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Bernstein modes in a weakly relativistic electron-positron plasma
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The form of the propagating electrostatic Bernstein mode in a relativistic electron-positron plasma is mark-
edly different from that in the classical plasma, once the momentum-dependent cyclotron frequency is ac-
counted for in full inside the integrations. Given that particles in different parts of momentum space “see” a
different cyclotron frequency, there is no simple global singularity which reproduces the classical dispersion
features.
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I. INTRODUCTION Il. MODEL EQUATIONS

Astrophysical electron-positron plasmas are, by their na- The starting point is the Viasov equation formulated in
. . : - momentum space, rather than velocity spgdie

ture, highly energetic. The mathematical modeling of such

media must be relativistic, since the thermal content of such af af ot

a plasma will be significant compared to the particles’ rest —+tv-——+1t0s(E+vXB)-— =0, (1)

energy[1,2]. In this paper we describe the kinetic theory of at o P

weakly relativistic plasmas, defined to be those for which thewheref (r.p.t) and g, are, respectively, the particle distri-
equilibrium distribution function is taken to be Maxwellian, s\1.B, ds ' P Y P

L . bution function and charge, for particles of specgsheres
but the full reIat|V|§t|q correction for the mass-dependent %Yis eithere for electrons, om for positrons. Together with
clotron frequency is included.

) . . Maxwell's equations
We present new dispersion curves for the particular case

of Bernstein modeg3-5], which are electrostatic waves 1 9E
propagating perpendicularly, and nearly perpendicularly, to VXB:Moz nSJ g fdp+ = —, 2)
the uniform equilibrium magnetic field. In this paper we will s c? ot
concentrate on the specific case of perpendicular propaga-

tion. The classical treatment of these modes for an electron- B

ion plasma depends upon an arbitrarily low temperature, and VXE= ET ©)
yet is not entirely consistent with cold plasma thef#y8,7.

Part of the discrepancy undoubtedly can be attributed to the V.B=0, (4)

handling of singularities in the classical kinetic case, in

which the harmonic resonances are removed from the inte- q

gration over particle distribution. In fact, the correct method V.-E=> —ng| fdp, (5)

of treating these points is to recognize that the cyclotron s €0

frequency is momentum dependéitiiat is, the cyclotron fre- ) o
quency drops as the particle momentum increasesl treat E£9S: (1)—(5) constitute a complete set for describing the
the singular integral accordingly. Other researchers have prgl@sma behaviofalthough Eq.(4) and Eq.(5) can be con-
duced purely formal solutiori@] for an arbitrary relativistic ~ Sidered as initial conditions onlyNote than, is the number

y but without any phenomenological analysis, or have tackdensity of species. _ _
led either ultrarelativistic plasm48,10] or weakly relativis- Consider now the linearized equations appropriate for de-

tic behavior in whichy~1+ p?(2m3c?) [6—9]; most of scribing small amplitude waves. Assuming that the equilib-

these treatments are for electron-ion plasmas, and assumdigm guantities are distinguished from perturbations by a

stationary ion background. In this paper we present a treaSUPSCript 0, we have
ment of the Bernstein modes for a weakly relativistic

electron-positron plasma, valid for moderate valuey,adind (pXBg)- Ifos -0 (6)
without the “stationary ion” approximation. The following ap ’
section gives the full formal statement of the dispersion re-
lation for all linear Vlasov-kinetic modes in & e~ plasma. of g of g ofg It s
Section Il describes the nonrelativistic Bernstein modes in = +v - - +0a(vXBo)- o —q(E+vXB)- o
this context, to provide an essential comparison for the 7
weakly relativistic case in the subsequent section.
ds 1 9E
XB= — — .
*Email address: d.diver@physics.gla.ac.uk VB Mog msnsf Plsdp+ c? dt ®
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Our interest lies in small-amplitude waves, and so we as- QnSZUs(w—kan—an)_l
sume that the equilibrium is uniform in space, and that per- -

turbations vary as ex(k-r— wt). The full details of the so- 02 n_sz ip? EJ I pp 232
lution procedure are well documented elsewhgi&, 12,3 L 22 n Lzmn PLEI <n
and need not be repeated. After some manipulation, the dis- N
Fhe;sfg)rrrlnrelatlon for small amplitude waves can be written in X ipf _SJnJr/] pr,Qz ip.pdida
n . ,
p. Dug—Jﬁ —ippLIndn pfIA
- S -

