rate

B. Analytical justification 1. Approximation for integrall

The merging between the RD and Blake thresholds may The calculation of the growth rate involves the evaluation
be explained by the following analytic arguments. Let us firs2f the definite integral. To our knowledge, only two refer-
reformulate the threshold condition to make clear the role ofNCeS report results involving the computation of this quan-

surface tension: tity:. Fyrillas and Szer[8] reports_growth rates without indi-
cating the method of calculation; Hilgenfelat al. [12]
CL—(1+as)(py/Pg,)a=0, (10)  mention its slow convergence and propose an empirical for-

mula involving adjustable parameters with few computa-

where Pg,=Po+ 20/R, is the ambient gas pressure in the tional details. We present below both approximate analytical
bubble. and numerical calculations of this integral for a large param-
We first consider the case of smooth quasilinear oscillaSter set. L . L
tions: in this case, the bubble radii(t) departs only _T_he derlvatlo.n of the analytical approximation follows the
slightly from its ambient radiu®, and so does the bubble spirit of fR?]f' [4]: we propozg a scal]ngdlat\)/v f(?]r m;e%ré?ln Th
pressure. Therefore,pg(t)=py, and we may write terms of the maximum radius attained by the bubble. The

) underlying idea of our derivation is made clear in Fig. 3
(Pg/Pg,)a=1+ ¢, wheree is a small parameter. The thresh- \ich displays, for a typical inertial cavitation bubble, the
old condition, Eq.(10), reads in this case bubble radiuR* (x) and the bubble volumB*3(x), which
is the quantity involved in expressidi). It is seen that the
global pulse like shape of the bubble volume is dominated by
. . . the expansion and collapse phases and that the afterbounces
which can only be fulfiled ifC%=0(1) and as=0(€).  zre of minor importance. Thus, it may be expected that the
This brings the conclusion that a weakly oscillating bubblegjme average involved in expressidf) will be controlled

can grow only in near-saturated water and for small Laplacclenaimy by R but also by the half-widthAx of the

tension. “ ” max: ;
. . . ulse.” We therefore approximate the bubble volume by a
Now, in the case of an inertial bubble, the average ga P PP y

?)arabola of maximumR,..)® and half-widthAx, and intro-
pressure(pg/pgo>4 may be shown to scale ¢4,27] duce this approximate bubble dynamics in Ed. The de-
tailed calculation is shifted in Appendix A and it is shown

Ci—(1+ag)(1+¢€)=0, (12)

— 3
{Pg/Pgy)a=€(Ro/Rinan)”, 12 that integrall is written approximately,
where R, IS the maximum radius of the bubble over the 1 A
acoustic cycle and=105/64. SinceR,,, iS several times | = , (14)
greater tharR, for inertial cavitation, pg/pgo>4 is therefore 3R}y (Xm— ax 4 )®

a small parameter so that the threshold condition now reads ) ) ) )
whereR} .= Rma/ Ro is the dimensionless maximum bubble

Ci—(1+ag)e=0 (13)  radius,x,, is the time of maximum expansion of the bubble,
X, =arccos(1p) is the zero crossing of the acoustic pressure
and can only be fulfilled ifC% =0O(e): this is the SBSL case [see Fig. &)], and « is a correcting factor to take into ac-
and shows why degassing is necessary to get diffusive equéount the nonparabolic shape Rf 3(x). Both parameters
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(®)

0.4
t/T =z/2m

FIG. 3. (a) Bubble radiusR*, (b) bubble volumeR* 3, and(c)
dimensionless driving pressumg,{X)/po=(1—pcox). The case
considered is a fjum air bubble in water and=1.3. The time,

andx,, are, respectively, the instant of zero crossing of the driving
pressure and the time of maximum expansion of the bubble. Th

dashed curve iith) is the parabolic approximation, EGA5), with
Ax defined by Eq(A13).

ande originate from the power-law fit of an integral involv-
ing hypergeometric functionsee Eq(A11)].

