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Quantum-mechanical analogy of beam propagation in waveguides with a bent axis: Dynamic-mod
stabilization and radiation-loss suppression

S. Longhi, D. Janner, M. Marano, and P. Laporta
Istituto Nazionale per la Fisica della Materia, Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, I-20133 Milan,

~Received 22 November 2002; published 10 March 2003!

Wave propagation in an optical waveguide with a bent axis is studied under the scalar and paraxial wave
approximations, and the quantum mechanical analogy with the electron dynamics in an atomic potential
interacting with an intense electromagnetic field is highlighted. In particular we show that for a truncated
parabolic waveguide with a periodically curved axis, a dynamic mode splitting with reduced radiation losses
can be observed, which is fully analogous to the phenomenon of wave packet dichotomy and ionization
quenching found in strong-field atomic physics.
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I. INTRODUCTION

Wave optics and quantum mechanics, and their respec
classical limits of geometric optics and Newtonian mech
ics, share many similarities that are described in many in
ductory textbooks and reviews~see, for instance, Refs.@1,2#,
and references therein!. This analogy has led to many re
evant developments in apparently unrelated research fie
theoretical and experimental concepts and methods know
one area, in fact, have been successfully applied to the o
one @2#. For instance, electromagnetic wave propagation
microwaves or at optical wavelengths has been often con
ered as an experimental verifiable model for many quant
mechanical effects including, among others, the issue of
neling times across a potential barrier@3–5#, quantum chaos
studies @6#, and Bloch oscillations in a periodic potenti
@7–9#. The similarity between the Schro¨dinger equation for a
nonrelativistic particle and the paraxial wave equation
beam propagation in dielectric structures has been wid
recognized and the use of quantum mechanics in the mo
ing of waveguides and multimode optical fibers has be
pursued by many authors@10–20#. In particular, it has been
shown that the operator formalism of quantum mechan
provides elegant solutions for problems associated w
beam propagation in graded-index multimode s
waveguides and fibers@13,15,17,19,20#; mode coupling and
waveguide losses in coupled or bent waveguides have b
studied as well in the framework of the scattering theory
quantum mechanics in Refs.@14,21#. More recently, many
concepts and methods of solid-state physics have been
cessfully employed in the study of photonic band gap str
tures and devices~see, for instance,@22,23#!.

The aim of this paper is to point out a rather general a
elegant analogy between paraxial beam propagation in
optical waveguide with a bent axis and electron dynamics
an atomic system interacting with an electromagnetic fie
This analogy stems from the formal equivalence of the sc
and paraxial beam propagation equation for the wavegu
and the one-electron time-dependent Schro¨dinger equation
with an electromagnetic interaction term written in t
Kramers-Henneberger reference frame@24–26#. Following
this analogy, we study in detail the case of a waveguide w
1063-651X/2003/67~3!/036601~9!/$20.00 67 0366
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a sinusoidally curved axis, corresponding to a monoch
matic electromagnetic field in the quantum-mechanical ca
We show that many unexpected effects found in hig
intensity, high-frequency atom-field interactions, such as
duction of the ionization rate due to adiabatic stabilizati
and wave packet dichotomy@26–32#, may be observed in
such waveguides. Our optical model bears as well a cl
connection with the wave packet dynamics of Bose-Einst
condensates in a periodically shaken trap, recently studie
Ref. @33#.

The paper is organized as follows. In Sec. II, the wav
guide model is briefly reviewed and the quantum-mechan
analogy is outlined. In Sec. III, beam propagation in a pe
odically curved waveguide with a truncated parabolic ind
profile is considered, and the effects of loss reduction a
dynamic wave packet splitting, analogous to the quantu
mechanical effects encountered in atomic physics with su
intense laser fields@26#, are analytically and numerically
studied. Finally, in Sec. IV, the main conclusions are o
lined.

II. THE OPTICAL-MECHANICAL ANALOGY: WAVE
PROPAGATION IN A WAVEGUIDE WITH A DISTORTED

OPTICAL AXIS AND THE KRAMERS-HENNEBERGER
SCHRÖDINGER EQUATION

The starting point of our analysis is provided by the sca
wave equation for beam propagation in a weakly guid
dielectric waveguide in the paraxial approximation. T
guide axis is allowed to weakly and slowly deviate fro
straightness, and we indicate byx5x0(z) andy5y0(z) the
Cartesian equations of the curved axis, wherez is the direc-
tion of the straight waveguide and (x,y) are the transverse
coordinates@see Fig. 1~a!#. In this case, the paraxial wav
equation describing the propagation of a monochromatic s
lar field c(x,y,z) with a vacuum wave numberk0 reads~see,
for instance, Refs.@34–36#!