(10)
w2 in which Q¢ =qsBy/mg is the cyclotron frequency of species
kX (kXE)+ —2E S, mg is the particle massl, is the Bessel function of order
¢ n and argument, and the following definitions apply:
277 o (o “
=== wzf f dp.dp 2 QneE (9 ot ot
25 PloJo n=-—c Us=(0— k)= +Kkp, —=, 11
s=(0—K| H)c?pi Ly (11)
kivg
= . (12
gs Qs

in which cylindrical coordinatesy(,p, ,¢) for the momen- . o
tum have been used, with L denoting the direction paral- T_here are several S|r_npl|f|cat|ons that can b_e applied imme-
Gdlately. Since we wish to study perpendicular Bernstein

o modes primarilyk =0. Next, noting that.= — ¢, the sum
Wherg @ps™ Nsqs/(€oMs) denotes the plasma freque'ncy.of over species can be carried out quite simply given that all the
speciess with (res) massms. Note that the summation iS glements ofQ,, are identical in magnitude for an electron-
over integern, and that we have assumed that the equ'“b'positron plasma, with only thél,3), (2,3), (3,1), and (3,2

rium distribution function fg, is isotropic, so that elements changing sign. Hence when the positron and elec-

pdfso/dp, =pidfsp/dp). The matrixQ,s is defined by tron matrices are added, the result is
|
[ n? N n2qQ |
prJﬁ —IPfZJan PLPI7 ;Jﬁ
w2 8f0 n nQ
_n__ Y . ’ 2 q7 . ’
an+ Qne_zAn ap, X Ipf E‘Jn‘]n pLan 'pipHTJn‘]n ) (13)
nZ Q _ nQ -
PLPI7 ;Jﬁ _lprHT‘]r,]‘]n PiJn
|
in which A,=w?—n2Q%=w?-n202%+? and all species- Wwhere
related subscripts have been dropped, the positron value of
any quantity being assumed. A further simplification results
from considering the summing over integer since those
matrix elements which contain only a linear factomust n2
vanish, given than ranges over all positive and negative pz—zJﬁ 0 0
integer values. Finally, note that since the integratiomin :iﬂ ¢ (15)
ranges from—c to «, those elements which are odd " A, dp, 0 pf\]r’]2 0
vanish identically on integration, and therefore may be dis- 0 0 0232
[¥n

carded. As a result, the right-hand side of E@). can be
written

2 - oo o]
Are? :
T c? n:E—oc f_mdpu fo dp.Ka B, a4 Note that the left-hand-side of E(P) simplifies to
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[ 2 i 6.00
— 0 0
CZ
2 4.w
(O] A
0 = k¥ 0 |.E (16) @
2.00
W e |
0 0 —-k
2 L
- - 0.00

. . . '2.50' - '5.06 - 750 - l10.00
showing that for the particular case of wave propagation per-

pendicular to the equilibrium magnetic field in an equal-mass  F|G. 1. Dispersion curves showing solutionsan- A space for

plasma, the kinetic modes simplify beautifully. Since this e ¢jassical, nonrelativistic case, wheére w/Q. The vertical axis
paper is concerned with the Bernstein modes, only the solqéa)

tion for nonzerok, will be examined, for which the disper-
sion relation is

, and the horizontal i4.. The nondimensional hybrid frequency
is \/3, for w3=w3/Q?=1, and is shown arrowed in the figure.

o . . of, p2n? where A, the ratio of thermal energy to wave energy, is
0 ML i
1=—47w? f d f dp, —2 3200, given by
pnzw __dpy . piapi Wz n(&)
17 k?kgT
A=—"0. (21)
However, in order to progress, the equilibrium distribution me()
function fy, must be specified, and this is the subject of the
next sections. Equation(20) is exact for an electron-positron plasma; there
is no “static ion” approximation here. Solutions occur at
lIl. CLASSICAL. NONRELATIVISTIC BERNSTEIN frequencies close to the cyclotron harmonics, and the full
MODES curves are presented in Figs. 1 and 2, which show the cases

_ 0,/Q=1 and 0,/Q =3, respectively. Note that Eq20)
In the usual, classical treatment of the electron Bernsteimlso gives the approximate dispersion relation for an electron

modes for a plasma with stationary ions, the relativisticplasma with stationary ions, if the factor of 4 is replaced by
terms are discarded, and the equilibrium distribution functiorp .
is the classical Maxwell-Boltzmann one,

fo(p)=(27rmekBT)_3lzeX[:[— p2/(2mksT)],  (18) A. Behavior for small A
A deeper insight into the characteristics of the dispersion
which is written here in momentum form, and in whiefa is  relation can be gleaned from the the Taylor expansion of Eq.
the electron(and positron rest mass. It is instructive to pro- (20) for small A, which gives the long-wavelengtior low-
ceed with the fully nonrelativistic calculation for an electron- temperaturgapproximate dispersion relation
positron plasma, since this calculation will serve as a vital

