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Quantum-mechanical analogy of beam propagation in waveguides with a bent axis: Dynamic-mode
stabilization and radiation-loss suppression
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Wave propagation in an optical waveguide with a bent axis is studied under the scalar and paraxial wave
approximations, and the quantum mechanical analogy with the electron dynamics in an atomic potential
interacting with an intense electromagnetic field is highlighted. In particular we show that for a truncated
parabolic waveguide with a periodically curved axis, a dynamic mode splitting with reduced radiation losses
can be observed, which is fully analogous to the phenomenon of wave packet dichotomy and ionization
quenching found in strong-field atomic physics.
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[. INTRODUCTION a sinusoidally curved axis, corresponding to a monochro-
matic electromagnetic field in the quantum-mechanical case.
Wave optics and quantum mechanics, and their respectivd/e show that many unexpected effects found in high-
classical limits of geometric optics and Newtonian mechanintensity, high-frequency atom-field interactions, such as re-
ics, share many similarities that are described in many introduction of the ionization rate due to adiabatic stabilization
ductory textbooks and reviewsee, for instance, Refil,2], ~— and wave packet dichotom26-32, may be observed in
and references therginThis analogy has led to many rel- Such waveguides. Our optical model bears as well a close
evant developments in apparently unrelated research field§onnection with the wave packet dynamics of Bose-Einstein
theoretical and experimental concepts and methods known fFPndensates in a periodically shaken trap, recently studied in
one area, in fact, have been successfully applied to the othgef' [33].

one[2]. For instance, electromagnetic wave propagation at The paper is organized as follows. In Sec. I, the wave-

microwaves or at optical wavelengths has been often consid;1UIde quel |s.br|efly reviewed and the quantum-m_echamc_al
analogy is outlined. In Sec. Ill, beam propagation in a peri-

ered as an experimental verifiable model for many quantum(—)dica”y curved waveguide with a truncated parabolic index
r}Srofile is considered, and the effects of loss reduction and
. e 3 N~ > dynamic wave packet splitting, analogous to the quantum-
studies[6], and Bloch oscillations in a periodic potential mechanical effects encountered in atomic physics with super-
[7-9]. The similarity between the Schdinger equation for a jytense laser field§26], are analytically and numerically
nonrelativistic particle and the paraxial wave equation forgy,died. Finally, in Sec. IV, the main conclusions are out-
beam propagation in dielectric structures has been widelyned.

recognized and the use of quantum mechanics in the model-

ing of waveguides and multimode optical fibers has been

pursued by many authof20-20Q. In particular, it has been Il. THE OPTICAL-MECHANICAL ANALOGY: WAVE

shown that the operator formalism of quantum mechanicSPROPAGATION IN A WAVEGUIDE WITH A DISTORTED

provides elegant solutions for problems associated with OPTICAL AXIS AND THE KRAMERS-HENNEBERGER

beam propagation in graded-index multimode slab SCHRODINGER EQUATION

waveguides and fibefd 3,15,17,19,20) mode coupling and ) ) o )

waveguide losses in coupled or bent waveguides have been The starting point of our analysis is provided by the scalar

studied as well in the framework of the scattering theory ofVave equation for beam propagation in a weakly guiding

quantum mechanics in Reffl4,21. More recently, many dIG:|eCtI’IC. W.avegwde in the paraxial approxma_tlon. The

concepts and methods of solid-state physics have been syduide axis is allowed to weakly and slowly deviate from

cessfully employed in the study of photonic band gap strucStraightness, and we indicate ly=xo(z) andy=y(2) the

tures and devicesee, for instancd22,23). (_Zarte3|an equa_tlons of the _curved axis, where the direc-
The aim of this paper is to point out a rather general andion of the straight waveguide and,f/) are the transverse

elegant analogy between paraxial beam propagation in afPordinategsee Fig. 1a)]. In this case, the paraxial wave

optical waveguide with a bent axis and electron dynamics irfduation describing the propagation of a monochromatic sca-

an atomic system interacting with an electromagnetic field!ar field ¢(x,y,z) with a vacuum wave numbég, reads(see,

This analogy stems from the formal equivalence of the scalafor instance, Refd.34-36)

and paraxial beam propagation equation for the waveguide

and the one-electron time-dependent Sdimger equation » ) .