In order to obtain a full analytical expression fowhich
can be evaluated in terms of the paramet&sg, (p, »), we
further make use of approximate expression&%hf, andx,
obtained by Hilgenfeldet al.[4]. The method used by these

PHYSICAL REVIEW &7, 036610 (2003

dR, DRGTC,
dr po

1 CX—(Pg/Po)a

Ro(1+ 2/3ag) | (16

Using Eq.(14) for integrall and Eq.(12) to approximate

the average gas pressure, we get

d 3 DR-TC
Ro_3DOReTCor e (14 ager,

dr A po
R:nax
Xmﬂ(p), (17)
whereRy},., is calculated from Eq(159 and
F1(p)=[h(p)— aarccosl/p)]®. (18

Figure 4 displays a comparison between the exact numeri-
cal result, calculated by injecting the RP solution in ELf)
(thick solid line and the approximatioiL7) (thin solid line.

It is seen that our approximation yields very good results for
acoustic pressures up to 5 bars and ambient radii up to
20 um, apart for the wiggles appearing on tRg=10 um

and Ry=20 um numerical curves. These wiggles find their
grigin in the mode locking of the bubble afterboundds$

and are not accounted for by approximatid®a of R},,,.

In the specific case of cavitation field experiments, where
generally the liquid is gas saturatp@* =0O(1)], the above
formula may be further simplified: as mentioned above, for
inertial cavitation,R%..>1, so that it may be neglected in
the brackets of Eq(17). It is interesting to note that this
approximation should hold only far from the RD threshold,
but as seen in the first section, the RD and Blake thresholds
are the same. Since the average gas pressure curves near the

authors a_md the re_fined form_ulas we use in this paper argreshold are very steggee Fig. 2 any bubble driven just
reported in Appendix C. We simply recall below the generalabove this threshold may be considered far from it, in the

form of these approximate expressions:

1_i£) )(R_)
9y3 p—1 a(p Ry

1/2

Rinax= { f(p)+

(153
Xm=h(p), (15b)
whereR .= (3py/pw?)? is the isothermal resonant radius,

and f, g, andh are given by Eqs(C33, (C3b), and(C6),
respectively.
Besides, the numerical calculation bfis obtained by

scanning the parameter space and solving the RP differential

equation up to a steady state. The bubble dynaRfti¢x)
thus obtained is then used to calculate inte@va) using a
Gauss quadrature method described in Appendix B.

It is shown in Appendix A that the set of approximations
(14) and (15) shows excellent agreement with the exact nu-

merical value of integral (Figs. 7 and &

2. Approximation for the growth rate

With the above analytical formula fdr the growth rate
itself may now be calculated easily. From E§), the slow
time variation of the bubble radius realdg

sense thatp,/po)4>CZ .

Moreover, for sufficiently low frequency, the Blake radius
is much smaller than the resonant radius so fyat R,.cand
f(p) may be safely neglected in E¢l53a. Replacing the
obtained value foR,,,,, we get the approximation

______
-

= 1000

FIG. 4. Calculated value of the bubble growth rate for different
bubble sizes from the exact res(lif) (thick solid ling, from Eq.
(17) (thin solid line, from Eq.(19) (dashed ling and from Eq(21)
(dot-dashed line From top to bottomR,=3, 5, 10, and 2Qum.
The left figure is a magnification of the right one.
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1000; (a)
1000;
dR, 100
dt -
(um/5)10 l/,/ Ar/T
[ 100}
12 3 4
P
FIG. 5. Calculated value of the bubble growth rate for different
frequencies(a) f =26.5 kHz(same as Fig. % (b) f=50 kHz, and 10 , , ‘
(c) =100 kHz. The line-style conventions are the same as Fig. 4. 1 2 3 4 5
P
4  as FIG. 6. Growth time between Lm and 5xm of an air bubble
1_ R
dR, 3 DRgTC. 9\/§ p—1 Rres in water expressed in numbers of acoustic cycles, calculated from
—_—=— — p), Eq. (22). From bottom to top:f=26.5 kHz, =50 kHz, andf
dr A (1+2/3ay) 22
T Po s Ro =100 kHz.