contrast to the relativistic treatment that follows. The most AQA,
important aspect of the nonrelativistic calculation is that the A=~ 50702 A<1, (22)
particle mass remains a constant, and therefore the cyclotron “p
frequency is not momentum dependent. Considering the .
(1,Dth entry of the matrices in Eq16) and Eg.(15), the In which
dispersion relation for the Bernstein waves can be written 600
1=4m(2m) ¥ (mksT) >%w? e
Y
> 2 B o ) 400 e E—
Sl I U PR 5
I —
200
Notice thatA, can be taken outside the integration, since
there is no relativistic correction to the cyclotron frequency.
In fact, the double integration can be performed analytically, 00 am B T8 1000
since the integrations with respectgpandp, are indepen- ’ ' ' ’
dent. The result is in the form of the dispersion relation FIG. 2. Dispersion curves showing solutionsan- A space for
- 5 the classical, nonrelativistic case, where /€. The vertical axis

n Lo~ . . . . . .
A=4w§exp(—A) 2 — 2|n(A), (20) is w, theAhonzontaI isA. The.nondlmensmnal hybrld fn.equency is
=1 w?— V19, for w,=w,/Q=3, and is shown arrowed in the figure.
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AH=w2—wa=w2—2w§—Qz (23

1=4w§

(29

f1(A) 4f,(A)
- . . . 2_92+ 2_492+"' .
defining the hybrid frequencw,, . First, note there is no @ @
solution forw=Q,A <1, since for this case Eq22) pre-

) T For illustrative purposes, we shall consider only the first 2
dicts A~1, a contradiction. lfw?=wi+ €, then PuTP 4

terms, with the assumptiol < wy<2(), as before. An ex-
cellent approximation td,(x) is
202-307 PP n(X)

€. 24
6w’2392 24

X2
e % (30

1
f(x)~27"x" 1(H+ Ant )
If 25 <302, so thatw, <20, then Eq.(24) shows that
€< 0 is required to ensur& >0; hence the dispersion curve
showsw dropping asA increases from 0. The next possible

solution is one for whichw?=40Q2+ ¢, giving the local dis-

For solutions near the second harmonic, thaifs=4(?
+¢€, €>0 the position where the tangent to the disperion
curve is zero is readily approximated by the solution to

persion relation f1(A)~0 (31)
A 392—2w§ 25 which, on using Eq(30), yields the cubic equation
~———5 - €.
6wy’ A3—3A2+12A—12=0, (32

In this case, assuming agai<2(), the dispersion curve the roots of which are the values af for which the tangent
shows thatw increases as\ increases. Hence, fowy vanishes. In fact Eq.32) has only one real positive root, at
<2, there is no wave solution for frequencies betwegn  Ay~1.22, in close agreement with Figs. 1 and 2. A more

and 2). detailed asymptotic analydi§] places these critical points at
_ If, on the other hand, a§>392, o) thath>ZQ, t_he A=1.25 3.05 5.44, and 8.46 for frequencies near
dispersion curve at»=2() showsw decreasing as\ in- =2 3 4, and 5, respectively. Given that=k?R?/3, where

creases from zero. In general, there is no long-wavelengtR s the Larmor radius, these critical values correspond to
mode in the approximate frequency interval starting J'UStklRL~n, n=2, 3, 4 revealing a resonance between the
above wy, and ending before the next highest cylcotronyayelength of the Bernstein mode and the influence of the
harmonic. magnetic field via the Larmor radius.
Hence all solutions for frequencies higher than the hybrid
B. Behavior for large A frequency have bell-shaped dispersion curves, showing that
for a given frequency, there are either two solutions, corre-

For very short-wavelength solutions, given that ) . ) )
y 9 9 sponding to different values d&f, , or no solution at all, if

exp— M)l (A)~(27A)" Y2 A>1 (26) the frequency is sufficiently far from a cyclotron harmonic to
be in the band gap. Note also that there is always an& ()
then an approximate dispersion relation pair for which the group velocity is zero, and is therefore a
nonpropagating wave. However, for all frequencies less than
4o’ = n2 the hybrid frequency, there is always a unique value of
A~ BN A>1 (27)  giving an electrostatic wav@llowing for infinite A values;

