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Diffusion and anomalous diffusion of light in two-dimensional photonic crystals
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The transport properties of electromagnetic waves in disordered, finite, two-dimensional photonic crystals
composed of circular cylinders are considered. Transport parameters such as the transport and scattering mean
free paths and the transport velocity are calculated, for the case where the electromagnetic radiation has its
electric field along the cylinder axes. The range of the parameters in which the diffusion process can take place
is specified. It is shown that the transport velocityvE can be as much as 108 times less than its free space value,
while just outside the clustervE can be 0.3c. The effects of weak and strong disorders on the transport velocity
are investigated. Different regimes of the wave transport—ordered propagation, diffusion, and anomalous
diffusion—are demonstrated, and it is inferred that Anderson localization is incipient in the latter regime. Exact
numerical calculations from the Helmholtz equation are shown to be in good agreement with the diffusion
approximation.
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I. INTRODUCTION

Propagation of electromagnetic waves in ordered and
ordered media has attracted much interest recently@1#, partly
born of the invention of photonic crystals@2,3#—materials
with a periodic refractive index distribution. Such materia
can prohibit propagation of light in all directions and for a
polarizations at so-called gap wavelengths@4,5#. Therefore a
photon with a gap wavelength is trapped or localized ins
such a structure and we term this gap localization.

In contrast to gap localization, Anderson localization
photons, the analog of electron Anderson localization, ta
place in a disordered medium. Due to multiple scattering
photons off the equivalent random potential created by v
ability in optical properties such as refractive index, wa
transport undergoes a phase transition from propagatio
exponential decay@6#. To demonstrate Anderson localizatio
of photons, John@2# suggested use of disordered, but pe
odic on average, photonic crystals composed of dielec
inclusions in a matrix@4,5#.

One of the crucial parameters of the Anderson localizat
is the linear ‘‘sample size’’L of the random medium. As
waves propagate inside the random sample, the original
herent propagation changes to diffusive propagation wit
scattered transport mean free pathl t . Interference of waves
can then reduce the transport mean free pathl t and renormal-
ize the diffusion coefficientD to a form that depends on th
sample size and disorder. Such renormalization of the di
sion coefficient leads to anomalous diffusion, and then
localization if D→0. The scaling theory of localization@7#
predicts that, in an infinite medium, waves with all wav
lengths are localized in one- and two-dimensional infin
media even for a small amount of disorder, while for thre
dimensional problems there exists a region of wavelength
which the localization takes place at a given level of dis
der. However, all realistic random samples are finite. The
fore it is important to take into account the effects of t
finite size of the random samples on localization propert
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Furthermore, the finiteness of the sample allows the poss
ity of a diffusive regime of wave propagation even for on
and two-dimensional problems.

Since the suggestion by John@2# to use randomized pho
tonic crystals to demonstrate Anderson localization of p
tons, only a few papers have considered this and rela
problems. Some aspects of the localization of waves in g
eral have been considered@8#, particularly for two-
dimensional problems@9–12#.

The diffusion coefficientD is closely related to the trans
port velocity of light vE , which has been calculated in th
limit of low concentration of scatterers@13,14#. The question
of the transport velocity of lightvE for high concentrations
of scatterers has been a difficult problem so far@15#. Effec-
tive medium models based on the spectral function appro
@16# and the approach of averaged energy density homo
neity @17,18# have been developed to model this proble
but their limits of applicability are restricted@19,20#.

A recent exact multipole expansion method@21–27# and
the construction of the Green tensorGi j (r1 ,r s) @28,29# allow
one to calculate the transport velocityvE for high concentra-
tion of scatterers with high accuracy for two dimension
problems. The method also allows one to inve
igate the transport properties of random media su
as the diffusion coefficientD and the correlation function
^Gi(r1 ,r s)Gj* (r2 ,r s)& @15#.

In general, one can specify four regimes of wave pro
gation in disordered media: The homogenized regime,
which the random medium can be characterized by an ef
tive dielectric constant«eff , applies when the wavelength i
greater than that of any characteristic structures within
medium, i.e.,l@Ls , whereLs is the size of the scatterers o
the distance between them; the diffusive regime, in which
intensity of the waves obeys the diffusion equation, occ
whenl/2p! l t!L holds, wherel t is the transport mean fre
path andL is the size of the sample@30#; the regime in which
the transport mean free path is a function of the size of
cluster and/or the degree of disorder, called the anoma
©2003 The American Physical Society05-1
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diffusive regime; and finally, in the localized regime we ha
l/2p* l t , which is known as the Ioffe-Regel criterion.

