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Diffusion and anomalous diffusion of light in two-dimensional photonic crystals
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The transport properties of electromagnetic waves in disordered, finite, two-dimensional photonic crystals
composed of circular cylinders are considered. Transport parameters such as the transport and scattering mean
free paths and the transport velocity are calculated, for the case where the electromagnetic radiation has its
electric field along the cylinder axes. The range of the parameters in which the diffusion process can take place
is specified. It is shown that the transport velogitycan be as much as 4@mes less than its free space value,
while just outside the clusterz can be 0.3c. The effects of weak and strong disorders on the transport velocity
are investigated. Different regimes of the wave transport—ordered propagation, diffusion, and anomalous
diffusion—are demonstrated, and it is inferred that Anderson localization is incipient in the latter regime. Exact
numerical calculations from the Helmholtz equation are shown to be in good agreement with the diffusion
approximation.
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I. INTRODUCTION Furthermore, the finiteness of the sample allows the possibil-
ity of a diffusive regime of wave propagation even for one-

Propagation of electromagnetic waves in ordered and disand two-dimensional problems.
ordered media has attracted much interest recéhflyartly Since the suggestion by Joh2] to use randomized pho-
born of the invention of photonic crysta®,3]—materials ~ tonic crystals to demonstrate Anderson localization of pho-
with a periodic refractive index distribution. Such materialstons, only a few papers have considered this and related
can prohibit propagation of light in all directions and for all Problems. Some aspects of the localization of waves in gen-
polarizations at so-called gap wavelengih]. Therefore a €ral have been considerefB], particularly for two-
photon with a gap wavelength is trapped or localized insidelimensional problemf9—-12].
such a structure and we term this gap localization. The diffusion coefficienD is closely related to the trans-

In contrast to gap localization, Anderson localization of port velocity of lightve, which has been calculated in the
photons, the analog of electron Anderson localization, takefmit of low concentration of scatteref¢3,14. The question
place in a disordered medium. Due to multiple scattering oPf the transport velocity of light ¢ for high concentrations
photons off the equivalent random potential created by variof scatterers has been a difficult problem so[fe5]. Effec-
ability in optical properties such as refractive index, wavetive medium models based on the spectral function approach
transport undergoes a phase transition from propagation #d6] and the approach of averaged energy density homoge-
exponential decaj6]. To demonstrate Anderson localization neity [17,18 have been developed to model this problem,
of photons, Johri2] suggested use of disordered, but peri-but their limits of applicability are restrictefd 9,20.
odic on average, photonic crystals composed of dielectric A recent exact multipole expansion methi@i 27 and
inclusions in a matrix4,5]. the construction of the Green tengdy;(r,,rs) [28,29 allow

One of the crucial parameters of the Anderson localizatiorPne to calculate the transport velocity for high concentra-
is the linear “sample size’L of the random medium. As tion of scatterers with high accuracy for two dimensional
waves propagate inside the random sample, the original cgroblems. The method also allows one to invest-
herent propagation changes to diffusive propagation with égate the transport properties of random media such
scattered transport mean free path Interference of waves as the diffusion coefficienD and the correlation function
can then reduce the transport mean free patind renormal-  (Gi(r1,rdGj (r.rs)) [15].
ize the diffusion coefficienb to a form that depends on the In general, one can specify four regimes of wave propa-
sample size and disorder. Such renormalization of the diffugation in disordered media: The homogenized regime, in
sion coefficient leads to anomalous diffusion, and then tovhich the random medium can be characterized by an effec-
localization if D— 0. The scaling theory of localizatidiy]  tive dielectric constant s, applies when the wavelength is
predicts that, in an infinite medium, waves with all wave- greater than that of any characteristic structures within the
lengths are localized in one- and two-dimensional infinitemedium, i.e. A\>Lg, whereL is the size of the scatterers or
media even for a small amount of disorder, while for three-the distance between them; the diffusive regime, in which the
dimensional problems there exists a region of wavelengths imtensity of the waves obeys the diffusion equation, occurs
which the localization takes place at a given level of disor-when\/27<I|<L holds, wherd, is the transport mean free
der. However, all realistic random samples are finite. Therepath and. is the size of the samp[&0]; the regime in which
fore it is important to take into account the effects of thethe transport mean free path is a function of the size of the
finite size of the random samples on localization propertiescluster and/or the degree of disorder, called the anomalous
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nent of the electric Green tens@,,=V®(r;c;) that obeys
the Helmholtz equation

V2VE(r:ce) +k2n?(r)Ve(r;c) = 8(r —cy), (1)

where V¢ and »- VV¢ are continuous across all cylinder
boundaries. Hera(r) is the refractive index of the cylinders
or the matrix andv is the local outward unit vector normal to
the surface of the cylinders.