[ — 2_n202’ . .
2m =1 w*=n"Q) none of these solutions has zero group velocity.
shows that short-wavelength solutions can only occur at fre-
. o D. Summary
guencies close to cyclotron harmonies=n().
The analysis in this section shows how the classical, non-
relativistic Bernstein modes can be described wholly analyti-
) ) ) ] ) ) cally, with general dispersion relations expressible in closed

than the hybrid frequency have the property that the grouperformed independently, since the poles in the denominator
velocity has a zero for finite values df, since the dispersion gre not functions of momentum.

curves are bell shapd8]. From the curves in Figs. 1 and 2,
the maxima in the dispersion curve occur at intermediate
values of A, and so neither of the two approximate treat-
ments described above is adequate to reveal this effect. In- In the relativistic case, the cyclotron frequency is a func-
stead, if tion of momentum, and the integrations oygrandp, are

not independent, as can be seen from the true form of the

C. Stationary modes

IV. WEAKLY RELATIVISTIC APPROXIMATION

f(A)= e/_\—AIn(A), 28) relativistic equilibrium functior{2,9,13:
_ 3.3y-1 —
then the full dispersion relation can be written in the form fo(p) = (4mmcc?) Ky(a) exp(—ay), (339
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where wherep®=p? +pf . Moreover, the summation over index

m.c2 applied to Eq(39) can be performed analytically, via

_ e
A= GT (34) . .

. N . - > nly(A)=Aet (40
is the nondimensional reciprocal relativistic temperatie, n=1 2
is the modified Bessel function of the second kind, of order
2, and allowing the full dispersion relation to be written in the form

2 271/2

pL+p -

y=|1+ = @5 L, ., 4dke” .
meC _20) +\/_a)2 2 E dprL Akip e ot

is the usual relativistic Lorentz factor. It is clear that on sub-
stituting Eq.(33) into Eq.(17) there is no possibility of sepa- *
rating the integrand into independent parts, nor of extracting Xf
A, from any part of the integration. As a physically mean-
mgful compromise, we define tiveeakly relativistic approxi-
mationto be one in which the equilibrium distribution func- The denominator in the second integral in E4{l) has the
tion for positrons and electrons is the classical Maxwellianfactor y 2—n? ®?, which can lead to singularities in thq
given by Eq.(18), but in which the Lorentz factoy is re-  integral if n%w?>1, sincey=1. Such singular integrals,
tained in full in theA,, term in the denominator of Eq14).  where they occur, are properly defined by the procedure dis-
This simplifies the integration over momentum space, with-cussed below, and in the Appendix.
out sacrificing the significant relativistic Doppler correction  |n particular, defining
to the singularity. Note thay will not be expanded binomi-
ally as in other article$6,8].

To simplify the algebra, the following nondimensional b2=n%w?-1, (42
variables are adopted from now on:

efapH /2

dp—— —. 41
o p”1+pﬁ+pf—n2/w2 “n

0=0lQy, ©,= wp!Q, there are two cIea[ cases thaEcan be identifiedsfam, that
is, b2>0: (i) b2>p? (ii) b2<p?. The singularities on the
pj=pj/(Mec), P, =p, (ML), (36)  real line in thep; integration arise for small enough , and
so can be negotiated by splitting the range of ghantegra-
k =k, c/Qq, ¢=k. p,, tion into 2 parts, corresponding to cag@sand (ii): (i) O to

b,, and(ii) b, to . Only the first of these integration ranges
whereo=eBy/m, is the rest cyclotron frequency, a con- incurs singularities on the red| line. In case(ii), the de-
stant. The full dispersion relation for weakly relativistic ,,minator does not have zeros on the lfeﬂdlne and so no
Bernstein modes can then be written in the form . . . . ~ . . ’ .

singularity arises in the integration. Finally, note that if

402 © . n2y2p b2<0, then there are no zeros in the denominator, ancﬁ)‘;he
&)2=—‘22a5’22 f dbif db\\z—zl‘z integration is again well defined; this will be referred to as
V2K 0 R A caseliii ).

Returning to the full dispersion relation, E@1), we can
(37) state that for case§) and (ii), the double integration term
can be written in the form

A a 1 . .
><Jﬁ<kipi>exr{—§a<pi+pﬁ> :

Noting that
bl’] ~
fo dBBI(k, \/bn_Bz)e_(bﬁ_ﬁz)/zzl(ayﬂ)

! (38)
yz—nzlfuz ! B
A~ 2
+ J d863%(k, 2+ bl e Cat 2T, (a,5), (43
0

the integrand in Eq(37) can be split into two parts, one of
which has singularity. The first double integral can be per-

formed wholly analytically to yield where thep, integration has been transformed using the

changes of variabl@? =b?— 82 in the first integral angh?
=b2+ 6% in the second. The, integration is folded inside

the integralsZ; ,, with the following definitions. Taking case
=J(2ma 3% A, (A), (39 (i) first,

) ) . . PUPEI 1 p
. __dpudpyp, Ji(k po)exp — sap
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exp—az2)
Z—:

22— b?

e~ 2erf(i \[ab?/2).