]c

]z
5

i

2k0n0
¹x,y

2 c1 i
k0

2n0
$n2@x2x0~z!,y2y0~z!#2n0

2%c,

~1!
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wheren(x,y) is the transverse refractive index profile of th
straight waveguide,n0 is the cladding layer index, and¹x,y

2

[]2/]x21]2/]y2 is the transverse Laplacian. The scalar a
paraxial wave equation provides an appropriate model
the full vectorial Maxwell equations, provided that the r
fractive index contrast of the guide is weak (un(x,y,z)
2n0u!n0), the diffractive length of the fundamental guide
mode is much larger than the wavelengthl052p/k0, and
the refractive indexn(x,y,z) varies slowly with respect to
the paraxial direction z, over one wavelength l0
(l0u]n/]zu!n0). We note that, in case of a straight wav
guide with a parabolic-index profile, Eq.~1! has been widely
adopted as a model for graded-index parabolic wavegu
and lenses, and the analogy of such an equation with
time-dependent Schro¨dinger equation for a two-dimensiona
harmonic oscillator has been discussed in many papers~see,
for instance, Ref.@19#!. Here we would like to show rathe
generally that, in presence of waveguide axis distortions,
quantum-mechanical analog of Eq.~1! is the time-dependen
Schrödinger equation for a charged particle in a tw
dimensional potential interacting with an electromagne
field, the potential vectorA associated with the electromag
netic field being related to the waveguide axis distort
through a simple relation@see Eq.~6! below#. In fact, let us
consider the time-dependent Schro¨dinger equation for a
charged particle, of chargeq and massm ~e.g., an electron!,
in a two-dimensional potentialV(X,Y) ~e.g., the atomic
binding potential!, interacting with an electromagnetic fiel
derived from the vectorial potentialA(t)5Axux1Ayuy . As-
suming the Lorentz gauge, the equation for the particle w
function f(X,Y,t) reads

i\
]f

]t
52

\2

2m
¹X,Y

2 f1
q2A2

2m
f

2 i\
q

m S Ax

]

]X
1Ay

]

]YDf1V~X,Y!f. ~2!

To show the formal equivalence of Eqs.~1! and ~2!, it is
worth to rewrite Eq. ~2! by introducing the Kramers
Henneberger~KH! transformation, which is commonly

FIG. 1. ~a! Schematic of a weak waveguide with a distort
optical axis. The directionz in the figure is the paraxial axis of th
corresponding straight waveguide,x0(z) and y0(z) are the equa-
tions of the curved axis, and the shaded area is the high-in
waveguiding region.~b! Schematic of a weak channel wavegui
with a distorted optical axis written onto a strongly confining plan
waveguide. The weak guiding of the channel structure is provi
by a graded-index profile in thex direction, whereas the tight con
finement in they direction is achieved by a high-contrast stepli
refractive index profile of the planar structure.
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adopted in atomic physics to study the interaction of a bou
electron with superhigh intensity and high-frequency la
fields@24–26#. The KH transformation basically correspond
to a change of the reference frame from the atomic rest fra
to the moving coordinate frame of the completely fr
charged particle responding to the applied electromagn
field @see Eq.~4! below#. Let us introduce the phase tran
formation

f5c expF2 i
q2

2m\E
t

dt8A2~ t8!G , ~3!

and the change of variables

x5X2
q

mE t

dt8Ax~ t8!, y5Y2
q

mE t

dt8Ay~ t8!. ~4!

Then Eq. ~2! takes the form of the Kramers-Henneberg
Schrödinger equation,

i\
]c

]t
52

\2

2m
¹x,y

2 c1V@x2x0~ t !,y2y0~ t !#c, ~5!

wherex0(t) andy0(t) describe the classical~nonrelativistic!
trajectory of the charged particle, in absence of the bind
potential, interacting with the electromagnetic field sole
that is,

x0~ t !52
q

mE t

dt8Ax~ t8!, y0~ t !52
q

mE t

dt8Ay~ t8!.

~6!

A comparison of Eqs.~1! and~5! reveals the formal analogy
of the two equations. Indeed, Eq.~1! can be interpreted as th
Kramers-Henneberger Schro¨dinger equation for a particle o
mass m5n0 in a potentialV(x,y)5@n0

22n2(x,y)#/(2n0)
.n02n(x,y) with the formal substitutionl05h for the
wavelength andz5t for the paraxial coordinate. The equa
tions for the tilted waveguide axis,x0(z) andy0(z), are just
the trajectories of the free particle as given in Eq.~6!.