(19
4. Estimation of the growth time

where Finally, in view of practical applications, it is interesting

to calculate the time necessary for an inertial bubble to grow
F2(p)=va(p)[h(p)— aarccosl/p)]®. (200 petween two ambient radR, andR,. To that aim, the ap-
proximate expression of the growth ratl) may be inte-
For sufficiently largep and largeR,, the square root may grated analytically, which yields
be further replaced by 1, yielding the simpler expression

A Po 1
A7(R;,Ry)= =
dRy_3DRGTC. 1 Res 0. o (R1R2)= 5 BR.TC, Fa(p)Rece
dr A po (1+2/3ag RZ ? P =3 1 20) R3(1 20 ”
X + - + .
2 PoR ! PoRy

Figure 4 also shows the growth rates given by E@S)
(dashed ling and (21) (dot-dashed line Both approxima-

tions yield acceptable results for sufficiently high drive lev- Thus we get the surprisingly simple result that, apart from a

els and small bubble radii, as expected by neglecting terméc’urface tension correction, the growth time of an inertial
of orderRy/Res-

bubble between two sizes is directly proportional to the dif-
ference between the final and initial volume. To take a prac-
tical example, we calculate the time necessary for a bubble to
Equation(21) suggests that the growth rate is proportionalgrow from 1 um to 5 um, the former being roughly of the
to the resonant radius and therefore scales as This owes  order of the Blake threshol@nd therefore of the RD thresh-
to the decrease of the bubble expansion ratio for increasingld) and the latter corresponding to an approximate value of
frequencies. To check this scaling and explore the validitythe shape instability threshold for drive levels of the order of
range of our approximation, both numerical and analyticall.5 bar[15]. The results are presented in Fig. 6 which rep-
computations were repeated for frequencies of 50 kHz andesents the growth time in numbers of acoustic cycles for the
100 kHz. The results are displayed in Fig. 5 and confirm thighree frequencies 26.5 kHz, 50 kHz, and 100 kHz.
frequency dependence. Clearly, both approximati¢h® Although the value of the fragmentation threshold is prob-
and(21) (dashed line and dot-dashed line, respectively-  ably lower than 5um for pressures higher than 1.5 bar, the
come worse, since the resonant radius decreases with freresent calculation yields an order of magnitude of the life-
guency, so that the approximati®y/R,.<<1 becomes un- time of a growing inertial bubble: for a 26.5 kHz frequency
justified. However, we emphasize that our full analyticaland an acoustic pressure ranging between 1.2 and 5 bars, the
formula(17) (thin solid line in Fig. 9 still yields an excellent growth time ranges approximately from 20 to 150 acoustic
approximation for the bubble growth rate at these high frecycles.
guencies. The noisy features of the numerical curves were
found to originate from period-doubling bifurcations of the
bubble dynamid29-31]. In this case, rigorously, the time
averages used in the calculation of the growth rate should be The above results bring several immediate consequences
calculated on the smallest period of the system. We did nofor multibubble fields in saturated water. First, since the rec-
pursue further such a refinement, since it can be seen théfied diffusion threshold radius merges with the Blake
even in this case, Eq17) still yields acceptable results. threshold radiugfor acoustic pressures greater than 1.4 bar,

(22)