(44)

:_7,-:|_(a,b):J>m d b

The integrand contains simple polesfalh, and the details of

the requisite integration contour and subsequent evaluation
of the integral are deferred to the Appendix, rather than

qguoted here. The second integfalis defined by

exp—az’f2)
2+p2

%eabz’zerfc( Jab?/2),
(45

Iz(a,b)zf dz

PHYSICAL REVIEW E67, 036403 (2003

6
5 —
= —
A 4 / //
w E_//_’—_,_ =
| —
L] :j
2
1 —|
0 2 4 6 8 10 12 14

FIG. 3. Dispersion curves showing solutionsdnx space for
the casea=10, w,=3. Vertical axis isw; horizontal axis is«.

where once again the full details of the evaluation of this

integral are deferred to the Appendix.
With Egs.(44) and(45) substituted into Eq43), and with
a final change of variable that simplifies the error function
argument, the full dispersion relation Eg.1) can be written
in the form

. “ AL+AY, n=o
w2—2w‘2)=D n*x i “ (46)
n=1 Ay, n<w,
where
Xn
AL=e—Xﬁf R xd)ierf(ix)dx, (47
0
A'n'ze’xﬁf Jﬁ(K\/xszrxz)erfc(x)dx, (49
0
and
All=ex f |Jﬁ(,ﬁ/xﬁ+x2)erfc(x)o|x. (49)
Xn

Note thati erf(ix) is real. The following notation has also
been used:

~2
D:4771/2ﬁ a_

= —, 50
VR (50)

, a n?
x=3| =51, (51)
k=2lak, . (52

M x2<0 sincew>n. Hence for a givenw

such thatm— 1< w<m for some integem=1, the disper-
sion relation is

Note that inA"

w?—2w2=D{m*Al +m*Al +(m+1)*A]
+(m+1)%AL L+ (m=1)tAl

+(m=2)*A"_+...+Al" (53)

A. General remarks

The solutions to the dispersion relation are given in Figs.
3, 4, and 5, for the cases=10, 20, and 50, respectively. In
each calculation, the Bessel function terms up to sixth order
were included. The computer algebra systeatsymA [14]
was used for all analytical and numerical manipulations. It is
clear from these curves for the various valuesadghat the
weakly relativistic case is significantly different from the
classical case. Not only are the classical single lines replaced
by closed curves, there is only one solution for vanishingly

smaIIRL . Associated with each set of dispersion curves is a
minimum, nonzero value ok, the latter increasing with in-
creasing frequency. Moreover, there is also a maximum
value of k for those solutions which form closed curves;
once more, the higher the frequency, the greater the maxi-
mum valid k. Notice also that solutions occur between the
cyclotron harmonics. Earlier weakly relativistic modeling of
electron-ion Bernstein modes revealed certain of these fea-
tures[6,8], including frequency down shifting, finite mini-
mum Kk, values and even the hint of island-type formations
[8], albeit with complex wave numbers.

However, not only are these treatments for electron-ion
plasmas, and so unable to exploit the symmetry ofethe™
plasma, but they are also dependent on the binomial expan-
sion of the relativisticy, or on expansion in powers &,
and so are of restricted validity.

In our paper, the plasma is mass symmetric, and the sin-
gularities appear in the full momentum integration. As a re-

6
L] |

5 <
——

AR - —

s - —T |

) C\__//

; </7

0 2 4 6 8 10 12 14

FIG. 4. Dispersion curves showing solutionsdnx space for
the casea=20, w,=3. Vertical axis isw; horizontal axis is«.
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sult, therle. are no complex roots to the dispgrsion relation for En(x)= w‘”z—xe?<2erfc(x) (58)
the specific case of perpendicular propagation. The treatment

of residues given in the Appendix makes this clear. 20 [ 2 2

The general appearance of the dispersion curves in thifsorr] some 77?0,§>|Xq| suchf;?at %‘]”(K )(()”oc K Sd’“b
paper reflects the fact that the surface which intersects th‘gﬁre ;j_és_2e<ma/x|ml:]m ° ,”(.X) hor XE.[ ), ?]2
zero plandthat is, the plane im-k space, where Eq41) is n(kyXy =) =p’, wherep” is the maximum oty (x)

satisfied to give the dispersion relations is not a singularfor xe[|xq],2). The envelopes,, are shown in Fig. 6,

one, as in the classical case; rather than the infinitely thiP{"here itis clear thaf,(x) has an extremum a~1.16, but

slices produced by a singular surface piercing the zero planté;1at € (x) is monotonically decreasing.