The presented analogy allows one to capture the effect
waveguide axis distortions on beam propagation in terms
stimulated transitions among the modes of the straight wa
guide ~either bound or unbound modes! in the same way as
in the atomic case, where the applied field produces tra
tions among the electronic energy states, including thos
unbounded states~ionization!. Radiation losses in the wave
guide due to axis distortions are thus analogous to the
cess of ionization of the atom and are ruled by the same l
of quantum mechanics. In particular, of major relevance
the framework of this analogy is the case of a wavegu
with a periodically curved axis, which corresponds to th
interaction with a monochromatic field in the atomic cas
Such a case will be considered in detail in the followi
section, where the optical analog of many anomalous effe
found in high-field atomic physics, such as quenching
ionization rate and dynamic wave packet splitting, will b
retrieved. In the following, we will be mainly concerned wit
a one-dimensional waveguide scheme@36#, corresponding to
a one-dimensional KH Schro¨dinger equation in the quantum
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QUANTUM-MECHANICAL ANALOGY OF BEAM . . . PHYSICAL REVIEW E 67, 036601 ~2003!
mechanical analogy. Such a case corresponds, for insta
to a weak channel waveguide with a distorted axis reali
on a planar waveguide, which provides a tight field confin
ment in one transverse direction, e.g., in they direction, as
shown in Fig. 1~b! ~see, e.g., Ref.@37#!. In this case, by
assuming a refractive index profilen(x,y,z)5n0(y)
1Dn(x,y,z), where n0(y) is the steplike profile of the
tightly confining planar waveguide andDn(x,y,z) provides
the weak guiding of the superimposed channel wavegu
(uDnu!n0), one can derive, using multiple-scale analysis
effective-index methods, an effective one-dimensio
propagation equation for the field envelope in the wea
guided transversex direction after eliminating from Eq.~1!
the y dependence of the field provided by the tightly confi
ing planar structure. In the spirit of the weak guiding a
proximation, one can also setn22n0

2.2n0(n2n0), so that
the one-dimensional paraxial beam propagation equatio
the waveguide reads

]c

]z
5

i

2k0n0

]2c

]x2
1 ik0$n@x2x0~z!#2n0%c. ~7!

III. FIELD PROPAGATION IN A PERIODICALLY
CURVED WAVEGUIDE: DYNAMIC MODE SPLITTING

AND RADIATION MODE REDUCTION

A case of major relevance within the framework of t
quantum-mechanical analogy considered in Sec. II is tha
a sinusoidally curved waveguide, for whichx0(z)
5A(z)cos(2pz/L), whereA is the modulation depth andL
the spatial period of the modulation. This case is analog
to the interaction of a bound electron with a monochroma
field. In general, we will allow the modulation amplitudeA
to vary slowly withz, as compared to the spatial modulatio
periodL, in order to study the coupling from, e.g., a straig
waveguide into a periodically curved one. The quantu
mechanical analog is the interaction of a bound elect
with, e.g., a nearly monochromatic light laser pulse,
which the issue of pulse adiabaticity is of major importan
in the onset of wave packet localization and ionization s
pression~see, e.g., Ref.@30#!. As an index profilen5n(x)
for the straight waveguide, we will consider specifically t
truncated parabolic graded-index profile, i.e.,

n~x!5H n0 for uxu.a

n01Dn0S 12
x2

a2D for uxu,a,
~8!

where 2a is the width of the waveguide,n0 is the bulk re-
fractive index, andn01Dn0 is the on-axis refractive index
We note that the case of a periodically curved graded-in
waveguide with a nontruncated parabolic-index profile c
responds to the quantum dynamics of a harmonic oscill
with an external sinusoidal driving force, which has be
widely investigated in the literature~see, for instance, Ref
@38#, and references therein!. The optical analog was als
previously studied using either a Green function appro
@21# or a generalizedABCD matrix formalism commonly
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adopted in paraxial Gaussian beam optics@39#. In this case, a
wave packet spreading has been predicted for a modula
periodL equal to the characteristic spatial period of the le
guide ~see Ref.@39#!, which corresponds in the geometr
optics limit to the secular growth of ray oscillations arou
the undistorted waveguide axis due to the resonant excita
of the classical harmonic oscillator. The case of a trunca
parabolic-index slab waveguide with a bent axis was con
ered by Marcuse@40# assuming aweak axis deformation, and
an approximate analytical expression for the power radia
loss induced by a periodic modulation of the waveguide a
was derived in a perturbative manner which resembles
above-threshold ionization rate calculation in the Keldy
theory of multiphoton ionization~see, for instance, Sec. 3.
in Ref. @26#!. In such a theory, radiation losses during bea
propagation are due to the coupling of the fundamental c
fined mode of the waveguide with radiation~unbounded!
modes of the straight waveguide induced by the periodic a
bending, and the radiation-loss rate turns out to increas
the depth of bending is increased. In the present work,
moving the weak axis deformation approximation, we sh
that the qualitative behavior of wave propagation is subst
tially different from those predicted by the first-order pertu
bative analysis@40#, especially when considering short sp
tial modulations and amplitudeA of waveguide distortion
comparable with~or larger than! the waveguide width 2a. In
such a situation, a completely different and rather unus
scenario sets in, namely, the occurrence of a dynamic-m
stabilization, which manifests itself by a mode splitting du
ing the propagation, and the corresponding reduction of
diation losses. Owing to the analogy of the paraxial be
propagation equation with the Kramers-Henneberger Sc¨-
dinger equation, such phenomena provide in the optical c
text an experimentally verifiable framework of electron d
namic wave stabilization, ionization suppression, and w
packet dichotomy found in high-field atomic physics@26#.