Here we investigate the different regimes of wave pro
gation: diffusion, anomalous diffusion, and Anderson loc
ization for both pass-band and gap wavelengths. Other a
of this paper are to calculate rigorously the transport velo
vE of light in finite sized photonic crystals for intermedia
concentrations of scatterers where no theoretical models
ist, and to investigate the effects of disorder onvE .

In Sec. II we briefly outline the construction of the Gre
function. In Sec. III we calculate the transport and scatter
mean free paths,l t and l s , of photons and determine th
values of these parameters where diffusive propagation
waves can take place. In Sec. IV we calculate the trans
velocity vE of waves inside finite photonic crystals from fir
principles. In Sec. V we show that light propagation in d
ordered photonic crystals of finite size can be diffusive a
also demonstrate the anomalous regime of wave propaga
Incipient Anderson localization for gap wavelengths is a
inferred.

II. GREEN FUNCTION

In a recent paper@28# we constructed the Green tensor f
two-dimensional photonic crystals composed of a finite cl
ter of Nc nonoverlapping circular inclusions in a matrix, a
illustrated in Fig.1. The radii of inclusions in a matrixal ,
refractive indicesnl , and positionscl of the circle centers are
otherwise arbitrary. A point source is assumed to be loca
at cs . This system can also be viewed as representing a
lection of parallel circular cylinders with the propagatio
strictly perpendicular to their axes from a line source and
will use the two descriptions interchangeably below.

Here we give a brief outline of the method that we use
calculate the component of the Green tensor forEz polariza-
tion in the subsequent sections. For this polarization the e
tric vector is aligned along the axes of the cylinders and
electromagnetic field can be described by a single com

FIG. 1. The geometry of the problem. The positions of the c
ters of the cylinders are given by the vectorcl and that of the source
by cs , while r is the position at which the Green function is calc
lated.
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nent of the electric Green tensorGzz5Ve(r ;cs) that obeys
the Helmholtz equation

¹2Ve~r ;cs!1k2n2~r !Ve~r ;cs!5d~r2cs!, ~1!

where Ve and n•“Ve are continuous across all cylinde
boundaries. Heren(r ) is the refractive index of the cylinder
or the matrix andn is the local outward unit vector normal t
the surface of the cylinders.

To construct the Green function we use exact multip
expansions in which the wave fields inside and outside
cylinders are expressed in terms of Bessel functions w
unknown coefficients. By using the boundary conditions
the continuity of the field and its derivative at the surfaces
the cylinders, and by applying Green’s second theorem o
the cluster, we derive a linear set of equations for the
known coefficients@27#. By solving the linear set of equa
tions, the Green function is then reconstructed as

Ve~r ;cs!5xext~cs!H0
(1)~kur2csu!/~4i !

1 (
q51

Nc

(
m52`

`

Bm
q Hm

(1)~kur2cqu!eim arg(r2cq),

~2!

for points in the matrix, and

Ve~r ;cs!5x l
int~cs!H0

(1)~knl ur2csu!/~4i !

1 (
m52`

`

Cm
l Jm~knl ur2cl u!eim arg(r2cl ), ~3!

for points inside the cylinders. The termxext(cs)51 if the
source is outside the cylinders and is zero when the sourc
inside one of the cylinders. The termx l

int(cs)51 when the
source is inside cylinderl and is zero otherwise. By usin
Maxwell’s equations we can calculate the components of
magnetic fieldH5(Hx ,Hy), with

H5
“3E

ikZ0
, ~4!