with an electromagnetic interaction term written in the 7% _ | 2 Koo _ 2

Kramers-Henneberger reference fraf24—26. Following iz 2k0nov>"y‘//JrI 2n0{n [x=%o(2),y=Yo(2)] =N},

this analogy, we study in detail the case of a waveguide with @

neling times across a potential barrj&5], quantum chaos
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@? * (®) hy adopted in atomic physics to study the interaction of a bound
A electron with superhigh intensity and high-frequency laser
S, | fields[24—-26. The KH transformation basically corresponds

-~ T;°<Z>‘*, /) / ’ to a change of the reference frame from the atomic rest frame
to the moving coordinate frame of the completely free

L - * charged particle responding to the applied electromagnetic

field [see Eq.(4) below]. Let us introduce the phase trans-

formation
FIG. 1. (a) Schematic of a weak waveguide with a distorted

optical axis. The directioz in the figure is the paraxial axis of the )
corresponding straight waveguidey(z) andyy(z) are the equa- d=yexp —i
tions of the curved axis, and the shaded area is the high-index

waveguiding region(b) Schematic of a weak channel waveguide gnd the change of variables
with a distorted optical axis written onto a strongly confining planar

2 ry
Z?nﬁf dt’Az(t’)}, ®)

waveguide. The weak guiding of the channel structure is provided q(t,, , q(t. ,

by a graded-index profile in thedirection, whereas the tight con- xX=X~- m dt’A(t’), y=Y-— m dt'Ay(t"). (4)
finement in they direction is achieved by a high-contrast steplike

refractive index profile of the planar structure. Then Eq.(2) takes the form of the Kramers-Henneberger

Schralinger equation,
wheren(x,y) is the transverse refractive index profile gf the ,
straight waveguiden, is the cladding layer index, and Oy h
= 9% 9x?+ 9% 9y? is the transverse Laplacian. The scalar and == ﬁviy‘ﬂ”LV[x_XO(t)*y_VO(t)W' ®)
paraxial wave equation provides an appropriate model for
the full vectorial Maxwell equations, provided that the re- wherexy(t) andy,(t) describe the classicéhonrelativisti¢
fractive index contrast of the guide is weakn(x,y,z) trajectory of the charged particle, in absence of the binding
—ng|<nyp), the diffractive length of the fundamental guided potential, interacting with the electromagnetic field solely,
mode is much larger than the wavelength=2m/k,, and that is,
the refractive index(x,y,z) varies slowly with respect to

the paraxial direction z, over one wavelength\g __ ﬂft ALt __ ﬂf‘ ALt
(Noldn/dz]<ng). We note that, in case of a straight wave- Xo(t) m dUAL), YoV m dtA/(t").
guide with a parabolic-index profile, E€L) has been widely (6)

adopted as a model for graded-index parabolic waveguides i
and lenses, and the analogy of such an equation with th@ comparison of Egs(l) and(S) reveals the formal analogy

time-dependent Schadinger equation for a two-dimensional ©f the two equations. Indeed, Ed) can be interpreted as the
harmonic oscillator has been discussed in many pajsees Kramers-Henneberger Sclaiager equation for a particle of

for instance, Ref[19]). Here we would like to show rather MassmM=ng In a potentlaIV(x,y)=['n§.—n2(x,y)]/(2no)
generally that, in presence of waveguide axis distortions, th&No—N(x,y) with the formal substitution\o=h for the
quantum-mechanical analog of Hd) is the time-dependent Wavelength and=t for the paraxial coordinate. The equa-
Schralinger equation for a charged particle in a two- tions for the filted waveguide axizo(z) andyq(z), are just
dimensional potential interacting with an electromagneticthe trajectories of the free particle as given in Eg).