A. Dynamic-mode splitting and the average waveguide model

We have studied the beam propagation in the trunca
parabolic-index waveguide with a periodically curved ax
by direct numerical simulations of the paraxial wave equ
tion ~7! using either a pseudospectral split-step method o
finite difference Crank-Nicolson method with absorbin
boundary conditions~see, e.g., Ref.@36#!. In a first set of
simulations, we launched into the waveguide the Gauss
like mode supported by the straight waveguide and we
creased adiabatically the modulation depthA using a quarter-
wave sine-square law, i.e., we assumedA(z)
5A0sin2@pz/(2La)# for 0,z,La and A5A0 for z.La ,
where La@L is the length of the adiabatic section of th
waveguide. The beam propagation after the adiabatic sec
turns out to strongly depend on the final modulation depthA0
and on the spatial modulation periodL. For long modulation
periods, the beam shape remains almost Gaussian and
lows adiabatically the trajectory of the curved wavegui
axis, though high radiation losses appear due to the peri
axis bending~see Fig. 2!. Conversely, a beam splitting i
observed when the modulation period is short enough
1-3
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LONGHI et al. PHYSICAL REVIEW E 67, 036601 ~2003!
compared to the diffractive length of the mode in the strai
waveguide, provided that the modulation depth is com
rable with or larger than the waveguide width. The be
splitting observed after the adiabatic section is analogou
the wave packet dichotomy found in the quantu
mechanical context@26,29#. An example of transition from
the lossy mode propagation regime~Fig. 2! to the stabiliza-
tion mode and dynamic-mode splitting regimes, observe
short modulation periods, is shown in Figs. 3 and 4 for
creasing values of the modulation depthA0; parameter val-
ues chosen in Figs. 2–4 arel051.55mm, a58 mm, n0
51.538, andDn050.01. As the modulation depth is in
creased, a transition from a mode broadening regime~Fig. 3!
to a mode splitting regime~Fig. 4! is observed. A detailed
evolution of the beam intensity profile during propagation
the mode splitting regime is reported in Fig. 5. Note that
two lobes of the splitted beam turn out to be symmetrica

FIG. 2. Beam propagation in a truncated parabolic wavegu
with a slowly modulated periodic axis bending. Parameter val
are n051.538, a58 mm, Dn050.01, l051.55mm, A0 /a50.5,
andL5600 mm.

FIG. 3. Beam propagation in a truncated parabolic wavegu
with a short modulation period. The waveguide is composed by
adiabatic zone (0,z,20 mm), where the axis modulation dep
slowly increases with a sine-square law, followed by a uniform
periodic region (20 mm,z,35 mm). Parameter values are th
same as in Fig. 2, except forL5157 mm andA0 /a50.875.
03660
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localized at distances of.6A0 from the straightz axis. The
main physical reason underlying the occurrence of
dynamic-mode splitting is that, for a periodic modulationL
shorter than the diffractive length of the fundamental strai
waveguide mode, the beam propagation along the waveg
as described by Eq.~7! corresponds, at leading order, to th
propagation in astraightwaveguide with an effective refrac
tive index profilenav(x,z) which is obtained by averaging
with respect to the propagation spatial variablez over one
modulation period, the actual refractive index profilen@x
2x0(z)#, i.e.,

nav~x,z!5
1

LE
0

L

n@x2A cos~2pz/L!#dz

5
1

pE21

1 n~x2Au!

A12u2
du, ~9!

where the dependence ofnav on z comes from the possible

e
s

e
n

-

FIG. 4. Beam propagation in a truncated parabolic waveguid
the dynamic beam splitting regime. The waveguide structure is
same as in Fig. 3. Parameter values are as in Fig. 3, excep
A0 /a54.375.