To construct the Green function we use exact multipole
expansions in which the wave fields inside and outside the
cylinders are expressed in terms of Bessel functions with
unknown coefficients. By using the boundary conditions of
the continuity of the field and its derivative at the surfaces of
the cylinders, and by applying Green’s second theorem over

FIG. 1. The geometry of the problem. The positions of the centhe cluster, we derive a linear set of equations for the un-
ters of the cylinders are given by the vectpand that of the source  known coefficientd27]. By solving the linear set of equa-
by ¢, whiler is the position at which the Green function is calcu- tions, the Green function is then reconstructed as
lated.

VE(r;cs) = x{co HEV(K|r—cq))/(41)
Ne =

+>, 2 BIHM(K|r—cy|)eimaar—co),

q:l m=—owx

diffusive regime; and finally, in the localized regime we have
N2m=l1,, which is known as the loffe-Regel criterion.

Here we investigate the different regimes of wave propa-
gation: diffusion, anomalous diffusion, and Anderson local-
ization for both pass-band and gap wavelengths. Other aims ()
of this paper are to calculate rigorously the transport velocity
ve of light in finite sized photonic crystals for intermediate for points in the matrix, and
concentrations of scatterers where no theoretical models ex- _
ist, and to investigate the effects of disorderwgn Ve(r;ce) = xM(c HE (kny|r —cd|)/ (4i)

In Sec. Il we briefly outline the construction of the Green
function. In Sec. Ill we calculate the transport and scattering
mean free pathd,; andlg, of photons and determine the
values of these parameters where diffusive propagation of
waves can take plaqe. .In S'e(.:. IV we cglculate the tran'spo%r points inside the cylinders. The tergP(c) =1 if the
velocity vg of waves inside finite photonic crystals from first . . . . ben th .
principles. In Sec. V we show that light propagation in dis->OUrce 1S outside the .cyllnders and is _ﬁtero when the source 1s
ordered photonic crystals of finite size can be diffusive andns‘Ide one of the cylinders. The tergj"(c;) =1 when the

also demonstrate the anomalous regime of wave propagatio ource ”'S |nS|de. cylinder and ISI z:arto (tjrgher\mse. By tusmfg{h
Incipient Anderson localization for gap wavelengths is also/@XWell's equations we can calculate the components of the

+ > Clan(knjr—g|)emasr—a)  (3)
m=—o

inferred. magnetic fieldH=(H,,H,), with
VXE
ll. GREEN FUNCTION H= Kz ' (4)

In a recent papdi28] we constructed the Green tensor for
two-dimensional photonic crystals composed of a finite cluswhereZ,= \uq/e is the free space impedance.
ter of N; nonoverlapping circular inclusions in a matrix, as  The above method is highly accurate and numerically ef-
illustrated in Fig.1. The radii of inclusions in a matra, fective. As an illustration, in Fig. 2 we present the intensity
refractive indices,, and positiong; of the circle centers are distributionl =|V(r;cJ)|? for a cluster ofN.=317 cylinders
otherwise arbitrary. A point source is assumed to be locatedith the refractive indices, uniformly distributed in the
atcs. This system can also be viewed as representing a colange 2.2—-3.8 and radéd,=0.4d excited by a line source
lection of parallel circular cylinders with the propagation located at the center of the middle cylinder for one realiza-
strictly perpendicular to their axes from a line source and weion. Hered is the distance between the centers of the neigh-
will use the two descriptions interchangeably below. boring cylinders. The cylinders form a finite cluster of ap-
Here we give a brief outline of the method that we use toproximately circular shape with cylinder centers located in a
calculate the component of the Green tensorHppolariza-  square lattice. Calculations have been done for a gap wave-
tion in the subsequent sections. For this polarization the eledength of the corresponding infinite structure/d=1.625.
tric vector is aligned along the axes of the cylinders and théNote the tendency of the field to concentrate at the center of
electromagnetic field can be described by a single compahe cluster, reflecting the localized nature of gap modes.
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\ A W 7 Bk Here|S| is the Poynting vector of the incident plane wave
12 ) ‘.%D : ‘ - and|S| is the Poynting vector of the plane wave scattered by
g \‘N\ 0B O ', P a single inclusion is the angle between the incident and
S R RO 7 scattered waves ardis the distance from the center of the
4 BN s s ; Jsle iete “ T inclusion. For circular scatteretg; ando, can be calculated
B R Stats e ey o el - in closed form31-33. The Poynting vector of the scattered
=0 PaeR e e naioncer s L. field |S;| can be calculated by using the scattered part of the
DI S ot ST fields (2) and(4), giving
T = BRI Ra% AN w w
TR ) 0= S S BBiem et (g
-12 W . 4 ’A N -8 TK mE e pe
g LR i
-12 -8 -4 0 4 8 12 4z
e o=y 2 [Baf2 (10
FIG. 2. Intensity distribution for a source at the center of the m=-=
central cylinder of a cluster witiN.=317 cylinders. The black where

