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Collision of one-dimensional nonlinear chains
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We investigate one-dimensional collisions of unharmonic chains and a rigid wall. We find that the coefficient
of restitution(COR) is strongly dependent on the velocity of colliding chains and has a minimum value at a
certain velocity. The relationship between COR and collision velocity is derived for low-velocity collisions
using perturbation methods. We found that the velocity dependence is characterized by the exponent of the
lowest unharmonic term of interparticle potential energy.
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[. INTRODUCTION dissipation of one-dimensional rod. To represent a one-
dimensional body, we introduce a nonlinear chain model, and
In collisions between two bodies, which have internal de-perform numerical simulations of collision between the chain
grees of freedom, some of the initial translational energy isand a rigid wall. We find that the COR of this collision has a
transformed into internal energy of the two bodies. This isminimum value at a certain velocity and derive the velocity
the major cause of energy dissipation. To characterize thdependence of the COR for low-velocity collisions using
macroscopic features, a phenomenological parameter, the cperturbation methods.
efficient of restitution(COR), This paper is organized as follows. In the following
section, we briefly review the studies of Sugiyama and
K, Sasaki[14] and Basile and Dumonftl5]. In Sec. Ill, we
n= K (1) present our results for collision between nonlinear chains and

a wall. Finally, we summarize our results.

whereK; andK, are translational kinetic energy before and

after the collision, respectively, is commonly used. Recent Il. COLLISIONS OF ONE-DIMENSIONAL

studies of collisions are mainly focused on the determination HARMONIC CHAINS

of » from microscopic mechanisms.

Hertz developed the theory of collision between friction- First we briefly discuss the collision of one-dimensional
less elastic bodieEl,2] based on his static theory of elastic harmonic chaingmodelA) with a rigid wall as discussed by
contact[3]. In the theory, it is assumed that in low-velocity Sugiyama and Sasaki4]. Consider a chain composed wof
collisions, the deformation of colliding bodies is given by the identical point particles labeleg=1,2, ... n. Each particle
static theory and the production of vibration is totally ig- in the chain is linked to nearest-neighbor particles with a
nored. Hence, the theory gives no information on energyiooke’s spring, as illustrated in Fig. 1.
dissipation. Plastic deformation is one of the possible means The Hamiltonian of this system is written as
of kinetic energy dissipation during collisions. Taking this
into account, the energy dissipation rate- % is found to m .
increase with collision velocity, with a power law, with the H=% 21 X5+ Emwzzl (Xjp1= %=1+ Vy, (2
exponent 1/2[4]. Considering viscoelastic properties, the : :

dissipation rate increases with the exponent[8/57]. These : . . .
results were confirmed experimental§—10). where x; and x; are the position and velocity of thgth

The results presented above are based on quasistatic article, respectively. We assume the chain is homogeneous
proximation, hence it is expected that they are restricted t6"'d @ll springs have the same spring constar(t=mao®).
low-velocity collisions. We believe that more general results¥w répresents the hard-core potential of a rigid wall located
will be obtained through microscopic simulatiofid—13. atx=0, where collision takes place. Here we notice that the

Sugiyama and Sasaki4| and Basile and Dumorjtl5]
considered collisions between simple one-dimensional
chains and a rigid wall. A chain is composedrofdentical
point particles, which interact with nearest-neighbor par- SN
ticles. If we choose linear force as the interaction between OWOWOWOWOWO
the particles, the COR is independent of collision velocity
and approaches unity in the thermodynamic limit.

In practical cases, deformation that results from collision x
may exceed the regime in which Hooke’s law remains valid
because the impulsive stress near impact point can be very
large even if collision velocity is lovj16]. In this study, we FIG. 1. A schematic diagram of a one-dimensional chain and a
consider the effects of such nonlinear elasticity on energyigid wall.

n n—1

Y
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point particles do not represent atoms or molecules. The
valuex; —X;_;—1 corresponds to strain of continuum media.
During the collision process, only the particie=1,
which is at the end of the chain, interacts with the wall since
the positional order of the particles is always keptxgs
<Xp_1<---<Xy<X;. In the following discussion, we as-
sume that the wall is so rigid that the partictg simply

reverses its velocity as x;—X;. o

Although there is no dissipation term in the Hamiltonian, '8
vibration energy, which remains after the collision is re- 'g
garded as the “dissipated” portion of energy. The C@FRs, ¥
therefore, evaluated as

Evib.
n=1- £, 3

whereE is the total energy anH,;, is the vibration energy,
which remains after the collision.