FIG. 5. Evolution of beam intensityuc(x,z)u2, in arbitrary units,
during propagation for the waveguide structure of Fig. 4.
1-4
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slow dependence ofA on z. A rigorous proof of this state-
ment can be obtained by application of the Floquet theor
Eq. ~7! ~see, e.g., Ref.@29#! or by a multiple-scale
asymptotic analysis . For the sake of completeness, a b
explanation thereof, based on an asymptotic analysis of
~7!, is given in the Appendix, where the solution to Eq.~7! is
written as an asympotic expansion,c5c (0)1ec (1)1e2c (2)

1•••. As a smallness parametere, we assumed the ratio
between the modulation periodL of axis distortion and the
diffraction length of the fundamental mode for the straig
waveguide@see Eq.~A3!#. At leading order in the expansion
it turns out thatc (0) satisfies the averaged equation
s
le

ea

a
kl
rv
gh
ge
n
om

g

03660
o

ief
q.

t

]c (0)

]z
5

i

2k0n0

]2c (0)

]x2
1 ik0@nav~x!2n0#c (0)1•••,

~10!

where the ellipses indicate terms of higher order than;e.
The behavior found in the numerical simulations can ea
be explained in term of the averaged equation~10!. In fact,
for the truncated parabolic-index profile@Eq. ~8!#, the aver-
age refractive index, given by Eq.~9!, can be analytically
computed after some straightforward, though tedious, a
bra, yielding
nav~x!5

¦

n01
Dn0

p H 2a222x22A2

2a2 FarcsinS uxu1a

A D2arcsinS uxu2a

A D G
1

A

2a F S 12
3uxu

a DA12S uxu1a

A D 2

1S 11
3uxu

a DA12S uxu2a

A D 2G J , uxu,A2a

n01
Dn0

p H 2a222x22A2

2a2 Fp

2
2arcsinS uxu2a

A D G
1

A

2a S 11
3uxu

a DA12S uxu2a

A D 2

, A2a,uxu,A1a

n0 , uxu.A1a

~11!

for A.a, and

nav~x!55
n01Dn0

2a222x22A2

2a2
, uxu,a2A

n01
Dn0

p H 2a222x22A2

2a2 Fp2 2arcsinS uxu2a

A D G
1

A

2a S 11
3uxu

a DA12S uxu2a

A D 2J , a2A,uxu,a1A

n0 , uxu.A1a

~12!
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for A,a. A plot of nav(x), shown in Fig. 6, shows that, a
the modulation depthA is increased to make it comparab
and far larger than the waveguide sizea, a strong reshaping
of the average refractive index is observed, with the app
ance of two peaks symmetrically placed away fromx50. In
such a regime, the ‘‘averaged waveguide’’ seen by the be
is equivalent to two straight waveguides which are wea
coupled to each other, and thus the beam splitting obse
in Fig. 5 after the adiabatic section corresponds to li
propagation along both of the two channels of the avera
waveguide. The effect of the adiabatic waveguide sectio
Figs. 4 and 5 is to slowly increase the modulation depth fr
zero to the final valueA0, i.e., to slowly modify the average
refractive index profile, providing an adiabaticY branch. We
note that the two lowest-order eigenmodes of the avera
r-

m
y
ed
t
d

in

ed

waveguide correspond to the symmetric and antisymme
supermodes usually encountered in the theory of coup
waveguides~see, for instance, Ref.@41#!, so that the typical
phenomenon of mode coupling between two wavegu
channels, corresponding to dynamic tunneling in t
quantum-mechanical analog problem, should be observa
We checked the occurrence of mode coupling by conside
a uniformly modulated waveguide, i.e., withA5A0 constant,
with the injection of anoff-axisGaussian-like beam. As th
offset of the injected field is chosen close to one of the t
channels of the averaged waveguide, in fact, the mode c
pling between the two channels of the waveguide is
served, as shown in Fig. 7. The periodic exchange of po
between guided modes of the two adjacent waveguides in
average waveguide model is clearly evident from the figu
1-5
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B. Radiation-loss reduction

A phenomenon closely related to the wave packet
chotomy of a bound electron in an atom subjected to a h
frequency and superstrong laser field is the suppressio
the ionization rate and the adiabatic stabilization of the w
function @26,32#. In fact, an atom in a strong laser field, o
the order of the atomic unit, reacts to the increase in inten
or decrease in frequency by increasing its lifetime, i.e.,
decay by multiphoton ionization can be quenched. T
analogous optical counterpart in our waveguide model is
quenching of radiation loss associated to the beam split
as the modulation depth of axis bending is increased. T
result is rather exotic and not predictable when the weak
bent limit, usually adopted to determine radiation losses
periodically bent waveguides, is adopted@40#. In the weak

FIG. 6. Normalized average refractive index profile (nav
2n0)/Dn0 for the periodically-modulated parabolic truncate
waveguide for a few values of the ratioA/a. Curve ~a! A/a50,
curve ~b! A/a57/8, curve~c! A/a515/8, curve~d! A/a54.375.