field, the potential vectoA associated with the electromag- ~ The presented analogy allows one to capture the effects of
netic field being related to the waveguide axis distortionwaveguide axis distortions on beam propagation in terms of
through a simple relatiofsee Eq.(6) below]. In fact, let us stlmulatgd transitions among the modgs of the straight wave-
consider the time-dependent Scfirger equation for a 9uide (either bound or unbound modeis the same way as
charged particle, of charggand massn (e.g., an electrop N the atomic case, Wher_e the applied flelo_l prod_uces transi-
in a two-dimensional potentiaV/(X,Y) (e.g., the atomic tions among the electronic energy states, including those to
binding potentia), interacting with an electromagnetic field Unbounded stateonization. Radiation losses in the wave-
derived from the vectorial potential(t) = Au,+ AU, . As- guide dge to axis distortions are thus analogous to the pro-
suming the Lorentz gauge, the equation for the particle wav&€SS of ionization of the atom and are ruled by the same laws

function ¢(X,Y,t) reads of quantum mechanics. In particular, of major relevance in
the framework of this analogy is the case of a waveguide

0P h? 5 q°A? with a periodically curved axis, which corresponds to the
'ﬁﬁ: _ﬁvx,\&“r BT interaction with a monochromatic field in the atomic case.

Such a case will be considered in detail in the following
q d section, where the optical analog of many anomalous effects
_IﬁE<AX[y_X+Ay(9_Y ¢+V(XY)b. (2 found in high-field atomic physics, such as quenching of
ionization rate and dynamic wave packet splitting, will be
To show the formal equivalence of Eqd) and (2), it is retrieved. In the following, we will be mainly concerned with
worth to rewrite Eg.(2) by introducing the Kramers- a one-dimensional waveguide schef6], corresponding to
Henneberger(KH) transformation, which is commonly a one-dimensional KH Schdinger equation in the quantum-
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mechanical analogy. Such a case corresponds, for instancajopted in paraxial Gaussian beam opfR%. In this case, a

to a weak channel waveguide with a distorted axis realizedvave packet spreading has been predicted for a modulation
on a planar waveguide, which provides a tight field confineperiod A equal to the characteristic spatial period of the lens
ment in one transverse direction, e.g., in thdirection, as  guide (see Ref[39]), which corresponds in the geometric
shown in Fig. 1b) (see, e.g., Ref[37]). In this case, by optics limit to the secular growth of ray oscillations around
assuming a refractive index profilen(x,y,z)=ng(y) the undistorted waveguide axis due to the resonant excitation
+An(x,y,z), where ny(y) is the steplike profile of the of the classical harmonic oscillator. The case of a truncated
tightly confining planar waveguide ankin(x,y,z) provides parabolic-index slab waveguide with a bent axis was consid-
the weak guiding of the superimposed channel waveguidered by Marcusg40] assuming aveak axis deformatigrand
(JAn|<ng), one can derive, using multiple-scale analysis oran approximate analytical expression for the power radiation
effective-index methods, an effective one-dimensionaloss induced by a periodic modulation of the waveguide axis
propagation equation for the field envelope in the weaklywas derived in a perturbative manner which resembles the
guided transversg direction after eliminating from Eqll)  above-threshold ionization rate calculation in the Keldysh
they dependence of the field provided by the tightly confin-theory of multiphoton ionizatiorisee, for instance, Sec. 3.2
ing planar structure. In the spirit of the weak guiding ap-in Ref.[26]). In such a theory, radiation losses during beam
proximation, one can also saf-—nSZZno(n—no), so that propagation are due to the coupling of the fundamental con-
the one-dimensional paraxial beam propagation equation ifined mode of the waveguide with radiatidanbounded

the waveguide reads modes of the straight waveguide induced by the periodic axis
bending, and the radiation-loss rate turns out to increase as

A i PPy the depth of bending is increased. In the present work, re-

— FTiko{n[X—Xo(2)]—ng} ¢ (7)  moving the weak axis deformation approximation, we show

9z 2kgn 2 s . S
0t X that the qualitative behavior of wave propagation is substan-

tially different from those predicted by the first-order pertur-

lll. FIELD PROPAGATION IN A PERIODICALLY bative analysi§40], especially when considering short spa-
CURVED WAVEGUIDE: DYNAMIC MODE SPLITTING tial modulations and amplitudé& of waveguide distortion
AND RADIATION MODE REDUCTION comparable witHor larger thanthe waveguide width &. In

such a situation, a completely different and rather unusual

A case of major relevance within the framework of the : ; .
; . . . cenario sets in, namely, the occurrence of a dynamic-mode
guantum-mechanical analogy considered in Sec. Il is that of,_,.._ .. ; . . -