whereZ05Am0 /«0 is the free space impedance.
The above method is highly accurate and numerically

fective. As an illustration, in Fig. 2 we present the intens
distributionI 5uVe(r ;cs)u2 for a cluster ofNc5317 cylinders
with the refractive indicesnl uniformly distributed in the
range 2.2–3.8 and radiial50.4d excited by a line source
located at the center of the middle cylinder for one reali
tion. Hered is the distance between the centers of the nei
boring cylinders. The cylinders form a finite cluster of a
proximately circular shape with cylinder centers located in
square lattice. Calculations have been done for a gap w
length of the corresponding infinite structure,l/d51.625.
Note the tendency of the field to concentrate at the cente
the cluster, reflecting the localized nature of gap modes.
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DIFFUSION AND ANOMALOUS DIFFUSION OF LIGHT . . . PHYSICAL REVIEW E 67, 036605 ~2003!
III. TRANSPORT l t AND SCATTERING MEAN FREE PATH
l s IN TWO-DIMENSIONAL RANDOM MEDIA

In appropriate regimes, a suitable description of wa
propagation in strongly scattering disordered media is
diffusion approximation, in which the wave equation for t
fields is replaced by the simpler diffusion equation for t
intensity. The main parameters involved in the diffusion a
proximation are the diffusion coefficientD, the transport ve-
locity vE , the transport mean free pathl t , and the scattering
or elastic mean free pathl s . The transport velocityvE is
considered in Sec. IV, while here we consider the proper
of l s and l t .

The scattering mean free pathl s is the average distanc
between two successive scattering events, while the trans
mean free pathl t is the characteristic distance over which t
direction of the momentum of photons becomes randomiz
In the limit of low scatterer concentration, they can be c
culated using

l s5
1

rs t
, ~5!

l t5
l s

12^cosus&
, ~6!

wherer is the concentration of the scatterers,us is the scat-
tering angle, ands t is the total scattering cross section. Th
is @31#

s t5E
0

2p

sd~u!du, ~7!

for two-dimensional problems, wheresd(u) is the differen-
tial scattering cross section

sd~u!5 lim
r→`

r
uSs~u!u

uSi u
. ~8!

FIG. 2. Intensity distribution for a source at the center of t
central cylinder of a cluster withNc5317 cylinders. The black
circles indicate the positions of the cylinders. The refractive indi
of the cylinders are random with a uniform distribution over t
range 2.2–3.8.
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Here uSi u is the Poynting vector of the incident plane wa
anduSsu is the Poynting vector of the plane wave scattered
a single inclusion,u is the angle between the incident an
scattered waves andr is the distance from the center of th
inclusion. For circular scattererssd ands t can be calculated
in closed form@31–33#. The Poynting vector of the scattere
field uSsu can be calculated by using the scattered part of
fields ~2! and ~4!, giving

sd~u!5
2

pk (
m52`

`

(
p52`

`

BmBp* ei (m2p)uei (p2m)p/2
, ~9!

s t5
4

k (
m52`

`

uBmu2, ~10!

where

Bm5
nJm8 ~nka!Jm~ka!2Jm~kna!Jm8 ~ka!

nJm8 ~nka!Hm
(1)~ka!2Jm~nka!Hm

(1)8~ka!
. ~11!

The averagêcosus& is

^cosus&5
1

2ps t
E

0

2p

sdcosudu5

Re (
m52`

`

BmBm11*

(
m52`

`

uBmu2

,

~12!

wheren is the refractive index of the cylinder, the mediu
separating the cylinders is taken to have unit refractive
dex,a is the radius andk52p/l is the wave number. Equa
tions ~5! and~6! hold only for low concentrations of scatte
ers with filling fraction f &0.1 @34#. For higher
concentrations of scatterers 0.1& f &0.6 the scattering cros
sections t must be rescaled ass t→s t(12 f ) @31#, while, for
f *0.6, a more complicated rescaling parameter needs t
used@35#.

In the diffusive propagation regime, the relation

l/2p! l t!L ~13!

between the wavelengthl, the transport mean free pathl t
and the sample sizeL of the medium must hold@30#. The
lower limit in Eq. ~13! is given by the Ioffe-Regel condition
klt;1 that determines the mobility edges of the Anders
transition for three-dimensional problems.