as it passes from-« to +oo, the dispersion curves are the
zero contours of a well-behaved undulating surface. The sin- C. Position and shape of dispersion curves

gularities have been integrated out of the final form of the  gjnce it is important to balance the relative weights of the
dispersion relation, resulting in the island shapes shown ifeqrals, consider the implications of maximizing the
Figs. 3, 4, and 5; note that the contouring algorithm is NOt,eqative-definite contribution. For this to happepmust be
flawless, and so there are minor imperfections present in th; jis critical value at whicl€, has greatest magnitude. In

graphics. ) ) order to simplify the analysis, let this correspondxig=1,
Note also that aa increases, the “islands” elongate and ith the frequencyi. at which this occurs given b
drift upwards in frequency. The elongation admits smader Wi quenci. at whi ! urs giv y

solutions as each island stretches towards the frequency-axis
intercept withk=0, indicative of a closer agreement with
the traditional classical case. . . . .

Hence we expect solutions to the dispersion relation to be at

The subsequent two sections address quantitatively thﬁe uencies below the classical cyclotron harmonic. Note
salient features of the dispersion curves. q y '

that asa—, w—n, consistent with the classical case.
Since erfck)~0 for x=4, the range of the summations
in Eq. (53) is limited, in practical terms. Thus in the simplest
Note thatA, is negative definite, whilsd), andA;' are  possible “nearest neighbor” approximation, forming a bal-
positive definite. Given the strong dependence on index imnce of the negative and positive contributions meansihat
the terms in the infinite sum, as is clearest in E&8), any  pas to be comparable in magnitudeA)_; . If x,~1, then
valid solution to the dispersion relation depends U|timate|yxn_1~1—a/n<0, assumingi<a. Consider only the enve-
on balancing the positive and negative contributions from th%pe behavior near the critical frequency, that is, consider

LILII A2 -~ ~
Ay, so that the _resu_ltlnlgn >0_”|The_ strongest depen- ;,—;, (1+ ), where| 5|<1. Regardless of the sign f if
dence orx; is exhibited inA, andAy", since in these inte- 50, & falls below its maximum magnitudéeing at an
grals x, appears in the limits, and not just in the Besselextremum. However, if §>0, then&, also drops, but ifs

we=n(1+2/a) " Y2~n(1-1/a). (59)

B. Properties of the integrals

function arguments. _ <0, & rises. Hence there is a finite rangedfover which
Consider the mean value theorem appliedhiq the integralsA}, and A" ; can maintain overall parity in
contributions.
I _ 42 2 g2 .
An=Jn(Kk VX = E9) E(Xn), (54) The envelope analysis must be complemented by assess-

ing the Bessel function contribution, which of course con-

where¢ [0x,], and where the envelogg(x,) is defined to tains thex variation. ForA!,, the argument to the Bessel

be function is
2 .
&(x)=e* Jol erfiu)du (55 k(X3— )12 0=<é=<x,, (60)
1l H
e erf(ix) + 77_1/2(1—6_)(2). (56) and forA, , the Bessel argument is
. , . 2
(In fact, & is proportional to the Dawson functidd5], and KOG+ Y2 x| =¢. (61)
the entire analysis could be recast in Dawson function terms,
rather than error function of imaginary argumepplying  The position of the first zera, of J,(z), n=1,2, ..., in-
the same technique to the remaining integrals yields creases with increasing order of the Bessel function, scaling
approximately according ta@,~2.83+n, with z;~3.83.
Al= 22k X2+ 72 E1(Xn), Thus the full phase of the first peak of the Bessel function is
sampled over a range af~z,/x, for eachn. This explains
E(x)=m"12 (57) qualitatively why the dispersion curves form closed struc-
tures of increasing length as the harmonic number increases.
and The Bessel function behavior also controls the relative
magnitudes ofA} and Al' . Using small-argument expan-
An =32\ + ) En([ ), sions for the Bessel functions,
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FIG. 5. Dispersion curves showing solutionsdnx space for X
the casea=50, w,=3. Vertical axis isw; horizontal axis is«. FIG. 6. Dashed curve shovfg, as a function ok; solid curve is
.
Av| 1 8" | &) | L
M| 4 a2 2 23n-1|& (Xn_1)|” (62 e’ 1 3
An_y n® (Xf_1+¢%) i (Xn-1 erfo(z)~ 1-—+— (65)
mZ 2z¢ 4z
Given that the optimum frequency s, for which the enve-  when substituted into Eq64) yields
lope ofAL is as large as it can be, E@2) further constrains ~y
the dispersion curves to begin at larger valuesxoés n - - 20
p g 9 o 2= 202 P (66