3. Frequency dependence

IV. DISCUSSION
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see Fig. 1, the existence of growing smoothly oscillating shape instability threshold. The author also share Matula and
bubbles is unlikely. This result casts some doubts on the roleo-worker’s suggestiof35] of MBSL experiments in suffi-
of rectified diffusion to initiate the cavitation cycle at high ciently degassed liquids in order to enlarge the lifetime of the
drive levels. Indeed, a small gas nucleus escaping from hubble.
solid crevice or a fragmentation debris falling below the It should be mentioned that the above results rely on the
common threshold would dissolve and never become inerassumption of a unique pressure amplitpdevhich is unre-
tial. Coalescence of such dissolving microbubbles driven unalistic in the case of multibubble fields, owing to standing-
der the Blake-RD threshold may constitute an alternativevave effects. In fact, bubbles feel different drive levels as
scenario of the construction and sustainment of the bubbléhey travel in the acoustic field. A typical phenomenon re-
field. This raises the issue of the dynamical competition belated to this issue is the formation of filamentary streamer
tween dissolution, which tends to destroy the bubble popustructures investigated by Lauterborn and co-workers
lation, and coalescence, which would restore bubbles abo@3,37,38. If, as suggested by these authors, the bubbles
the unique Blake-RD threshold. constituting these filaments are inertial bubbles, which
In addition, the authors suggest that the above results sh&dould be the case in view of the drive levels reported, the
a new light on the absence of SBSL emissions in multibubbl@bove theory predicts that these bubbles should be growing.
fields. Rectification of argon in air bubbles has been provedrurthermore, their growth might be further accelerated as
essential to obtain SBYI32,33 and, as proposed by Matula they approach pressure antinodes under the influence of
and Crum[32], “multibubble sonoluminescence bubbles Bjerknes forces. From the above estimation, their lifetime
(MBSL) probably do not survive for more than a few cycles” would amount to several tens of cycles until they hit the
so that argon rectification cannot occur in saturated multishape stability threshold and burst. This raises the question
bubble fields. The point we would like to discuss is the rea-0f whether the bubbles constituting the filaments keep their
son for such a short lifetime of cavitation field bubbles. It isSpherical shape. It should be added that bubble collisions
generally attributed, without clear theoretical grounds, tomay also restrict the bubble lifetime. Indeed, from the results
early asymmetrical collapses caused by perturbations o¥f Luther et al. results[37], it can be conjectured that the
neighboring bubbleg20], which would burst the bubble after time between collisions in a multibubble field configuration
a few collapses. Now, our calculation of the growth timeis of the order of hundreds of periods, so that this process
from the Blake threshold to the shape instability thresholdmay compete with the above-described one. In view of the
yields an order of magnitude of tens or acoustic cycles fotime resolution of their experiment, the authors neither ex-
26.5 kHz acoustic fields. This is still much lower than theclude that, on their way to the pressure antinode, bubbles
time necessary to rectify arg@several thousands of acoustic may split off microbubbles. Numerical simulation may help
cycles following Ref[32]) and may also explain why SBSL to obtain a clear picture, and taking into account rectified
cannot be observed in multibubble fields: we propose that théiffusion in theoretical models of this phenomeri@s] may
locus of shape instability of a cavitation field bubble couldbe a simpler matter by using the analytical formulas pro-
be the same as for a SBSL bublitef course in the same posed in the present paper.
conditions of amplitude and frequengyput that a cavitation Besides, it is known that cavitation itself produces some
field bubble, owing to the high gas concentration, grows ugevel of degassing of the liquid, so that the quan@ty in the
to this locus too rapidly to rectify argon. Therefore, our in- above expressions may decrease slowly during an experi-
terpretation differs from the conventional picture in that thement. Taking a generic value of 80% saturation at the end of
shape instabilities destroying the cavitation bubbles need ndhe experiment, Eq22) shows that the growth time would
be ascribed to the presence of other bubbles. increase by a factor of 5/4, which does not change signifi-
It might be argued that the case of a diffusively unstablecantly the above conclusions.
SBSL bubble [12,34 is apparented to cavitation field Concerning the estimation of the surface instability
bubbles, as it also undergo cycles of growth phases followethreshold, one might argue that the choice qi® is rather
by a fragmentation. However, unstable SBSL appears in derough, in view of the wide parameter range considered here.
gassed water and the growth time in such conditions is mucRollowing Lin et al.[15] (see their Fig. 2, dot-dashed cuyve
larger. Following Fig. 11 of Ref{12], this time ranges be- direct numerical simulation at 32.8 kHz yields this order of
tween 2500 and 16 000 cycles, depending on the degassimgagnitude for drive levels ranging between 1.2 and 1.6 atm,
level, which is of the order of magnitude of the argon recti-in agreement with experimental result$9]. For higher-
fication time[32]. Therefore argon rectification can still take pressure levels, the surface instability threshold radius is
place for unstable SBSL. probably lower, so that our estimation of the bubble lifetime
Besides, it has been mentioned that the background emi$er 20 kHz frequencies is probably overestimated, which re-
sion spectrum of MBSL bubbles shares some similaritiesnforce our conclusion. Conversely, for higher frequencies,
with the SBSL spectrum, which would indicate the presencdhe authors are not aware of reported calculated or measured
of a few SBSL-like bubbles in cavitation fieli35,36. If, as  data, apart from the SBSL phase diagrams calculated by
suggested in this paper, such SBSL emission would be limProsperetti and Hafil4]. Their Fig. 19 suggests in indirect
ited by the short lifetime of growing inertial air bubbles, the form that the surface instability threshold increases with fre-
use of higher frequencies would allow larger lifetimes, asquency. This would mean that our estimation of the bubble
attested by Eq(22), and may allow a greater number of lifetime for 50 and 100 kHz may be underestimated, at least
growing inertial bubbles to rectify argon before they hit thefor moderate drive levels, and further supports our sugges-
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tion of possible higher SBSL-like emission for higher drive difference between single-bubble and multibubble emission
frequencies. Real calculations of the surface instabilityhas thus been interpreted in an alternative framework, based
threshold at such frequencies would allow a firmer conclu-on the most immediate difference between the two situations:
sion. the gas saturation.