circles indicate the positions of the cylinders. The refractive indices

of the cylinders are random with a uniform distribution over the
range 2.2-3.8. B _ nJ; (nka)Jn(ka)—JIn(kna)J; (ka)

m— ’ . (11)
nJ,(nka)HM(ka) — I (nka)HY (ka)
Ill. TRANSPORT I|; AND SCATTERING MEAN FREE PATH
I IN TWO-DIMENSIONAL RANDOM MEDIA The averagécosé,) is
In appropriate regimes, a suitable description of wave ®
propagation in strongly scattering disordered media is the Re 2 B.B*
diffusion approximation, in which the wave equation for the 1 (2w Mt oMl
fields is replaced by the simpler diffusion equation for the ~ (COS0s)= mfo o4cosfd o= = ;
intensity. The main parameters involved in the diffusion ap- k E |B|?
proximation are the diffusion coefficiet, the transport ve- m=—o
locity vg, the transport mean free pdth and the scattering (12

or elastic mean free path,. The transport velocityg is
considered in Sec. IV, while here we consider the propertie
of I andl,.

The scattering mean free palthis the average distance
between two successive scattering events, while the transp . L 4 i
mean free path, is the characteristic distance over which the €™ with . filing fraction f=<0.1 [34]. For . higher
direction of the momentum of photons becomes randomizecfoncemrat'ons of scatterers &1<0.6 the scattering cross

In the limit of low scatterer concentration, they can be cal-Sectiona must be resc_:aled aﬁt_’at_(l_f) [31], while, for
culated using f=0.6, a more complicated rescaling parameter needs to be

gvheren is the refractive index of the cylinder, the medium
Separating the cylinders is taken to have unit refractive in-
dex, a is the radius an#t=2=/\ is the wave number. Equa-
c}'}?ns (5) and(6) hold only for low concentrations of scatter-

used[35].
1 In the diffusive propagation regime, the relation
lg=—o, 5
S poy N2m<| <L (13
B Is between the wavelength, the transport mean free path
It_l—(cosﬁsy ©  and the sample size of the medium must holdi30]. The

lower limit in Eq. (13) is given by the loffe-Regel condition
wherep is the concentration of the scatterefs,is the scat-  Kli~1 that determines the mobility edges of the Anderson
tering angle, andr, is the total scattering cross section. This transition for three-dimensional problems.
is [31] To illustrate the parameters that favor diffusive propaga-
tion we plot the averages, obtained from the equations of this
2 sectionl,) (solid line) and{l ) (dashed lingas functions of
o= fo oqy(6)dé, (7 the wavelength\ in Fig. 3 for a cylinder with the refractive
index uniformly distributed in the range 281.<3.2. The
radii of the cylinders are@=0.4d, whered is the distance
between the centers of two neighboring cylinders, and the
filling fraction f = ra?/d?~0.5. Figure 3 shows that for long

for two-dimensional problems, wherey(6) is the differen-
tial scattering cross section

1S.(0)] wavelengthd,~|, while for shorter wavelengths, they are
og(0)=limr————. (8) different. This is understandable, because, for longer wave-
e IS lengths, the asymmetry paramet€r2) approaches zero,
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central cylinder and the pass band wavelength/d=1.4.