In the absence df,,, the equation of motion is written as

X=— w2(Ax+b), (4) Dimensionless time

FIG. 2. Trajectories of the particles in the= 20 colliding chain.

wherex=(Xy,Xz, . .. X,), b=(—¢,0,...,0f) andAis an (Reduced units where — 7—1.)

nxn matrix of the form

1 -1 0 ) initial velocity of the chain varies. Thereforg; /E, the ratio
of the jth fundamental mode energy to total energy, does not

-12 -1 0 0 depend on initial velocity. The COR, which is a ratio of
A=| 0 -1 2 -1 0 --- Of. (5 energy, also does not depend on initial velocity. Hereafter,
we use the reduced unit=7=1, setting¢, m, andk as
unity.
0 e 0 -1 1 In modelA, the coefficient of restitution; depends only

onn. An approximate expression af was derived by Basile

. e ; nd Dumon{15]. To simplify the problem, we assume that
ag_onal, mte_rnal V|t_)rat|on of the chain can be represente ty and the velocity, before thgth collision,v 4 are constant
ufS|\r)g n ntl)lnmtersc;ung fu:}hdarr;]ental n&ot(r:l]es. Irl]l _the plr_es:ajnc?,or everyd. Numerical simulations show that these are good
of Vy,, collision between the chain and the wall IS realize asapproximations. Under this assumption, the vibration energy
foIIow;. Assume that the particle=1 collides with the wall of the jth mode after the collision process is given as
f(n) times atty,t,, ...ty . The fundamental modes de-

scribe equienergy elliptical orbits in phase space. The orbits
are discontinuous dt=t;,t,, ... tym) - 4m 2 mj | sif{w;f(n)At/2}
For the following numerical simulations, we choose initial E; . St A
" w;At/2}
conditions

Taking a principal-axis coordinate system in whighis di-

2n

)

Xj=4], where w;=sin(mrj/n) is the frequency of thgth mode.At,
f(n), andv are determined from numerical simulatidi$].
j(]: —vo(j=1,2,...n). (6) However, we can also estimate these values by solving the
collision of the chain withh=2:

Before collision, the chain has no internal vibration, i.e., zero
temperature. Figure 2 shows the collision between the wall
and the chain witm=20. Each line is a trace of the trajec- At= =222 (2.31k), ®)
tory of a patrticle. In the plot, units on the time axis are taken N
asT=(n—1)¢/c,. 7 indicates the duration in which the lon-
gitudinal sound wave propagates from one end of the chain 2\/5
to the other. Let us call the timig, during which the colli- f(n)=—"-n=0.90 (0.86%), (9)
sion takes place, “contact time.” Here we note that contact ™
time is almost equal to 2for largen. COR and contact time
are independent of the collision velocity of the chain because
time intervalsAtq=t, ;—tq are independent of initial ve- b= pe=111 (1.15), (10
locity for everyq and the orbits retain similar forms even if 22
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FIG. 3. Alog-log plot of dissipation rate versus number of par-
ticles. The solid line has slope 2/3. (Reduced units where,=
=1.)

FIG. 4. Coefficient of restitution for the collisions of log-,
Toda-, and Lennard-Jones-type chains as a function of collision
velocity. The chains consist of 100 particles.

where the values in brackets were obtained from a numerical a
simulation of ann=500 chain. We can estimate an approxi- Uroga(X) = € P~ D a(x—1);
mate value ofp by using Eqs(8)—(10). b

To obtain the asymptotic behavior of-1 for largen, we .
expand the dispersion relation (c) log-type potential

Up(xX)=x—=1In(x).