Finally, we would like to discuss the validity of the Finally, our analytical expression of the growth rate is
bubble model used throughout this paper. Concerning theeady to use to account for the rectified diffusion in theoret-
isothermal assumption, we recall that the growth rate idcal studies of cavitation clouds based on population balance
mainly dominated by the expansion phase of the bubblemodels[38,40 or particle modeld23]. It is interesting to
During this expansion, the liquid inertia predominates andhote that the initial rather crude approximation of the bubble
the gas pressure is very lo@@nd is indeed neglected in the volume yields such a good approximation. This is due to the
analytical approach of the expansion phase in &, so  fact that the bubble dynamics only occurs as time averages in
that it should be quasi-insensitive to thermal effects insidehe expression of the growth rate. The method of approxima-
the bubble. There exists of course a frequency limit to thigion used in this paper is therefore promising for deriving
assumption since the linear and nonlinear resonance radiinalytical formulas of other quantities involving time aver-
approach the Blake radius for increasing frequency. Thisages, such as primary and secondary Bjerknes forces, for
may be put on more quantitative ground by repeating thexample. This may be the matter of a future work.
above calculations by switching from isothermal to adiabatic
behavior when the heat-diffusion time scale becomes small
[39].

Vapor exchange was also neglected in the present calcu- One of the author$O.L.) would like to acknowledge Pr.

lations. Recent calculations show that water may be trappeduis Gaete for hosting a pleasant stay at the University of
in the bubble during the collapse, mainly owing to finite Santiago de Chile.

diffusion between the center and the wall of the bubble, and

also to nonequilibrium phase chand@6]. This water-

trapping process may influence the bubble growth rate, APPENDIX A: APPROXIMATE FORMULA
which in our approach is only due to gas accumulation, but FOR INTEGRAL |

its correct representation would also require the modeling of
the chemical reactions occurring in the bubble and the diffu
sion of the reaction products out of the bubble.
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First, for simplicity, we will denote byr}, ., the expansion
ratio:

Rmax

V. CONCLUSION RﬁafR—o- (A1)

The rectified diffusion threshold has been computed by
numerical simulations of the Rayleigh-Plesset equation, fofn order to extract the main dependency of the integral on
small bubbles Ry<15 um) and low frequency(20 kHz  R¥*_ . we first make the following variable change in integral
<f< 100 kH2 in a strong acoustic fieldl bar <p<5 (7):
barg. It appears that for near-saturated water, a growing
bubble is necessarily oscillating inertially.