FIG. 7. Beam propagation and directional coupling in a u
formly modulated truncated parabolic waveguide with an off-a
Gaussian-like excitation at the input. The waveguide structure is
same as in Fig. 4, except than for the absence of the adiabatic
and A/a53.5. The off-axis Gaussian-like excitation beam is ce
tered atx5A and has a waist of. 10 mm.
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bending limit, for whichA!a, one can writen@x2x0(z)#
.n(x)2(dn/dx)x0(z), so that Eq.~7! takes the form

]c

]z
5Hc1H8c, ~13!

where the operatorsH andH8 are given by

H[
i

2k0n0

]2

]x2
1 ik0@n~x!2n0#, H8[2 ik0

dn

dx
x0~z!.

~14!

By treatingH8 as a perturbation term, its effect is that
coupling the modes of the straight waveguide during
propagation. The radiation-loss rate for the fundamen
eigenmode of the straight waveguide can be calculated
evaluating the coupling, induced byH8, to the unbounded
~continuous! modes of the waveguide using the Fermi gold
rule. The result for the power loss rate 2a, when approxi-
mating the fundamental eigenmode with the Gaussian b
of the untruncated parabolic waveguide and the continu
modes as plane waves, has been analytically derived by M
cuse and reads@40#

2a5A 4p

k0n0
S 2p

L
2b0D A2

w0
3

expF2k0n0w0
2S 2p

L
2b0D G ,

~15!

whereb05k0Dn02(1/a)@Dn0 /(2n0)#1/2 is the propagation
constant of the fundamental Gaussian eigenmode of
straight waveguide andw0 its size, given by

w05A a

k0
S 2

n0Dn0
D 1/2

. ~16!

Equation~15! clearly shows that the loss rate increases as
amplitudeA of modulation is increased. However, when t
modulation periodL is short enough and the modulatio
depthA becomes comparable or larger than the wavegu
sizea, the perturbative calculation leading to Eq.~15! fails,
and a description based on the averaged beam propag
equation@Eq. ~10!# is more suited to study the radiation-los
problem. We note that, at the leading order in the asympt
analysis for which the averaged equation~10! is valid, there
is a complete suppression of radiation losses after the a
batic transition, since no coupling between the guided mo
of the averaged~double-channel! waveguide and the radia
tion modes occurs. In this case, the existence of radia
losses comes out when higher-order terms are accounte
in the averaged equation, using either the multiple-sc
asymptotic approach or the Floquet theory; a perturba
calculation in this case is much more involved and requi
in any case numerical analysis~see, for instance, Ref.@32#!.
Following Refs.@33,42#, a simpler approach to investigat
the confinement properties of the modulated waveguide
based on a direct numerical integration of Eq.~7! on a finite
transverse domain with absorbing boundary conditions,
that the radiation escaping from the integration window
lost during the propagation. The comparison of power lev

-
s
e

ne,
-
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transmitted after propagation through waveguides with
fixed length but different modulation depths will provide a
estimate of the radiation losses experienced by the field
an example, in Fig. 8, we show the total beam power ver
propagation distance,P(z)5*dxuc(z,x)u2, for increasing
values of the ratioA/a. The waveguide geometry has be
taken as in Figs. 4 and 5, and we assumedP(0)51. Note
that, in the uniform zone, the total beam power decrea
with distance nearly exponentially@see, e.g., the inset in Fig
8~b!#, however the rate of attenuation is surprisinglylower in
case of Fig. 8~c! (A0 /a.3.375) and Fig. 8~d! (A0 /a
.4.375), than in case of Fig. 8~b! (A0 /a.0.75). Figure 9
shows the numerically computed transmitted powerP(L)
through a L535-mm-long waveguide, normalized to th
power levelP(La) on the planez5La520 mm at the end of
the adiabatic section of the waveguide, versus the r
A0 /a. As A0 /a is increased from zero, the power transmitt

FIG. 8. Total beam powerP(z) versus propagation distancez in
the waveguide structure of Fig. 4, as obtained by numerical inte
tion of Eq.~7! with absorbing boundary conditions, for a few valu
of the ratio A0 /a: ~a! A0 /a50.25; ~b! A0 /a50.75; ~c! A0 /a
53.375; ~d! A0 /a54.375. The integration window in the trans
versex direction has a full width of 160mm; the other paramete
values are the same as in Fig. 4. The inset in Fig. 8~b! shows, as an
example, the exponential decay law of beam power at longer pr
gation distances.
03660
a

s
s

es

io

first decreases, untilA0 /a.0.8; a further increase ofA0 /a
leads to higher transmitted power and to the appearance
double-peaked structure in the average refractive index
file ~see Fig. 6!.