. . . . Stabilization, which manifests itself by a mode splitting dur-
a sinusoidally curved waveguide, for whichy(2)

~ . . ing the propagation, and the corresponding reduction of ra-
_A(Z)CQS(ZTZ/.A)' whereA is the _modulgﬂon depth and diation losses. Owing to the analogy of the paraxial beam
the spatial period of the modulation. This case is analogou ropagation equation with the Kramers-Henneberger ‘Schro
to the interaction of a bound electron with a monochromati dinger equation. such phenomena rovide in the optical con-
field. In general, we will allow the modulation amplitude ger eq ' P P P

to varv slowlv withz. as compared to the spatial modulation text an experimentally verifiable framework of electron dy-
ary slowly ' P X P . _namic wave stabilization, ionization suppression, and wave
periodA, in order to study the coupling from, e.g., a straight

waveguide into a periodically curved one. The quantum-paCket dichotomy found in high-field atomic phys{@6].

mechanical analog is the interaction of a bound electron
with, e.g., a nearly monochromatic light laser pulse, for s pynamic-mode splitting and the average waveguide model

which the issue of pulse adiabaticity is of major importance ) o
in the onset of wave packet localization and ionization sup- Ve have studied the beam propagation in the truncated

pression(see, e.g., Refi30]). As an index profilen=n(x) parabolic-index waveguide with a periodically curved axis
for the straight waveguide, we will consider specifically thePY diréct numerical simulations of the paraxial wave equa-

truncated parabolic graded-index profile, i.e., tion (7) using either a pseudospectral split-step method or a
finite difference Crank-Nicolson method with absorbing

No for |x|>a boundary conditiongsee, e.g., Refl36]). In a first set of
simulations, we launched into the waveguide the Gaussian-
(8 like mode supported by the straight waveguide and we in-
creased adiabatically the modulation depthsing a quarter-
wave sine-square law, i.e., we assumed(z)
where 2 is the width of the waveguidey, is the bulk re-  =Agsir{7z/(2L,)] for 0<z<L, and A=A, for z>L,,
fractive index, anchy+ Ang is the on-axis refractive index. whereL,>A is the length of the adiabatic section of the
We note that the case of a periodically curved graded-indexwaveguide. The beam propagation after the adiabatic section
waveguide with a nontruncated parabolic-index profile corturns out to strongly depend on the final modulation deyth
responds to the quantum dynamics of a harmonic oscillatoand on the spatial modulation periad For long modulation
with an external sinusoidal driving force, which has beenperiods, the beam shape remains almost Gaussian and fol-
widely investigated in the literaturesee, for instance, Ref. lows adiabatically the trajectory of the curved waveguide
[38], and references therginThe optical analog was also axis, though high radiation losses appear due to the periodic
previously studied using either a Green function approaclaxis bending(see Fig. 2 Conversely, a beam splitting is
[21] or a generalizedABCD matrix formalism commonly observed when the modulation period is short enough as

2

= X
) 1——) for |x|<a,
a2

Ng+Ang
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FIG. 2. Beam propagation in a truncated parabolic waveguide z[mm]

with a slowly modulated periodic axis bending. Parameter values
areny=1.538,a=8 um, Any=0.01, A ;=1.55um, Ay/a=0.5,

FIG. 4. Beam propagation in a truncated parabolic waveguide in
and A =600 pm.

the dynamic beam splitting regime. The waveguide structure is the
same as in Fig. 3. Parameter values are as in Fig. 3, except for
compared to the diffractive length of the mode in the straightA,/a=4.375.

waveguide, provided that the modulation depth is compa-

rable with or larger than the waveguide width. The beamlocalized at distances e + A, from the straight axis. The
splitting observed after the adiabatic section is analogous tmain physical reason underlying the occurrence of the
the wave packet dichotomy found in the quantum-dynamic-mode splitting is that, for a periodic modulatién
mechanical contex26,29. An example of transition from shorter than the diffractive length of the fundamental straight
the lossy mode propagation regirffeig. 2) to the stabiliza- waveguide mode, the beam propagation along the waveguide
tion mode and dynamic-mode splitting regimes, observed ais described by Eq7) corresponds, at leading order, to the
short modulation periods, is shown in Figs. 3 and 4 for in-propagation in atraightwaveguide with an effective refrac-
creasing values of the modulation degl; parameter val- tive index profilen,,(x,z) which is obtained by averaging,
ues chosen in Figs. 2—4 adg=1.55um, a=8 um, ny  with respect to the propagation spatial variablever one
=1.538, andAny=0.01. As the modulation depth is in- modulation period, the actual refractive index profilex
creased, a transition from a mode broadening rediige 3)  —xy(2)], i.e.,