To illustrate the parameters that favor diffusive propag
tion we plot the averages, obtained from the equations of
section,̂ l t& ~solid line! and^ l s& ~dashed line! as functions of
the wavelengthl in Fig. 3 for a cylinder with the refractive
index uniformly distributed in the range 2.8,nc,3.2. The
radii of the cylinders area50.4d, whered is the distance
between the centers of two neighboring cylinders, and
filling fraction f 5pa2/d2'0.5. Figure 3 shows that for long
wavelengthsl t' l s , while for shorter wavelengths, they ar
different. This is understandable, because, for longer wa
lengths, the asymmetry parameter~12! approaches zero

s
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since in this regime the monopole termB0 is dominant in the
cross section~9! and can make only a small contribution
the asymmetry parameter@because of the termBmBm11* in
Eq. ~12!#. The horizontal and sloped straight lines indica
the predicted lower and upper bounds for diffusive propa
tion ~13!. The scattering mean free pathl s also can be deter
mined by the decay length of the average single-part
Green’s function̂ G& @31#. Due to randomness, the effectiv
refractive index of the medium renormalizes and acquire
complex partkeff5keff8 1 i /(2l s). Herekeff8 is the real part of
the effective refractive index, which includes the real part
the forward scattering cross section@31#.

Figure 4 shows the dependence ofu^G&u2 on the distance
along they axis for the cluster of 317 cylinders with rando
refractive index uniformly distributed in the range 2.8–3
The cluster is excited by a point source in the center of

FIG. 3. Transport̂ l t& ~solid line! and ^ l s& scattering mean free
paths ~dashed line! versusl. The region formed by the straigh
lines is the region that satisfies the condition~13! for diffusive
propagation. The sloped straight line is the limiting value of t
Ioffe-Regel criteriuml52p l t from below, while the horizontal and
vertical straight lines are the limitations due to the size of the clu
L/d510. The black dots indicated by lettersA,A* ,B, andB* are
discussed in Sec. V

FIG. 4. Average modulus of the Green function versus dista
y from the point source atxs50,ys50. The slope of the straigh
lines determines the scattering mean free pathl s ~see text!, which is
in agreement with Eq.~5! scaled by a factor 12 f .
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central cylinder and the pass band wavelength isl/d51.4.
The transport mean free path is equal tol t /d53.29 for this
wavelength~see the solid line in Fig. 4!. The slope of the
straight lines on Fig. 4 determine the scattering mean f
path l s /d52.060.2, which is consistent with Eq.~5! scaled
by a factor 12 f , which gives the valuê l s&/d52.1. This
exponential decay is simply the decay of the coherent int
sity u^G&u2'ei2keffr'e2r / l s @31#.

Note that the results shown in Fig. 4, as in all later figur
have been calculated by averaging over an ensemble of
randomly chosen cluster realizations. This ensemble
seems sufficient to give stable results, even in the case
strong randomization investigated.

IV. TRANSPORT VELOCITY IN TWO-DIMENSIONAL
RANDOM MEDIA

The speed of energy transport is one of the main cha
teristics of wave propagation in disordered media. In spite
its importance, this quantity was only treated phenome
logically until recently Refs.@36,37#. In the low concentra-
tion limit, a microscopic derivation of the speed of light
given in@13#, while for the high concentration limit, differen
effective medium models have been developed@16,18#. All
of these approaches, as models, have successes and
comings@19#. Therefore it is important to study this problem
rigorously for some model problems that allow exact so
tion. The multipole method@21–26# is well adapted to the
accurate calculation of the transport velocity from first pr
ciples.

The transport velocityvE is defined to be the ratio of the
averaged energy flux determined from the Poynting vectoS
to the averaged energy density of the waveW ~where aver-
aging is over a sufficiently large random ensemble!

vE5^S&/^W&. ~14!

This definition was originally given by Brillouin@36# and
was correctly calculated by Loudon@37#. The group velocity
vg5dv/dk does not take into account the multiple scatteri
of waves@13# over random distributions of scatterers. Fu
thermore, near resonances it can become greater than
speed of light in vacuum@38#. The calculation of the trans
port velocity given by Eq.~14! is consistent with experi-
ments@13# and does not give values greater then speed
light.