The growth rate for such growing inertial bubbles has also
been calculated, assuming that such bubbles may keep their
integrity up to the shape instability threshold inferred fromto obtain
single-bubble theory. We also derived a fully explicit analyti-
cal formula for the growth rate, showing excellent agreement 1
with the exact numerical solution in a wide parameter range. =

The merging of the two thresholds in near-saturation 3R} o
bubble-field experiments raises the question of how mi-
crobubbles driven under this single threshold can contributg here
to the construction of the cavitation field. Coalescence was
proposed as a competing process to drive small nuclei above
the common threshold. 1 (2=

An order of magnitude of the lifetime of growing inertial G(u)= Efo
bubbles, from their inception at the Blake threshold, up to
the instability threshold, has been calculated. It has been ) o o )
found to be much shorter than the time necessary to rectify We first focus on finding an approximation of the time
argon. It was therefore suggested that the non occurrence 8verageG(u). It only involves the quantityR* (x)/Ry
single-bubble sonoluminescence emission in multibubblgvhich by construction is bound if0,1]. Figure 3b) sug-
fields may be due to this rapid growth phase, without invok-gests that we could approximaR¥3(x) by a parabola of
ing any shape instability process caused by the presence ofaximum R},,)° betweenx,,—Ax andx,+Ax, and by 0
neighboring bubbles, as generally stated in the literature. Thanywhere else, so that we set

3s=(R!0%u (A2)

+% du
fo G A3

374/3

R*(x) dx. (A4)

*
Rmax

u-+
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R* S(X)

X—Xm

(R:V:lx)s[l_< AX

The time intervalAx should be chosen of the order of the
characteristic time for the bubble expansion. We report fur- 10724
ther below the appropriate choice for this quantity. :

We now calculate the time averagd4) using this ap-
proximation. Cutting the acoustic cyc[®,27] into three

subintervals [0, X,—AX], [Xm—AX,X,+AX],
+AX,27] we obtain

1 (Xmt+Ax
G(u)=(1—Ax/m)u**+ Z—J

T J Xp—Ax
X— X\ 2
AXx
Then, by the variable change
-5
TlTax )

the second integral in E§A6) becomes

4/3

Xlu+1l— dx.

4/3dv

ﬁ,

U
u+1

AXx 1
—(u+1)4’3f 1-
™ 0

which may be recognized as the integral form of a hypergeo-

metric function:

T'(c)

2
) } if X—=Xnel[—

0 elsewhere.

1vb—1(1_v)c—b—l
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¥

AX,AX],

~

(A5)

-
-

and [Xq

FIG. 7. Comparison of the exact value lotalculated numeri-
cally (thick solid ling with approximate expressions offor p
=1.2 (upper set of curves p=1.5 (middle), and p=2 (lower).
Thin solid line: Eq.(14) with R}, andx,, calculated from the RP
equation. Dot-dashed line: E@l4) with x,, calculated from Eq.
(15b). Dashed line: Eq(14) with R, andx,, calculated from Egs.
(153 and(15b). The three vertical thin dashed curves represent the
Blake radii corresponding tp=2, 1.5, and 1.Zfrom left to righy.