to a mode splitting regiméFig. 4) is observed. A detailed
evolution of the beam intensity profile during propagation in
the mode splitting regime is reported in Fig. 5. Note that the
two lobes of the splitted beam turn out to be symmetrically

—EJA —-A 27zIA)]d
nav(x,z)—A . n[ x cog2mz/A)]dz
1 (1 n(x—Au)

:;f 9

——du,
-1 \1-u? -

80

60 where the dependence nf, on z comes from the possible
40
— Il
£ 0.040
-E-' 0.035
x .20 0.030
0.025
-40 0.020
0.015 AN
60 0.010
0.005
-80 0.00%
0 5 10 15 20 25 30 35
z[mm]

FIG. 3. Beam propagation in a truncated parabolic waveguide
with a short modulation period. The waveguide is composed by an
adiabatic zone (&z<20 mm), where the axis modulation depth
slowly increases with a sine-square law, followed by a uniformly-
periodic region (20 mrrz<35 mm). Parameter values are the  FIG. 5. Evolution of beam intensitys(x,z)|?, in arbitrary units,
same as in Fig. 2, except far=157 um andA,/a=0.875. during propagation for the waveguide structure of Fig. 4.
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slow dependence oA on z A rigorous proof of this state- (9¢(0) i a2¢(°)
ment can be obtained by application of the Floquet theory to =

Eq. (7) (see, e.g., Ref[29]) or by a multiple-scale 9z 2Kono gx?
asymptotic analysis . For the sake of completeness, a brief (10
explanation thereof, based on an asymptotic analysis of Eq.

(7), is given in the Appendix, where the solution to Ed.is  where the ellipses indicate terms of higher order thaa
written as an asympotic expansiofi= (9 + e+ 242> The behavior found in the numerical simulations can easily
+---. As a smallness parameter we assumed the ratio be explained in term of the averaged equatid@). In fact,
between the modulation perioll of axis distortion and the for the truncated parabolic-index profil&qg. (8)], the aver-
diffraction length of the fundamental mode for the straightage refractive index, given by E@9), can be analytically
waveguidd see Eq(A3)]. At leading order in the expansion, computed after some straightforward, though tedious, alge-
it turns out thaty(?) satisfies the averaged equation bra, yielding

+ik0[nav(x)_n0]¢'(0)+ T

Ang [ 2a%2—2x2— A2 Ix|+a [Ix|—a

I’]O+T 2—a2 arcsli A arcsi A

A 3|x] Ix|+a 3|x] x| —a
4+ 7 — 1+ — — X|[<A—a

2a ! a ! A ! a ! A ' X

Nay(X) = +An0 2a2—-2x2—A?| 7 [1x|—a (12)

Ng T 2—32 E arcsi A

A —
+ 1+% \1— X -a , A-a<|x|<A+a

2a a A
Ng, |X|>A+a

for A>a, and
( 2a%—2x2—A?
No+Ang—————, [x|<a—A
2a
JrAno 2a%—2x2—A?[ = _r(|x|—a
n()={ " @ |7 222 (2 A (12
3 —-a\?
+A 1_}_& 1— |X| , a—A<|x|<a+A
2a a A
\ Mo, [x|>A+a

for A<a. A plot of n,,(x), shown in Fig. 6, shows that, as waveguide correspond to the symmetric and antisymmetric
the modulation deptA is increased to make it comparable supermodes usually encountered in the theory of coupled
and far larger than the waveguide si&ea strong reshaping waveguidegsee, for instance, Ref41]), so that the typical

of the average refractive index is observed, with the appeaphenomenon of mode coupling between two waveguide
ance of two peaks symmetrically placed away from0O. In  channels, corresponding to dynamic tunneling in the
such a regime, the “averaged waveguide” seen by the beamuantum-mechanical analog problem, should be observable.
is equivalent to two straight waveguides which are weaklyWe checked the occurrence of mode coupling by considering
coupled to each other, and thus the beam splitting observealuniformly modulated waveguide, i.e., with= A, constant,