increases, in order that the factor @fn does not erode the o2—1"
relative scaling necessary to maintain real solutions to the
dispersion relation. This agrees well with the behavior showiwhich on rearrangement yields the expected hybrid reso-
in Figs. 3, 4, and 5, in which the gradient of the line touchingnance as the nontrivial solution:
the left-hand edges of the islands in each of the cases
=10, 20, and 50 is approximately 1, 1.4, and 2.3, consistent w?~1+2). (67)
with the predicted behaviora*?.
Notice that when the same approximations are made in the

. 0=
D. Behavior for small k | context ofw=<1, we have

2

. . ~ . . . . K
In the limit of smallk, , which is also the smalk limit, Al+Al~ 1—2[2X§e_xfi erf(ix) + 7~ YA 2x2+1)].

the Bessel function argument can be expanded in order to
find solutions that are the analogs of those in Sec. Il A. (68
Since D containsk? in the denominator, the zeroth-order
contribution must come from the case=1, with highern
contributing to vanishingly small terms d?@—»o. The hy-

The required asymptotic expansion is now for etj( This
is readily obtained via the hypergeometric funct[d]

brid resonance must come froAﬂ' , and so we have 27 13 )
B el’f(Z)—\/—;M(E,E,—Z) (69)
M a=x2 1,2 .2
Al ~e 1 7K (x=+x7)erfa(x)dx _ _ _
Iy using which yields
2 2
K 2 1+2X1 2 )(2
=—e™X e "= 2%, [ x2erfo(|xy)) |. - . € 1 3
12 1 1 erf(ix)~i 1+ —+— -, 70)
™ (1) Jx 2x%  4x* (
(63) _ o
and so in the asymptotic limit,
The dispersion relation can then be approximated as ~5
I or SO a
0202~ =2 =, (7D)
2 &),2) w" X3
"2 "2 —1/2, 2
~2wi+ za\T=— 1+2x L . L
@ “pT 3 ﬁwZ[w ( D which is the same as E¢66). The only possible solution is
) 2 the trivial one,w=0.
—2[xy[x7eserfa(|xq])]. (64) Note that the special case 0f=0 is not a solution, since
w=1 is not a solution. In generak,=0 means thatAL
The asymptotic expansidi 5] =0, andA] is identical toA" .
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limitations on allowed modes for long and short wave-
lengths, and within these limitations, there are greater num-
A . .
p - plane bers of allowedo-k;, modes than in the classical case. Some
[ of this new structure arises from the mass symmetry, but
most derives from careful handling of the integrations in
)\ [\, momentum space.
_f) +§ The implications of this new treatment are confined
Il I largely to astrophysical plasmas, where relativistic electron-
positron plasmas occur naturally. It is very unlikely that the
results presented here impact on any laboratory based

In summary, there is only one solution to the dispersionelectron-ion plasma, in which the relative mobility of the

relation for the CaS&lHO’ namely, the mode which be- sp?:(;(raSeIxsair)nar:f(lemci)rllJ natl. pulsar atmosphere, the spectrum of
comes the hybrid resonance at=0. This contrasts mark- . ’ . . ' .
edly with theyclassical treatment, in which all the cyclotron propagating electrostatic waves Is more structured than im-

frequencies were solutior{save the one immediately below plied by the classical case. Waves are significantly more
the hybrid, and the fundamentaNote also that for each bandwidth limited, and there is a greater number of trapped

modes. These effects will have to be taken into account in

value of «, there are twice as many frequencies correspondény future treatment of the radiation from such sources.

ing to solutions of the dispersion relation than there are in the The theoretical approach detailed in this paper is also
classical case, reflecting the continuity of the general surfacgalid for the ordinary and extraordinary electromagnetic

(of which the zero contour yields the dispersion cujyesd : ) : : )
therefore the undulations above and below the zero planggdes in equal-mass plasmas, including the Landau damp

will yield two intersections, rather than one. Note also that
the band gaps which appear above the hybrid in the classical
case persist everywhere in the weakly relativistic one. No
single mode has an arbitrarily large rangexofor a given

FIG. 7. The Bromwich contour for thf-:‘” integration.