=k/ kil 1- £ + (11 i
wj= VKM — 2402 B For the Toda potential, we sab=1 andb=10. Each po-
tential has one minimum at=1 and the function forms are
Substituting only the leading order of EQL1) into Eq. (7), similar. However, increasing behaviors of the repulsive

we have7=1. Taking the second order into account, Wefqrces derlyed from the three potentials are, in a very short
obtain distance, different from one another.

In order to maintain a universal viewpoint, we first con-
1— 7~0.65128 (12)  sider a velocity scale characterized by the nonlinearity of the
spring. LetU (x) be the potential energy of the spring, which

in the limit n—c. This relationship agrees very well with iS chosen to b&J(1)=0 assuming the natural length of the

the numerical result. In Fig. 3, we plot the dissipation rateSPring to be unity. We can define the amplitudeat which
1— 7 versusn. the harmonic term and the sum of the remaining terms are

equal in the Taylor expansion, i.* is given by the solu-

IIl. UNHARMONIC CHAINS tion of
In the case in which the deformation exceeds Hooke's1 d?U(x) v a2 1 d’U(x) v a2
regime, stress-strain relation could be asymmetric. In gen2 ~ 4,2 x=1(X"=1)"=Ux) =3 A2 (x* =1~
eral, we could assume that materials are “harder” or “stron- x=1
ger” for compression than for tensile deformation. To ac-The velocity, which corresponds & is
count this macroscopic nonlinear elasticity into the model, '
we introduce several types of nonlinear potentials as interac- v* =20 (x").
tion between particles:
(@) Lennard-Jones potential Hereafter, we discuss the velocity dependence of the colli-
1 6 sions on the scale af*. o _
Uy, (0= — (} 8 }) _ In Fig. 4, we plot the COR versus initial velocity for each
L 72|\ x X/ |’ case, as determined by numerical simulations. In the limit of
small velocity, it is clear that COR approaches the value
(b) Toda potential obtained for the harmonic chain. The COR decreases with
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Lr — % T T T T T T T T ] Let x=x,—X;—¢€ and xg=(Xp+X,)/2. For initial condi-
[ | tions, we adopt Eq6). Immediately after the first collision
of particlex;, x andxy and their time derivatives become

x=0, Xg=112,
A A A A A A A . .
,.% X=—2vq, Xy=0. (14
~ s o & o o o o
c 3 Taking into account the second orderldf ; and solving the
-8 01 - ..5 """"""""""""""""""""""""" B equation of motion with the initial conditions of E(¢L4) in
g S S O 1 the first-order perturbation theory, one can obtain the interval
B h ] At’ between first and second collisions of partigleas
. o
5 ° o g o
| ] At'=At(1-av), (15
L) ]
. wherev=v,/v* and «=0.808. Substituting this into Eq.
. (7), we have
0.01 — — . —
10 100 1000
Number of particles o1 ~
v parti 4 (i ST (WAL (L-ab)
FIG. 5. The relationship between dissipation rate and number of E; =—co§(—l) (16)
particles in the collision of Lennard-Jones-type chain. Each plot n 2n sir?

1 ~
ZwAt(1—
corresponds to a different initial velocityvy=0.780 (A), 2 (1~ av)

0.390 (¢'), 0.160 (#), 0.078 (1), and 0.008 @).

In the limit n—o, w; can be replaced with the linear form

increasing initial velocity and has a minimum nea+ 1. We
note that the COR lies on almost the same curve for all three ]
types of potential. W= 0= (17)
Figure 5 shows dependence of &  for different values
of initial velocity. In very low-velocity collision, as expected
from the result for modeA, dissipation rate + » will ap-
proach to zero in the thermodynamic limit. Negy=1, the
COR does not approach unity but remains a constant, less 32 (n)z 2
-1 Sl
J

Whenv<1, Eq.(16) can be approximated as

ol

ﬁubstituting this into Eq(3), we have the dissipation rate

than unity even in the thermodynamic limit. We can, hence, Ei=—
conclude that nonlinearity of the potentidl(x) causes the nm
dissipation, which does not appear in mo&elUsing a tech-
nique based on the perturbative theory, we consider the co
lision of modelB for small initial incident velocityv,<1.