in Fig. 5 after the adiabatic section corresponds to lightwith the injection of anoff-axis Gaussian-like beam. As the
propagation along both of the two channels of the averagedffset of the injected field is chosen close to one of the two
waveguide. The effect of the adiabatic waveguide section ithannels of the averaged waveguide, in fact, the mode cou-
Figs. 4 and 5 is to slowly increase the modulation depth fronpling between the two channels of the waveguide is ob-
zero to the final valud\, i.e., to slowly modify the average served, as shown in Fig. 7. The periodic exchange of power
refractive index profile, providing an adiabatfdranch. We  between guided modes of the two adjacent waveguides in the
note that the two lowest-order eigenmodes of the averageaverage waveguide model is clearly evident from the figure.
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bending limit, for whichA<a, one can writen[ x—Xq(2) ]
1.0- @ =n(x)— (dn/dx)xq(z), so that Eq(7) takes the form
J
0.8- (b), —w=H¢//+ H' i, (13
| \ 9z
%0-6‘ where the operatorsl andH' are given by
S
$0.4 (©) i 52 dn
04 () H= — tikg[N(X)—Ngl, H'=—ikg—Xo(2).
2k0n0 (9)(2 dx
N
0.2 \ (14
] / \ By treating’{' as a perturbation term, its effect is that of
0.0————0—~ . —————— coupling the modes of the straight waveguide during the
84 6 -4 -2 x9a 2 4 6 8 propagation. The radiation-loss rate for the fundamental

eigenmode of the straight waveguide can be calculated by
FIG. 6. Normalized average refractive index profile,(  evaluating the coupling, induced &', to the unbounded
—ng)/Any for the periodically-modulated parabolic truncated (continuou$ modes of the waveguide using the Fermi golden
waveguide for a few values of the rat&’a. Curve (@) A/a=0,  rule. The result for the power loss rater2when approxi-

curve (b) A/a=7/8, curve(c) Ala=15/8, curve(d) A/a=4.375. mating the fundamental eigenmode with the Gaussian beam
of the untruncated parabolic waveguide and the continuous
B. Radiation-loss reduction modes as plane waves, has been analytically derived by Mar-

A phenomenon closely related to the wave packet dicuse and readsi0]

chotomy of a bound electron in an atom subjected to a high- 2 2
. . . T [ 27 A 2
frequency and superstrong laser field is the suppression of 2, = /—(——Bo)—exr{—konowé(——ﬂo”.
the ionization rate and the adiabatic stabilization of the wave koo | A w3 A

function [26,32. In fact, an atom in a strong laser field, of (15

the order of the atomic unit, reacts to the increase in intensity 1 .

or decrease in frequency by increasing its lifetime, i.e., itsVNereBo=koAno—(1/2)[Ang/(2ne)]** is the propagation
decay by multiphoton ionization can be quenched. The&onstant of the fundamental Gaussian eigenmode of the
analogous optical counterpart in our waveguide model is th&raight waveguide and its size, given by

guenching of radiation loss associated to the beam splitting P

as the modulation depth of axis bending is increased. This We= /& 2 ) (16)
result is rather exotic and not predictable when the weak axis 0 Ko\ noAng) -

bent limit, usually adopted to determine radiation losses in ) )

periodically bent waveguides, is adoptetD]. In the weak Equation(15) clearly shows that the loss rate increases as the
amplitudeA of modulation is increased. However, when the
modulation periodA is short enough and the modulation
depth A becomes comparable or larger than the waveguide
size a, the perturbative calculation leading to EG5) fails,

and a description based on the averaged beam propagation
equation[Eq. (10)] is more suited to study the radiation-loss
problem. We note that, at the leading order in the asymptotic
analysis for which the averaged equatid®) is valid, there

is a complete suppression of radiation losses after the adia-
batic transition, since no coupling between the guided modes
-20 of the averageddouble-channglwaveguide and the radia-
tion modes occurs. In this case, the existence of radiation
losses comes out when higher-order terms are accounted for
in the averaged equation, using either the multiple-scale
asymptotic approach or the Floquet theory; a perturbative
calculation in this case is much more involved and requires
in any case numerical analydisee, for instance, Reff32)).