APPENDIX: HANDLING OF SINGULAR INTEGRALS

small frequency range, as in the classical case. A proper derivation of the dispersion relation E@6),
and especially the correct handling of the singularities in the
E. Trapped modes integrals Eq(44) and Eq.(45), requires the time dependence

to be treated as an initial value problem. As is well known,

It is clear from the weakly relativistic dispersion curves hi P inted by Landau in his derivati f1h
that there are a number of modes with vanishing group vell'S Was first pointed out by Landau in his derivation of the

locity, that is, for which the tangent to the normalizeek, damping of electrostatic waves in an unmagnetized plasma

curve is zero. Although the classical case also had many suc(ﬁo'ca”?d _Land_au dgmpimg The presence of a t_mi_form
modes above the hybrid frequency, The weakly relativistichagnetic field gives rise, in the classical, nonrelativistic case,

case has two solutions between each cyclotron harmonic, fi P undamped electrostatic Bernstein waves in a plasma with

those dispersion solutions that form closed curves. Moreovef stationary ion background, and as is shown in Sec. Il Athe

such stationary modes are present at frequencies below gfgtension to a classical electron-positron plasma leads to
hybrid. Hence a nonlocalized, broadband disturbance of sucimilar conclusions. N . .

a plasma would yield many propagating electrostatic waves, Ir_1 thg . W_eakly r.e.lat'v's.t'c effects, of primary inter-
and several nonpropagating stationary electrostatic oscillESt n this paper, singularities arise where the denominator of
tions. Given that plasma oscillations can be a source of eledhe pj integral vanishes. In the derivation of E) we in-
tromagnetic radiation in pair plasmgks,17, it is significant ~ troduced the perturbation eXg-r—wt). We note here that
that the spectrum of possible electrostatic modes is morétrictly the frequencyw should be introduced by a Laplace

richly structured in the relativistic case than the classical onetransform, in whichw has a positive imaginary part, and the
first-order distribution functiorf and electric fieldE have

V. DISCUSSION given initial values at=0. The subsequent behavior of the
_ o plasma is then to be obtained by forming the inverse Laplace
In this paper we have addressed the kinetic theory ofransform of the electric field. The presence of a positive
weakly relatl\_/ls'uc electron-positron .plasmas, producmg d's'lmaginary part inw implies that thef)u integration is only
persion relations for the electrostatic Bernstein modes. Th@afined in the upper hatb plane, and therefore no singulari-
treatment presented here preserves the full momentum dgag acryally occur. In order to investigate the properties of
pendence of the cyclotron frequency, albeit with a relaxation, e gigpersion relation, E¢46), for all values ofw, and in
on the true relativistic form of the distribution function. The particular for reako, Eq. (46) must be analytically continued

form of the dispersion curves is markedly different from thatinto the region where Im¢)<0. This is achieved by treating

of the well-known classical singular dispersion relations, in~ . . . .
that thew-k, relations form closed, island domains, betweenP| 85 & complex variable and displacing the path of integra-

the cyclotron harmonics, and show band gaps distribute§on so that it lies on the real axis @, except at the sin-
throughout the solution space, rather than confined to fregular points= po, where the path of integration is indented
guencies just above the hybrid. Moreover, there are extrabove the real axis, as in Fig. 7.
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1. Case()): Zu(a.f) A(x)=ime erf(i Vx). (A6)
The treatment of the integral
2. Caselii): Z)(a,B)

* | exp—a2’) o .
Ii(a,B)= dZZ—IgZ (A1) This time the integral has no poles along the real axis,
— 00 75—
. . . . . . » exp — az?)
requires the definition of a suitable integration contour in Ty(a,8)= — ’dz (A7)
order that the integral is meaningful at the poles = g. —w 724 87
Taking the contour as shown in Fig. 7, it is immediately
apparent that the residues around each pole are equal and 1 (= exp—ad’u?)
opposite in sign, leaving the contour integral equal to the =5f 2—1 u
principal part along the real axis, o us+
(A8)
1 (= exp(—aB?u?)
Ii(a,B)= —Pf e apu) du (A2) =B(ab?)/ 6. (A9)
B J-= ut-1
Proceeding as befords satisfies the differential equation
=A(ap?)IB, (A3)
. dB(x
wherez= Bu. Notice that a( ) - B+ \ﬁzo, (A10)
X X
2A() - ) m . .
P +A(X)=— exp(—xu°)du=— o (A4)  which, together with
. o du
Given that j — (A11)
—o 14 U2
L 0 A5
P e y2—1 (AS) yields the solution fo3(x) as
the full solution to Eq(A4) is B(x)= me*erfq &). (A12)
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