Before considering the speed of wave propagation in d
ordered photonic crystals, it is useful to calculate the tra
port velocity of waves in the ordered case. The geometry
the cluster is the same as in Fig. 2. The refractive indices
the cylinders arenc53. The line source is located in th
center of the middle cylinder. The solid line in Fig. 5 repr
sentsuvEu/c from Eq. ~14! versus the positiony with the
source located in the middle of the central cylinder for t
wavelengthl/d51.625, which is located just inside the ga
region of the corresponding infinite structure. It is seen t
the transport velocity can be as low as 1028c, for a cluster of
this size. The linear trends indicate that the transport velo
increases exponentially away from the center of the clus
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The transport velocityvE tends to zero in the vicinity of the
source, as a consequence of symmetry~the absence of a pre
ferred direction for this vector quantity!. It is also seen tha
just outside the cluster, aty/d5611, the transport velocity
vE /c reduces its value to 0.3 before it rapidly approaches
free space value away from the edge of the cluster. This lo
minimum of vE is due to a strong interference effect at t
edge of the cluster. We calculatedvE /c also for a bigger
cluster with Nc5625 cylinders and this reduction of th
transport velocityvE /c outside the cluster still takes place

The dashed line on Fig. 5 isvE /c versus the position for
the wave with the pass-band wavelengthl/d53.425. For
this wavelength the transport velocity oscillates around
homogeneous valuevE /c51/neff50.44 calculated using the
linear mixing formula«eff512 f 1 f ^« l& @25#, which is rig-
orous for this polarization, and approaches the free sp
valuec outside the cluster.

Figure 6 shows the same relationship as in Fig. 5 but
a disordered photonic crystal with uniformly distributed cy

FIG. 5. Transport velocityvE /c for an ordered photonic crysta
versus the distance from the line source at the center of the ce
cylinder at xs5ys50; ~solid line! for gap wavelengthl/d
51.625, and~dashed line! for pass-band wavelengthl/d53.425.

FIG. 6. The modulus of the transport velocityvE /c versus the
distance from the line source at the center of the central cylinde
xs5ys50 for an ordered photonic crystal~solid line! and disor-
dered photonic crystal for a gap wavelengthl/d51.625. The re-
fractive index is distributed in the range 2.9–3.1 for dashed line
in the range 2.2–3.8 for dotted line.
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inder refractive index in the range 2.9,nc,3.1 ~dashed line,
middle curve, weak disorder! and in the range 2.2,nc,3.8
~dotted line, top curve, strong disorder! averaged over 200
realizations. The solid line isvE /c for a fully ordered pho-
tonic crystal with nc53.0. For weak disorder, 2.9,nc
,3.1, vE /c'1025 at the center of the cluster, while stron
disorder has a larger effect on the transport velocity. N
that although the transport velocityvE /c is substantially in-
creased for strong disorder compared tovE /c for the perfect
crystal, its value is nearly 15 times less than the free sp
value. Similar low values of the transport velocity have be
reported experimentally@13,39#. As we approach the edge o
the cluster, the transport velocityvE /c rapidly approaches
the free space value.

V. DIFFUSION, ANOMALOUS DIFFUSION, AND
INCIPIENT ANDERSON LOCALIZATION

In this section we consider the different regimes of wa
propagation: the diffusive and anomalous diffusive regim
and evidence for incipient Anderson localization. The tra
port mean free pathl t and velocityvE are important charac
teristics of diffusive propagation. The diffusion constantD is
given by D5vEl t/2 for two-dimensional problems. In th
diffusion approximation, where the transport mean free p
is bigger than the wavelength, the wave equation for
electric field component~1! can be replaced with a diffusion
equation for the wave intensity@31,32#. For monochromatic
problems with a source atcs , the diffusion equation takes
the form

¹2I 52
2P0

l t
d~r2cs!, ~15!

whereP0 is the total emitted energy,l t is the transport mean
free path, andI is the intensity given byI 5^GG* &
2u^G&u2 @31#. Note that the coherent intensityu^G&u2 is neg-
ligible here ~for sufficient degree of disorder! and can be
disregarded in Eq.~15!. For example, for the cluster with 31
cylinders and the refractive index disorder in which the
fractive index is uniformly distributed in the rangenl6Q,
the degree of disorderQ50.2 is sufficient to render negli
gible the coherent intensity.