FIG. 7. Beam propagation and directional coupling in a uni-Following Refs.[33,42, a simpler approach to investigate
formly modulated truncated parabolic waveguide with an off-axisthe confinement properties of the modulated waveguide is
Gaussian-like excitation at the input. The waveguide structure is th@ased on a direct numerical integration of Egj. on a finite
same as in Fig. 4, except than for the absence of the adiabatic zoriéansverse domain with absorbing boundary conditions, so
and A/a=3.5. The off-axis Gaussian-like excitation beam is cen-that the radiation escaping from the integration window is
tered atx=A and has a waist of 10 pm. lost during the propagation. The comparison of power levels

X [um]

-40

0 10 20 30 40 50
Z [mm]

036601-6



QUANTUM-MECHANICAL ANALOGY OF BEAM . .. PHYSICAL REVIEW E 67, 036601 (2003

adiabatic zone :uniform zone 5 100} . . oo
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£ 0.90]
g 0.88 .
0.96 8 osel
= 1.0 £ 0.4] o
g- 2 0.82] -
0.8 f——m—M————————————
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£ A,la
§ 0.8 , . ,
FIG. 9. Normalized transmitted beam powe¢L)/P(L,) in a
'8 L=35-mm-long waveguide, comprising la,=20-mm-long adia-
N 1.00 batic region, versus normalized modulation depgia.
g first decreases, unth,/a=0.8; a further increase d&;/a
o] 0.98 leads to higher transmitted power and to the appearance of a
Z double-peaked structure in the average refractive index pro-
file (see Fig. &.
0.96 ] ) ) L] ; ) ) L]
1.00 i : IV. CONCLUSIONS
0.98 ] In this work, we have theoretically studied the properties
) J of beam propagation in a periodically curved optical wave-
0.96 - guide beyond the usual perturbative approf4®] and we
1 have shown the occurrence of unusual effects, such as dy-
0.94 - namic beam splitting and reduction of radiation losses. Such

AR A AR AEF A A effects bear a close connection to similar phenomena en-

0 5 10 15 20 25 30 35 countered in the dynamics of a bound electron in an atom

4 [mm] subjected to a superintense and high-frequency laser field.

o . The analogy stems from the formal equivalence of the beam

FIG. 8. Total beam poweP(z) versus propagation distanzén  hronagation problem in the scalar and paraxial wave ap-
the waveguide structure of Fig. 4, as obtained by numerical 'megraf)roximations and the electronic wave function dynamics
tion of Eq.(7) with absorbing boundary conditions, for a few values analyzed in the Kramers-Henneberger reference frame

(if3t2§5r.a(tg)) QO//:_TE%O/ ?I'E(S.izr::e (gtiﬁﬁlfvzgﬁ;iéczh:ﬁ :ns- Though our analysis has been focused on the simplest one-

O W 0Te T e e 9 ) dimensional and scalar beam propagation equation, the
versex direction has a full width of 16Q.m; the other parameter physical picture underlying dynamic beam spliting and

values are the same as in Fig. 4. The inset in Fjg) 8hows, as an : - .

example, the exponential decay law of beam power at longer prop%ae;‘c’keeds cz)r:J:hrgsi\lltiri%ia\ll\tl)?e\!/?grufzemnggjzzgzgﬁsiieg]g:esceghl”
ation distances. ; - ! S
g plex waveguide geometries. We envisage that our optical

transmitted after propagation through waveguides with & nalogy may represent an experimentally accessible frame-
fixed length but difFf)ergntgmodulation %le ths W?" rovide an work to study in the optical context many phenomena en-
9 P P countered in atomic physics with ultrahigh-intensity lasers,

estimate of the radiation losses experienced by the field. A\?Vhere their observation may be much more involved.