The transport mean free path is equal tbd=3.29 for this
wavelength(see the solid line in Fig. )4 The slope of the
straight lines on Fig. 4 determine the scattering mean free
pathl/d=2.0+0.2, which is consistent with E¢5) scaled

by a factor -f, which gives the valu€ls)/d=2.1. This
exponential decay is simply the decay of the coherent inten-
sity [(G)|?~e'%keil ~e~"/1s [31].

Note that the results shown in Fig. 4, as in all later figures,
have been calculated by averaging over an ensemble of 200
randomly chosen cluster realizations. This ensemble size

: ' : : : ' seems sufficient to give stable results, even in the cases of
0.2 05 1 2 5 10 20 50 2 .
A strong randomization investigated.

FIG. 3. Transportl,) (solid line) and(ls) scattering mean free
paths (dashed ling versus\. The region formed by the straight
lines is the region that satisfies the conditi@iB) for diffusive

propagation. The sloped straight line is the limiting value of the . .
loffe-Regel criterium\ = 2l from below, while the horizontal and The speed of energy transport is one of the main charac-

vertical straight lines are the limitations due to the size of the clusteferistics of wave propagation in disordered media. In spite of

L/d=10. The black dots indicated by lettedsA* B, andB* are  itS importance, this quantity was only treated phenomeno-
discussed in Sec. V logically until recently Refs[36,37. In the low concentra-

tion limit, a microscopic derivation of the speed of light is
given in[13], while for the high concentration limit, different
effective medium models have been develope@,18. All
of these approaches, as models, have successes and short-
comings[19]. Therefore it is important to study this problem
rigorously for some model problems that allow exact solu-
%ion. The multipole method21-2€ is well adapted to the
accurate calculation of the transport velocity from first prin-
iples.

IV. TRANSPORT VELOCITY IN TWO-DIMENSIONAL
RANDOM MEDIA

since in this regime the monopole teBy is dominant in the
cross sectior{9) and can make only a small contribution to
the asymmetry parametgbecause of the terB,,By ., in
Eqg. (12)]. The horizontal and sloped straight lines indicate
the predicted lower and upper bounds for diffusive propag
tion (13). The scattering mean free pdthalso can be deter-
mined by the decay length of the average single-particl
Green’s functionG) [31]. Due to randomness, the effective

o X . . The transport velocity ¢ is defined to be the ratio of the
refractive index of the medium renormalizes and acquires %veraged energy flux determined from the Poynting veStor

complex partkeg= kg ti/(2ls). Hereky is the real part of to the averaged energy density of the wAVgwhere aver-
the effective refractive index, which includes the real part of g 9y y o

the forward scattering cross sectifs]. aging is over a sufficiently large random ensemble
Figure 4 shows the dependence|@&)|? on the distance Ve=(S)/(W). (14)
along they axis for the cluster of 317 cylinders with random
refractive index uniformly distributed in the range 2.8—3.2.This definition was originally given by Brillouif36] and
The cluster is excited by a point source in the center of thevas correctly calculated by Loud$87]. The group velocity
vy=dw/dk does not take into account the multiple scattering
10 of waves[13] over random distributions of scatterers. Fur-
thermore, near resonances it can become greater than the

1t 1 speed of light in vacuuri38]. The calculation of the trans-

port velocity given by Eq.14) is consistent with experi-

2
e ments[13] and does not give values greater then speed of
0.01f Wl light. o o
¥l Before considering the speed of wave propagation in dis-
| ot “‘,, l ordered photonic crystals, it is useful to calculate the trans-
104 | TR port velocity of waves in the ordered case. The geometry of

A A the cluster is the same as in Fig. 2. The refractive indices of
N the cylinders aren,=3. The line source is located in the
100 | 1 center of the middle cylinder. The solid line in Fig. 5 repre-
' ' ' ' ' sents|vg|/c from Eq. (14) versus the positiory with the
source located in the middle of the central cylinder for the
wavelength\/d=1.625, which is located just inside the gap
FIG. 4. Average modulus of the Green function versus distancé€gion of the corresponding infinite structure. It is seen that
y from the point source at.=0y.=0. The slope of the straight the transport velocity can be as low as £6, for a cluster of
lines determines the scattering mean free patsee text, which is  this size. The linear trends indicate that the transport velocity
in agreement with Eq(5) scaled by a factor £ f. increases exponentially away from the center of the cluster.