The diffusion equation is usually solved with bounda
conditions@31# at the edge of the sample

I 6
2l t

3

]I

]n
50, ~16!

wheren is the unit outward normal from the diffusive region
Note that the diffusion equation as well as the propos
boundary conditions~16! are approximate@31,32#. Other
boundary conditions are discussed in Ref.@40#. These bound-
ary conditions are obtained by the requirement that the
tensity flux directed inward from the exterior of the diso
dered sample vanishes. Here, we first solve the ex
Helmholtz equation using the multipole method and find
averaged intensity value at the edge of the clusterr 5L.
Then we use this value as a boundary condition for the
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fusion equation~15!. By using this boundary condition, w
automatically satisfy the requirement of the absence of
inward flux. Given this boundary condition the analytic
solution of the diffusion equation~15! inside the cluster take
the form

I 52
P0

p l t
ln

urÀcsu
L

1I 0 , ~17!

wherel t is the transport mean free path,I 0 is the exact value
for the intensity at the edge of the cluster found from t
numerical solution of the Helmholtz equation andL is the
size of the cluster, which we take to have a circular sha
For points outside the clusterurÀr su.L, we continue the
diffusive solution~17! by the relation

I 5I 0

L

r
, ~18!

where I 0 is the intensity at the edge of the cluster,L is the
size of the cluster, andr is the distance from the source. No
that for two-dimensional problems the intensity of a po
source located at the origin decays as 1/r far from the source.

Below we consider both the transport properties of a w
with pass-band and gap wavelengths of the correspon
regular infinite photonic crystal.

A. Diffusion and anomalous diffusion for a pass-band
wavelength

In Fig. 7 we plot I versusy for a source located at th
middle of the central cylinder for a pass wavelengthl/d
51.4 ~indicated by the letterA on Fig. 3! of a corresponding
infinite structure and for a cluster as in Fig. 2. The refract
indicesnl of cylinders are uniformly distributed in the rang
2.8–3.2. The oscillating line is the exact solution of t
Helmholtz equation averaged overNr5200 random realiza-

FIG. 7. Intensity versus distance from a point source at
center of the central cylinder atxs5ys50; for a wavelengthl/d
51.4. The solid oscillating line is the averaged solution of t
Helmholtz equation and the dashed line is Eq.~15! for points inside
of the cluster and Eq.~18! for points outside. The cluster comprise
317 cylinders and the refractive index distribution is uniform in t
range 2.8–3.2.
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tions and the dashed line is the analytical solution given
Eq. ~17! for points inside the cluster and by Eq.~18! for
points outside the cluster. There is good agreement betw
two curves. Therefore, we conclude that this is the diffus
regime of wave propagation.

In Fig. 8 we plot the same relation as in Fig. 7, but f
stronger disorder, where the refractive index is uniform
distributed in the range 2.2–3.8. The dashed line is the s
tion ~17! of the diffusion equation for points inside the clu
ter and the relation~18! for points outside. In order to obtain
the fit for this case we had to rescale the transport mean
path from the valuel t /d'3.29 indicated by the letterA in
Fig. 3 ~corresponding to the Ioffe-Regel valueklt'14.77) to
the valuel t /d'0.5560.15 indicated by the letterA* in Fig.
3 ~corresponding to the Ioffe-Regel valueklt'2.47). This
reduction of the transport mean free path is an indication
the anomalous diffusion regime. Note that, for the Anders
transition to take place, the conditionklt'1 must be satis-
fied, corresponding to the transport mean free pathl t /d
'0.22. To achieve this regime, bigger clusters or/and po
bly stronger disorder are required, requiring computer tim
that are prohibitive at present.

B. Diffusion and anomalous diffusion for a gap wavelength

In Fig. 9 we plot^uGu2& versusy for the gap wavelength
l/d51.625 ~indicated by the letterB on Fig. 3!, which is
located just inside the edge of the gap for the correspond
infinite structure. It has been suggested@41# that photons
with gap wavelengths are easier to localize by the Ander
mechanism. The refractive indices of the cylinders are u
formly distributed in the range 2.2–3.8~top curve!, 2.8–3.2
~middle curve! and regularnl53 for the bottom curve. Here
we investigate transition from gap localization~bottom
curve! to possible Anderson localization~top curve! as we
increase the degree of disorder. It might be expected tha
would first see the classical diffusive regime of wave prop
gation as we increase the disorder. However, it turns out
for a gap wavelength this transition takes place directly~or at
least, very rapidly! to the anomalous diffusive regime. Th
dotted line on the oscillating top curve for points inside t