an example, in Fig. 8, we show the tota2I beam power versus
propagation distanceP(z) = [dx|¢(z,x)|*, for increasing _

values of the raticA/a. The waveguide geometry has beenAPPENDIX' DERIVATION OF THE AVERAGE WAVE
taken as in Figs. 4 and 5, and we assuré@)=1. Note EQUATION
that, in the uniform zone, the total beam power decreases |n this appendix, we derive the averaged equatib®

with distance nearly exponentiallgee, e.g., the inset in Fig. describing, at leading order, the beam propagation in a peri-
8(b)], however the rate of attenuation is surprisinigiwerin  odically curved waveguide in the limit of a short modulation
case of Fig. &) (A,/a=3.375) and Fig. &l) (Ag/a  periodA. To this aim, let us indicate by, the typical size
=4.375), than in case of Fig.(l) (Ao/a=0.75). Figure 9  of the fundamental Gaussian-like mode of the straight wave-
shows the numerically computed transmitted powt)  guide with a truncated parabolic profile, as given by &),
through alL =35-mm-long waveguide, normalized to the and let us introduce the normalized spatial variables

power levelP(L,) on the plane=L_, =20 mm at the end of

the adiabatic section of the waveguide, versus the ratio

Ap/a. As Ag/ais increased from zero, the power transmitted ¢

z X AL
A U—a (A1)
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Using the scaled spatial variables given by E41), the A
beam propagation equatidi) takes the form €= , (A3)
2kgnga®
Py
—=le——=+ieq(u, , A2
GE e Hieau oy (A2)
and
where we have set
|
0 for |u|>1
u,é)= A 2 A4
alu.&) k02k§a2n0An0[1— u— 50032778} } for |u|<1. (Ad)
|
Note that, from a physical viewpoint, the dimensionless 1 (M(O) (92‘//(0)
parameterfe represent basically the ratio between the modu- f d&g| — ——+i 5 +ig(u;é&g,&) 9| =0,
lation period of the axis bending and the diffractive length of 0 &1 au

the waveguide mode. To perform an asymptotic analysis of (A7)
Eq. (A2), let us assume<1, and that the following scaling

is satisfiedkpa~ e~ ! and Any~ €. Such a scaling ensures which yields

that the guiding term in Eq(A2) is of the same order of

magnitude, i.e., of order ¢, than the diffractive term. We o 2y 1
then search for a solution to E¢A2) as an asymptotic ex- =i +i f Q(U;fo,&)d&} 4O, (A8)
pansion: 23 au? 0

=40 D4+ 2424 ...
Y=gt e eyt (AS) Note that the fast modulation of the waveguide axis curva-

and introduce multiple scales fof: &,=¢&, & —e&, &  ture produces a fast chan(jee.,_on Fhe scqléo) of the_ beam
—€2¢, ..., to avoid the occurrence of secular growing e_nvelopezp at the order- €, which is obta|r_1ed after_lntegra_-
terms in the asymptotic expansion. In order to include adiation of Eq. (A6). If we stop the asym%totlc analy5|% to this
batic changes of the axis modulation, we allow for the modu<rder, Othe evolution equation foi!? reads ay(®)/a¢
lation depthA to vary on the spatial scaliy. In this way, in = €94?/dé;; using Eq.(A8) and reintroducing the original
Eq. (Ad), one hasq=q(u;&,,&,). After setting expansion unscaled variablelsee Eq(A1l)], one finally obtains

(AB) into Eq. (A2), using the derivative rule/dé=dld&,

+e€dldé;+ - - -, a hierarchy of equations at successive cor- ayp(© i 92yO)
rections toy is obtained. At leading order; €%, one finds
ap9%0£,=0, i.e., pO=yO(u; &, ,¢,,---) is independent
of &,. At order ~ € one has

G2 = 2kgny gz T KalMau(x,2) =%, (A9)

where n,, (x,z)=(1/A) fodzr x— A cos(2rz/A)] is the av-
eraged refractive index profile of the waveguide. The depen-
dence ofn,, onz comes from the possible slow dependence
of the modulation depti\ on z. By pushing the asymptotic
Since the right-hand side in EGAB) is a periodic function analysis to the order €2, higher-order terms would appear
with respect to&, with a period equal to one, in order to in Eq.(A9), which are responsible for radiation losses for the
avoid the occurrence of secular growing terms when integrataverage waveguide structure even in absence of the slow

) au© 5240
‘;ﬁgo T z;él ti ;zz +iq(u; &0, €099, (AB)

ing Eq. (A6), we require variations of modulation deptA.
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