-15 -10 -5 0 5 10 15
y/d
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inder refractive index in the range 2%.<3.1(dashed line,
middle curve, weak disordeand in the range 2:2n.<3.8
(dotted line, top curve, strong disordeaveraged over 200
realizations. The solid line isg/c for a fully ordered pho-
tonic crystal with n.=3.0. For weak disorder, 29n,
<3.1,ve/c~10"% at the center of the cluster, while strong
disorder has a larger effect on the transport velocity. Note
that although the transport velocity /¢ is substantially in-
creased for strong disorder compared tdc for the perfect
1081 crystal, its value is nearly 15 times less than the free space
1079 L L value. Similar low values of the transport velocity have been
2 145 10 5 0 5 10 15 20 reported experimentallj13,39. As we approach the edge of

y/d the cluster, the transport velocitye/c rapidly approaches
the free space value.

01k
0.01 |
0.001 |
0.0001 |

10°}
10

107

v/c

FIG. 5. Transport velocity ¢ /c for an ordered photonic crystal

versus the distance from the line source at the center of the central V. DIEFUSION. ANOMALOUS DIFEUSION AND
cylinder at x;=y,=0; (solid line for gap wavelength\/d ) ’ ’

=1.625, anddashed lingfor pass-band wavelengityd= 3.425. INCIPIENT ANDERSON LOCALIZATION

In this section we consider the different regimes of wave
The transport velocity ¢ tends to zero in the vicinity of the propagation: the diffusive and anomalous diffusive regimes,
source, as a consequence of symmétrg absence of a pre- and evidence for incipient Anderson localization. The trans-
ferred direction for this vector quantitylt is also seen that port mean free path and velocityvg are important charac-
just outside the cluster, gfd=+11, the transport velocity teristics of diffusive propagation. The diffusion constanis
ve/c reduces its value to 0.3 before it rapidly approaches thgiven by D=vgl/2 for two-dimensional problems. In the
free space value away from the edge of the cluster. This localiffusion approximation, where the transport mean free path
minimum of vg is due to a strong interference effect at theis bigger than the wavelength, the wave equation for the
edge of the cluster. We calculateq /c also for a bigger €lectric field componentl) can be replaced with a diffusion
cluster with N.=625 cylinders and this reduction of the equation for the wave intensif{31,32. For monochromatic
transport velocity ¢ /c outside the cluster still takes place. Problems with a source at, the diffusion equation takes
The dashed line on Fig. 5 is:/c versus the position for the form
the wave with the pass-band wavelengthd=3.425. For
this wavelength the transport velocity oscillates around its
homogeneous valueg /c= 1/n.4=0.44 calculated using the
linear mixing formulae o= 1—f+f(g|) [25], which is rig-
orous for this polarization, and approaches the free spac&hereP, is the total emitted energ} is the transport mean
valuec outside the cluster. free path, andl is the intensity given byl=(GG*)
Figure 6 shows the same relationship as in Fig. 5 but for-|{G)|? [31]. Note that the coherent intensiyG)|? is neg-
a disordered photonic crystal with uniformly distributed cyl- ligible here (for sufficient degree of disorderand can be
disregarded in Eq15). For example, for the cluster with 317
cylinders and the refractive index disorder in which the re-

2
V2|:—$5(r—cs), (15)
t

<v/c> fractive index is uniformly distributed in the rangg=Q,
01 the degree of disorde®=0.2 is sufficient to render negli-
0.01 gible the coherent intensity.
0.001 The diffusion equation is usually solved with boundary
0.0001 conditions[31] at the edge of the sample
-5
e 22 16
10 , i 3 v (16)
107 F
108 | wherevw is the unit outward normal from the diffusive region.
10°® Note that the diffusion equation as well as the proposed

2 - -0 5 0 5 10 15 20 boundary conditiong16) are approximatg31,32. Other
y/d boundary conditions are discussed in Réf)]. These bound-

FIG. 6. The modulus of the transport velocity /c versus the ~ary conditions are obtained by the requirement that the in-
distance from the line source at the center of the central cylinder d€nsity flux directed inward from the exterior of the disor-
Xs=ys=0 for an ordered photonic crystgolid line) and disor- dered sample vanishes. Here, we first solve the exact
dered photonic crystal for a gap wavelengthd=1.625. The re- Helmholtz equation using the multipole method and find the
fractive index is distributed in the range 2.9-3.1 for dashed line and@veraged intensity value at the edge of the clustelL.
in the range 2.2—3.8 for dotted line. Then we use this value as a boundary condition for the dif-
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100 T T T T T 10
10 ¢
I I
1t 01 ¢
01} 0.01 {
0.01 | 0.001 ¢ |
0.001 ¢ 0.0001 - : : : :
-15 -10 -5 0 5 10 15
0.0001 : : : : : yid
-15 -10 -5 0 5 10 15 )
y/d FIG. 8. The same relationship as in Fig. 7, but for the refractive