e

FIG. 8. The same relationship as in Fig. 7, but for the refract
index distribution in the range 2.2–3.8. Due to strong randomn
the transport mean free path renormalizes from the value^ l t&/d
'3.29 to the valuêl t&'0.55. This is the regime of the anomalou
diffusion.
5-6
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DIFFUSION AND ANOMALOUS DIFFUSION OF LIGHT . . . PHYSICAL REVIEW E 67, 036605 ~2003!
cluster is the solution of the diffusion equation~15! with the
rescaled transport mean free pathl t* . We obtain the fit for
the value l t* /d50.3 indicated by the letterB* in Fig. 3,
which corresponds to the value of the Ioffe-Regel num
klt* '1.16, close to the edge of the Anderson transitionklt*
'1. Interestingly, the exponential relationshipf (y)
50.25 exp(2uyu)/3 is also a good fit for the intensity curv
and one can estimate the localization lengthl /d'3.

The above calculations suggest that, for the gap wa
lengths, the transition from gap localization to Anderson
calization takes place through the anomalous diffusive
gime, in which the transport mean free path can no longe
taken as constant, but is a function of the size of the clu
and the degree of the disorder.

VI. CONCLUSION

We have investigated the different transport regim
regular ~or ordered!, diffusive, and anomalous diffusive re
gimes of wave propagation in disordered photonic crys
for both gap and pass-band wavelengths of correspon
infinite regular structures. The main parameters of diffus
propagation: the transport velocityvE , and the transport and
scattering mean free paths,l t and l s , have been calculated
The parameters that corresponds to diffusive propaga
have been quantified.

The transport velocityvE /c introduced by Brillouin has
been calculated from first principles for a random medi
with an intermediate filling fractionf 50.5. It was found that
the transport velocity of lightvE in ordered finite-size pho
tonic crystals can be substantially lower (vE /c'1028) than
the free space value for a gap wavelength. The effects of
disorder on the transport velocity were also considered an
has been shown thatvE /c can be more then 15 times les
than in free space, which is in agreement with the exp
mental results reported earlier. Although the transport ve
ity is rather sensitive to the degree of disorder, using big

FIG. 9. Intensity^I & versus the distance from a point source
the center of the central cylinder atxs5ys50; for a gap wavelength
l/d51.625. The transition from gap localization to Anderson
calization. The refractive index of the cylinders are uniformly d
tributed in the range 2.2–3.8~top curve! and 2.8–3.2~middle
curve!, and have fixednl53 for the bottom curve. The dotted lin
overlaying the oscillating top curve is the anomalous diffusion fi
03660
r

e-
-
-
e

er

:

ls
ng
e

n

he
it

i-
c-
r

clusters can substantially reduce the transport velocity e
for weak disorder. The calculation of the transport veloc
vE based on this rigorous multipole method can serve a
basis on which the accuracy and the limits of the applica
ity of different effective medium models can be verified a
checked.

For a wavelength in the pass band and a wavelength in
gap we have calculated the transport properties of waves
Fig. 10 we schematically illustrate and summarize the ove
results obtained. Wave propagation for a pass-band wa
length of the corresponding infinite cluster for weak disord
is diffusive ~region D in Fig. 10!, while for strong disorder
the transport becomes anomalously diffusive~region AD in
Fig. 10!. To demonstrate the Anderson transition bigger cl
ters and/or larger disorder are needed. For a gap wavelen
we have investigated the transition from gap localization
Anderson localization and have shown that this transit
takes place directly through the anomalous diffusive regi
~region AD in Fig. 10! and the threshold of the Anderso
transition is more easily achieved~region AL in Fig. 10!
@41#. An incipient Anderson transition was demonstrate
This qualitative smooth picture of the Anderson transition
two-dimensions is in agreement with the scaling theory
localization.
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t
FIG. 10. Schematic picture of the different regimes of the wa

propagation.D stands for diffusion, AD for anomalous diffusion
AL Anderson localization,H for homogenization. The sloping line
is an indication of the Ioffe-Regel criterion, while the dotted lin
gives an indication of the boundary between the normal and ano
lous diffusion regimes. Reading from left, the vertical lines ma
the edges of the band gap and the size of the sample.
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