(AB)

Any further progress may look difficult, but it is worth
recalling thatAx is of the order of magnitude of the expan-
sion time of the bubble, so that it belongs anyway to the
interval [0,77] (except for very-high-pressure driyesie
thus calculated the integréA11) for values of the parameter
Ax in this interval. The numerical method used is presented
in Appendix B. Fitting the result by a power law we finally
obtain

(A7)

(A8)
LA
©3R:.AxE

max

(A12)

with e=0.37 andA=0.90. We emphasize that this fit is not
linked to any specific choice of parametétg or p and that

1F2(a,b;c;z)= T

(0)T(b=c)Jo  (1-v2)?

the approximate expressid12) is accurate provided the
expansion phase dominates the bubble dynamics, that is to
say for any inertial bubble.

(A9)

We finally obtain, as an approximation of the time-average The last step is to choose the interv®k so that Eq.

quantity (A4)

AX Ax
G(u)=( 1- —) u?B+ —(u+1)"
a T

(A12) yields a good approximation df It should be said
first that the dependence of the integtabn the bubble
dynamics is mainly caught by the scaling Ilaw

F 4138 1 Al10
% _ .2
1" 2 3 ’ 2 H 2 1u+ 1 ) ( )
and integrall may be written as
I
1 +o

-—

3R;13X 0

du
T Ax Ax 413 1
1= —Ju —(u+ D*F| — 3.5150007 ’
T T 3'2'2'u+1 ) . . . .
FIG. 8. Same as Fig. 7 with driving pressure in abscissa for
(A1l)  fixed Ry. From bottom to topRy,=3, 5, and 10um.
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=0((R*,,) 1) and that the dependence A is weaker, as 10
attested by Eq/A12). As mentioned above, the length of this

interval is of the order of the expansion phase of the bubble,

which was studied analytically in Rd#] (see also Appendix g 5y
C). We choose

e

AX=Xm— aX, (AL3) Y 05 0 0.5 1
T
wherex,, is the time of maximum expansion of the bubble, . o .
x, =arccos(1p) is the zero crossing of the acoustic pressure FIG. 9. Evolution of functiong in the interval[ —1,1] for Ax
[see Fig. &)], and « is a correcting factor to take into ac- =0-27, 0.6, andw (from top to botton.
count the nonparabolic shape Rf 3(x). The final approxi-

mation ofl was found weakly sensitive to the precise value fl N

of a. A value of =0.6 yielded an excellent uniform agree- (1=x)%(1+x)Pg(x)dx= 21 Wng(xn), (B4
ment over the parameter range studied. Combining Egs. "
(A12) and (A13) yields the final result, Eq14).

Figure 7 shows the evolution of the integtals R,, cal-

wherew,, are the weights anxl, the evaluation points, angl

culated directly from the RP equatidthick solid line and ~ €ads

from the approximate expressioh4), for which the param-

etersR}, ., andx,, were extracted from the numerical solution B 1 B5
of the RP equatiorithin solid line. It is seen that the two 9(x)= 1+x\]° (BS)
curves are in excellent agreement in most of the parameter (1=x)%(1+x)#*H —|H(T)

range above the Blake threshdl@presented by the dashed
vertical lines for eaclp value in Fig. 4. Figure 8 displays
the same quantities with in abscissa for fixedR,.

Figures 7 and 8 also show the valued @ilculated from
(i) Egs.(14—(15b), the expansion rati&®},,, being deduced
from the numerical RP solutiofdot-dashed ling (ii) from
the fully analytical set of equationd4), (158, and (15b)
(dotted ling. It appears that the latter choice yields an exce
lent, fully analytic approximation foll, except below the
Blake threshold, where the approximati¢tba of the ex-
pansion ratio becomes less accurate.

The choice ofa and g is free (provided they are greater
than—1) but good convergence of Gauss formulas strongly
depends on the polynomial character of functipiVe adjust
the @« and B exponents by testing the polynomial character of
g for H given by Eq.(A10). Figure 9 shows the evolution of

I_g with =0 andB=—-0.8 for Ax=0.1, 0.3, and 0.5. It is
seen that with these values, the function is very smooth,
which ensures the quality of the Gauss-Jacobi formula.