) . ) index distribution in the range 2.2—3.8. Due to strong randomness,
FIG. 7. Intensity versus distance from a point source at tthe transport mean free path renormalizes from the Vé-lt—)éd

center of the central cylinder ak=y,=0; for a wavelengtth/d  ~3.29 to the valuél,)~0.55. This is the regime of the anomalous
=1.4. The solid oscillating line is the averaged solution of thediffysion.

Helmholtz equation and the dashed line is Bdp) for points inside

of the cluster and E|18) for points outside. The cluster comprises tions and the dashed line is the analytical solution given by
317 cylinders and the refractive index distribution is uniform in the Eq. (17) for points inside the cluster and by E(L8) for
range 2.8-3.2. points outside the cluster. There is good agreement between

) ) ) ) N two curves. Therefore, we conclude that this is the diffusive
fusion equation(15). By using this boundary condition, we regime of wave propagation.

automatically satisfy the requirement of the absence of the |n Fig. 8 we plot the same relation as in Fig. 7, but for

inward flux. Given this boundary condition the analytical stronger disorder, where the refractive index is uniformly
solution of the diffusion equatiofi5) inside the cluster takes jstributed in the range 2.2—3.8. The dashed line is the solu-

the form tion (17) of the diffusion equation for points inside the clus-
ter and the relatioif18) for points outside. In order to obtain
= — ﬁl r—c4 | 17) the fit for this case we had to rescale the transport mean free
7l L 0 path from the valud,/d~3.29 indicated by the letteh in

Fig. 3 (corresponding to the loffe-Regel valkg~14.77) to
wherel, is the transport mean free patl,is the exact value the valuel,/d~0.55+0.15 indicated by the lettek* in Fig.
for the intensity at the edge of the cluster found from theg (corresponding to the loffe-Regel valké,~2.47). This
numerical solution of the Helmholtz equation ahds the  reduction of the transport mean free path is an indication of
size of the cluster, which we take to have a circular shapehe anomalous diffusion regime. Note that, for the Anderson
For points outside the clustgr—r¢[>L, we continue the transition to take place, the conditidd,~1 must be satis-

diffusive solution(17) by the relation fied, corresponding to the transport mean free patll
~0.22. To achieve this regime, bigger clusters or/and possi-
|:|OE (18) bly stronger disorder are required, requiring computer times

that are prohibitive at present.

wherel, is the intensity at the edge of the clusterijs the
size of the cluster, andis the distance from the source. Note ) )
that for two-dimensional problems the intensity of a point N Fig. 9 we plot(|G|®) versusy for the gap wavelength
source located at the origin decays asfaf from the source. M d=1.625((indicated by the letteB on Fig. 3, which is
Below we consider both the transport properties of a wavdocated just inside the edge of the gap for the corresponding

with pass-band and gap wavelengths of the correspondini§finite structure. It has been suggesfet] that photons
regular infinite photonic crystal. with gap wavelengths are easier to localize by the Anderson

mechanism. The refractive indices of the cylinders are uni-
formly distributed in the range 2.2—-3(&p curve, 2.8-3.2
(middle curve and regulan,=3 for the bottom curve. Here
we investigate transition from gap localizatiofbottom

In Fig. 7 we plotl versusy for a source located at the curve to possible Anderson localizatioftop curve as we
middle of the central cylinder for a pass wavelengtid  increase the degree of disorder. It might be expected that we
=1.4(indicated by the letteA on Fig. 3 of a corresponding would first see the classical diffusive regime of wave propa-
infinite structure and for a cluster as in Fig. 2. The refractivegation as we increase the disorder. However, it turns out that
indicesn, of cylinders are uniformly distributed in the range for a gap wavelength this transition takes place diretat
2.8-3.2. The oscillating line is the exact solution of theleast, very rapidly to the anomalous diffusive regime. The
Helmholtz equation averaged ovidy=200 random realiza- dotted line on the oscillating top curve for points inside the