IV. CONCLUSIONS

In this work, we have theoretically studied the propert
of beam propagation in a periodically curved optical wav
guide beyond the usual perturbative approach@40# and we
have shown the occurrence of unusual effects, such as
namic beam splitting and reduction of radiation losses. S
effects bear a close connection to similar phenomena
countered in the dynamics of a bound electron in an at
subjected to a superintense and high-frequency laser fi
The analogy stems from the formal equivalence of the be
propagation problem in the scalar and paraxial wave
proximations and the electronic wave function dynam
analyzed in the Kramers-Henneberger reference fra
Though our analysis has been focused on the simplest
dimensional and scalar beam propagation equation,
physical picture underlying dynamic beam splitting a
based on the average waveguide model discussed in Se
makes our results suitable for a generalization in more co
plex waveguide geometries. We envisage that our opt
analogy may represent an experimentally accessible fra
work to study in the optical context many phenomena
countered in atomic physics with ultrahigh-intensity lase
where their observation may be much more involved.

APPENDIX: DERIVATION OF THE AVERAGE WAVE
EQUATION

In this appendix, we derive the averaged equation~10!
describing, at leading order, the beam propagation in a p
odically curved waveguide in the limit of a short modulatio
periodL. To this aim, let us indicate byw0 the typical size
of the fundamental Gaussian-like mode of the straight wa
guide with a truncated parabolic profile, as given by Eq.~8!,
and let us introduce the normalized spatial variables

j5
z

L
, u5

x

a
. ~A1!

a-

a-

FIG. 9. Normalized transmitted beam powerP(L)/P(La) in a
L535-mm-long waveguide, comprising aLa520-mm-long adia-
batic region, versus normalized modulation depthA0 /a.
1-7
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Using the scaled spatial variables given by Eq.~A1!, the
beam propagation equation~7! takes the form

]c

]j
5 i e

]2c

]u2
1 i eq~u,j!c, ~A2!

where we have set
s
du
o

s
f

-

g
ia

du

or

o
ra

tt

.

03660
e[
L

2k0n0a2
, ~A3!

and
q~u,j!5H 0 for uuu.1

k02k0
2a2n0Dn0H 12Fu2

A

a
cos~2pj!G2J for uuu,1.

~A4!
va-

-
is

l

en-
ce

r
he
low
Note that, from a physical viewpoint, the dimensionle
parametere represent basically the ratio between the mo
lation period of the axis bending and the diffractive length
the waveguide mode. To perform an asymptotic analysis
Eq. ~A2!, let us assumee!1, and that the following scaling
is satisfied:k0a;e21 andDn0;e2. Such a scaling ensure
that the guiding term in Eq.~A2! is of the same order o
magnitude, i.e., of order;e, than the diffractive term. We
then search for a solution to Eq.~A2! as an asymptotic ex
pansion:

c5c (0)1ec (1)1e2c (2)1•••, ~A5!

and introduce multiple scales forj: j05j, j15ej, j2
5e2j, . . . , to avoid the occurrence of secular growin
terms in the asymptotic expansion. In order to include ad
batic changes of the axis modulation, we allow for the mo
lation depthA to vary on the spatial scalej1. In this way, in
Eq. ~A4!, one hasq5q(u;j0 ,j1). After setting expansion
~A5! into Eq. ~A2!, using the derivative rule]/]j5]/]j0
1e]/]j11•••, a hierarchy of equations at successive c
rections toc is obtained. At leading order,;e0, one finds
]c (0)/]j050, i.e., c (0)5c (0)(u;j1 ,j2 ,•••) is independent
of j0. At order;e one has

]c (1)

]j0
52

]c (0)

]j1
1 i

]2c (0)

]u2
1 iq~u;j0 ,j1!c (0). ~A6!

Since the right-hand side in Eq.~A6! is a periodic function
with respect toj0 with a period equal to one, in order t
avoid the occurrence of secular growing terms when integ
ing Eq. ~A6!, we require
s
-
f
of

-
-

-

t-

E
0

1

dj0F2
]c (0)

]j1
1 i

]2c (0)

]u2
1 iq~u;j0 ,j1!c (0)G50,

~A7!

which yields

]c (0)

]j1
5 i

]2c (0)

]u2
1 i F E

0

1

q~u;j0 ,j1!dj0Gc (0). ~A8!