Equation(B4) was therefore used with such valuescof
and g for the evaluation of both integra(&3) and(Al11). A
convergence study showed that 11 terms in the $B#)

APPENDIX B: NUMERICAL METHOD were sufficient in all cases.

The numerical method was designed to calculate both the
exact integrall given by Eq.(7) and the approximate one APPENDIX C: APPROXIMATE FORMULAS
(A11). In both cases, we are to compute integrals of the form FOR X, AND R}

e du Hilgenfeldt et al. [4] showed that during the expansion
:f el (B1) phase, the gas-pressure, radiation, and viscous terms could
o H)’ be neglected in the RP equation, so that it could be reduced
to the simpler form
whereH (u) is either given by Eq(A4) or by Eq.(A10). The

integral(B1) is first transformed to an integral from1 to 1 . ., Po ag
by the variable change RR+ 7R = pcoswt—| 1+ K| (CY
x=2e""-1, (B2) where the last term accounts for surface tension effects, with

as=20/py/R,. They observed numerically th&R<R for

wte[—x,,x.], while RR>R for ote[x, ,X,], where
X, =arccos(1p) andx,, is the time of maximum expansion

to obtain

1 dx O
J= I . (B3)  of the bubble(see Fig. 3 Further observing thaRR+ R?
14 x0H| - m(ﬂ” = d?(R2/2)/d12, the simplified ordinary differential equation
2 (ODE) (C1) could be integrated in these intervals. By match-

ing the boundary conditions atx, , X, , andx,,, they ob-
Then the integral was recast to fit to a Gauss-Jacoltained the following expressions for the maximum radius and
quadrature formula the time of maximum expansidd1]:
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R2 100
Re= F(PX) + (P Xy 1 == - 122
max Am Am 9\/§p_1 Rgi
(C2a R.. 50
. 1 Ro |
PSINKy— Xm+ = (PSinK,. — X, ) + 32 j =0, 0
3 Rre 1
(C2b P
where (=1.6 is an adjustable parameterRqs FIG. 10. Expansion ratidR},,, calculated from the numerical
=(3p0/pw2)1/2 is the isothermal resonant radius, and func-solution of the RP equatiofsolid line) and from approximation
tionsf andg read (C29—(C6) (dashed lingfor Ry=3 um, 5 um, and 10um (from
top to bottom. The dot dashed curves are calculated from(Ega
f(P.Xm) =1+ 2(Xm+Xx1)], (C3a  with x,=p (see Ref[4]).
_2 1 2 2 In order to eliminate the dependence xf, in Ry, we
9P Xm) = 3 1= PCOSKm ™ 5 (X = X5) further neglect theR3/R%, term in the square root of Eq.
1 (C4), since for low frequencies bubbles near the Blake
+ = (pSINK, — X4 ) (X +3X4) | (C3p  threshold are much smaller than the resonant radius, and we
3 finally get
Equation(C2b) is implicit in x,, and Hilgenfeldtet al. [4]
deduced several particular cases for either small or large val- 7 N1+p[Q(p)—7]—-1
ues ofp. Here, we seek an explicit approximation uniformly Xm=h(p)=7+ 0 : (Co)
valid at least in the intervgd e[ 1, 5]. We follow the method
of Ref.[4] by expandingk,, around/2, but here, we use an
expansion up to second order and obtainXgqr Replacingx,, by Eqg. (C6) in Egs.(C3g and (C3b), Eq.
(C23 becomes an analytical expression fff,, which is
7 1+p[Q(p)— 7m+67°RIR%]—1 used throughout this paper. The redaashed lingis com-
m=§+ P ., (CH pared to numerical exact solutigsolid line) in Fig. 10: the
two curves are indistinguishable. Also shown is the approxi-
where mation obtained by taking.,,=p in Eq. (C2g (dot-dashed
5 line) [4]. It is seen that expandinx},, arounds/2 up to the
_ . second order, as we did here, improves drastically the ap-
QIP)=2p+ Z(PSin; =Xy). (€9 proximation for largemp.
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