B. Diffusion and anomalous diffusion for a gap wavelength

A. Diffusion and anomalous diffusion for a pass-band
wavelength
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100

pass band gap pass band
<> 1}

1=L

0.01

- 1/d
0.0001

.5_

10

AD /‘/‘/ :
42 i L AL
10 * * * : . e AL :
-15 -10 -5 0 5 10 15 AL

y/d

. . . Ad
FIG. 9. Intensity(l) versus the distance from a point source at

the center of the central cylindera=y,=0; for a gap wavelength FIG. 10. Schematic picture of the different regimes of the wave
Ad=1.625. The transition from gap localization to Anderson lo- propagationD stands for diffusion, AD for anomalous diffusion,
calization. The refractive index of the cylinders are uniformly dis- AL Anderson localizationH for homogenization. The sloping line
tributed in the range 2.2-3.8&op curve and 2.8—3.2(middle is an indication of the loffe-Regel criterion, while the dotted line
curve, and have fixed =3 for the bottom curve. The dotted line gives an indication of the boundary between the normal and anoma-
overlaying the oscillating top curve is the anomalous diffusion fit. lous diffusion regimes. Reading from left, the vertical lines mark
the edges of the band gap and the size of the sample.
cluster is the solution of the diffusion equati@tb) with the

rescaled transport mean free pafh We obtain the fit for o, qters can substantially reduce the transport velocity even
the valuel{/d=0.3 indicated by the letteB* in Fig. 3,  for weak disorder. The calculation of the transport velocity
which corresponds to the value of the loffe-Regel numbey,_ pased on this rigorous multipole method can serve as a
kIf ~1.16, close to the edge of the Anderson transitih  pasis on which the accuracy and the limits of the applicabil-
~1. Interestingly, the exponential relationshif(y) ity of different effective medium models can be verified and
=0.25expt|y|)/3 is also a good fit for the intensity curve checked.
and one can estimate the localization lenlfti~3. For a wavelength in the pass band and a wavelength in the
The above calculations suggest that, for the gap wavegap we have calculated the transport properties of waves. In
lengths, the transition from gap localization to Anderson lo-Fig. 10 we schematically illustrate and summarize the overall
calization takes place through the anomalous diffusive reresults obtained. Wave propagation for a pass-band wave-
gime, in which the transport mean free path can no longer bgength of the corresponding infinite cluster for weak disorder
taken as constant, but is a function of the size of the clusteig diffusive (regionD in Fig. 10, while for strong disorder

and the degree of the disorder. the transport becomes anomalously diffusivegion AD in
Fig. 10. To demonstrate the Anderson transition bigger clus-
VI. CONCLUSION ters and/or larger disorder are needed. For a gap wavelength,

. . . . we have investigated the transition from gap localization to
We have investigated the different transport regimes; g gap

N e Anderson localization and have shown that this transition
regular (or ordered, diffusive, and anomalous diffusive re- .04 niace directly through the anomalous diffusive regime
gimes of wave propagation in disordered photonic crystal region AD in Fig. 10 and the threshold of the Anderson
for both gap and pass-band wavelengths of correspondi ansition is more easily achieve@egion AL in Fig. 10
infinite regular structures. The main parameters of diffusiv%

on- th loci d1th q 41]. An incipient Anderson transition was demonstrated.
propag.auon. the transport velocib:, and the transport and g qualitative smooth picture of the Anderson transition in
scattering mean free paths,andlg,

have been calculated. 6_gimensions is in agreement with the scaling theory of
The parameters that corresponds to diffusive propagatiofyjization

have been quantified.

The transport velocity g /c introduced by Brillouin has
been calculated from first principles for a random medium
with an intermediate filling fractiof=0.5. It was found that
the transport velocity of light ¢ in ordered finite-size pho- The authors are grateful to Professor A.Z. Genack, Pro-
tonic crystals can be substantially lowers(c~10 8) than  fessor B. van Tiggelen, and Professor S. John for helpful
the free space value for a gap wavelength. The effects of théiscussions. Much of the computational simulation for this
disorder on the transport velocity were also considered and fgaper was undertaken on the high performance computer
has been shown thatz/c can be more then 15 times less systems of the Australian Partnership for Advanced Comput-
than in free space, which is in agreement with the experiing (APAC) and the Australian Center for Advanced Com-
mental results reported earlier. Although the transport velocputing and Communication&c3. The research was sup-
ity is rather sensitive to the degree of disorder, using biggeported by the Australian Research Council.
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