Note that the fast modulation of the waveguide axis cur
ture produces a fast change~i.e., on the scalej0) of the beam
envelopec at the order;e, which is obtained after integra
tion of Eq. ~A6!. If we stop the asymptotic analysis to th
order, the evolution equation forc (0) reads ]c (0)/]j
5e]c (0)/]j1; using Eq.~A8! and reintroducing the origina
unscaled variables@see Eq.~A1!#, one finally obtains

]c (0)

]z
5

i

2k0n0

]2c (0)

]x2
1 ik0@nav~x,z!2n0#c (0), ~A9!

where nav(x,z)5(1/L)*0
Ldzn@x2A cos(2pz/L)# is the av-

eraged refractive index profile of the waveguide. The dep
dence ofnav on z comes from the possible slow dependen
of the modulation depthA on z. By pushing the asymptotic
analysis to the order;e3, higher-order terms would appea
in Eq. ~A9!, which are responsible for radiation losses for t
average waveguide structure even in absence of the s
variations of modulation depthA.
and

rer,
@1# J. Evans, Am. J. Phys.61, 347 ~1993!.
@2# C. Tzanakis, Eur. J. Phys.19, 69 ~1998!.
@3# A.M. Steinberg, P.G. Kwiat, and R.Y. Chiao, Phys. Rev. Le

71, 708 ~1993!.
@4# Ch. Spielmann, R. Szipo¨cs, A. Stingl, and F. Krausz, Phys

Rev. Lett.73, 2308~1994!.
.

@5# P. Balcou and L. Dutriaux, Phys. Rev. Lett.78, 851 ~1997!.
@6# L. Sirko, P.M. Koch, and R. Blumel, Phys. Rev. Lett.78, 2940

~1997!.
@7# R. Morandotti, U. Peschel, J.S. Aitchison, H.S. Eisenberg,

Y. Silberberg, Phys. Rev. Lett.83, 4756~1999!.
@8# T. Pertsch, P. Dannberg, W. Elflein, A. Brauer, and F. Lede
1-8



ys

s.

ys.

s,

.

oc.

QUANTUM-MECHANICAL ANALOGY OF BEAM . . . PHYSICAL REVIEW E 67, 036601 ~2003!
Phys. Rev. Lett.83, 4752~1999!.
@9# G. Lenz, I. Talanina, and C.M. de Sterke, Phys. Rev. Lett.83,

963 ~1999!.
@10# M. Feldmann, J. Opt. Soc. Am.61, 446 ~1971!.
@11# G. Eichmann, J. Opt. Soc. Am.61, 161 ~1971!.
@12# E.E. Bergmann, Appl. Opt.11, 113 ~1972!.
@13# J.A. Arnaud, J. Opt. Soc. Am.65, 174 ~1975!.
@14# T.C. Guo and W.W. Guo, J. Appl. Phys.52, 635 ~1981!.
@15# W.K. Kahn and S. Yang, J. Opt. Soc. Am.73, 684 ~1983!.
@16# R. Castillo, A.K. Ghatak, and H. Hora, Appl. Sci. Res.41, 359

~1984!.
@17# R.J. Black and A. Ankiewicz, Am. J. Phys.53, 554 ~1985!.
@18# A.K. Ghatak and E. Sauter, Eur. J. Phys.10, 136 ~1989!.
@19# E. Sauter and A.K. Ghatak, Eur. J. Phys.10, 144 ~1989!.
@20# N. Marinescu, Prog. Quantum Electron.16, 183 ~1992!.
@21# R.A. Abram, Opt. Commun.12, 338 ~1974!.
@22# J. D. Joannopoulos, R. D. Meade, and J. N. Winn,Photonic

Crystals~Princeton University, Princeton, NJ, 1995!.
@23# K. Sakoda,Optical Properties of Photonic Crystals~Springer-

Verlag, Berlin, 2001!.
@24# H. A. Kramers,Collected Scientific Papers~North-Holland,

Amsterdam, 1956!, p. 866.
@25# W.C. Henneberger, Phys. Rev. Lett.21, 838 ~1968!.
@26# M. Protopapas, C.H. Keitel, and P.L. Knight, Rep. Prog. Ph

60, 389 ~1997!.
03660
.

@27# M. Gavrila,Atoms in Intense Laser Fields~Academic, Boston,
1992!, p. 3.

@28# M. Gavrila and J.Z. Kamin´ski, Phys. Rev. Lett.52, 613~1984!.
@29# M. Pont, N.R. Walet, M. Gavrila, and C.W. McCurdy, Phy

Rev. Lett.61, 939 ~1988!.
@30# Q. Su, J.H. Eberly, and J. Javanainen, Phys. Rev. Lett.64, 862

~1990!.
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