During collision processes, the partigle 1 transmits vibra- i Ej 64 (1 1 ~

tion force to its neighbor particle. Let us regard this force as 1-9= ‘21 ET o), dx—sirf(avnx)
external forcel(t), which acts on the chain. The character- = nm X

istic frequency of this force i80,= 27/ At=2+2w. This 64 _ (= sirf(ax) -

frequency is higher than any frequency of fundamental = _3aUJ dx———=Cuv, (18
modes of the chain. Hence, no fundamental mode is excited ™ 0 X

by the force. In this situation, the amplitude of each particle’s B N o o
vibration is rapidly damped progressively into the chain, i.e.,WhereC_(_SZ/Tr )0‘_2'_61' This implies that the dissipation
rate 1- 7 increases with the power law®, wherep=1.

the particlej =1 has the largest amplitude during collision. It . _ _ : _

is expected thaAt will shorten with increasing initial veloc- Th|||§ Fesu“ agrees W;]th numenca[ S'm“'?t"’” forcljow_—\;]eltr)]cny

ity. As a first approximation, we take into account only the cOllision. However the constarl is not in accord with the
above resulfour numerical simulation give€=0.66).

change ofAt against initial veloci in Eq. (7). To esti- .

mategthe veloc?ty dependence ztot,tyll()e(tJ us cgngic)ier the col- The above res_ult d|rectly.depend_s on the exponent of the

lision of a Lennard-Jones-type chain witke 2. In this case, lowest unharmonic term of mterpgrtlcle potential energy. In

particle j=1 collides with the wall two times. The Hamil- the case qf Lennard-Jones potential, the e>_<pone=rﬁ. Th(_e

tonian is exponent is the same for other types of chains. Let us discuss
more general cases. Suppose that the interparticle potential
energy can be expanded around its equilibrium position as

Moo 2 .
H= 7 0atx) UL =X = 1)+ V. (13 U(x) = x?+cx + higher order, (19
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FIG. 6. Increase of dissipation rates. We plot the dissipation rate F|G. 7. Plot of ratio off(n) to n and COR versus velocity for
of model B minus that of modeR for r:3,4_, and 5. Fitted lines Lennard-Jones-type chain. Both increas® atl.
have slopes 1.34, 2.09, and 3.14, respectively.

where the constantis a positive(negativé number wherr rate f(n)/n approaches unity fop>1. This indicates that

is even(odd). In this case, the contact time shortens;a_sz. particles interact like rigid spheres in high-velocity collision.
The dissipation rate hen’ce increases as Consequently COR increases in the high-velocity regime.

This is a feature, which only the one-dimensional model ex-
- hibits and is unrealistic. In real systems, plastic deformation
1—nev' % (200 s crucial in such high-velocity collisions.

Taking potential energEq. (19)] for the interaction of par-
ticles in modelB, we plot numerical results of dissipation

rate in Fig. 6 foro<1. The results agree with E¢R0). We have presented a simple one-dimensional microscopic
When the particles in the chain can be regarded as rigidhodel of colliding bodies to understand the energy dissipa-
spheres, interparticle interaction is of ti#efunction type. tion process. Lennard-Jones, Toda, and log-type potentials
Collision between the two spheres is reduced to a simplare chosen as interactions between particles. We found that
exchange of their momenta. We can exactly solve the entirthe COR depends on the initial velocity and is minimum at

dynamics of the collision between the chain and a rigid wally =1. These behaviors are independent of the potential form.
The spherg =1 collides with the walh times and no inter-  |n Jow-velocity collisions, the relationship between the en-
nal vibration remains after the collision, i.e., the COR isergy dissipation rate and collision velocity is derived using

exactly unity in this case. perturbation methods.
In the limit of high-velocity collision of modeB, particles

interact like rigid spheres becausg;, Uyga, andUqq all
behave like hard core potentials within a very short distance.
In Fig. 7, we show the COR of a Lennard-Jones-type chain One of the authorgS.N) would like to acknowledge
and f(n)/n versus collision velocity on the same plot. The helpful discussions with Dr. T. Kawakatsu.

IV. SUMMARY
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