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Theory of the lattice Boltzmann method: Two-fluid model for binary mixtures
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A two-fluid lattice Boltzmann model for binary mixtures is developed. The model is derived formally from
kinetic theory by discretizing two-fluid Boltzmann equations in which mutual collisions and self-collisions are
treated independently. In the resulting lattice Boltzmann model, viscosity and diffusion coefficients can be
varied independently by a suitable choice of mutual- and self-collision relaxation-time scales. Further, the
proposed model can simulate miscible and immiscible fluids by changing the sign of the mutual-collision term.
This is in contrast to most existing single-fluid lattice Boltzmann models that employ a single-relaxation-time
scale and hence are restricted to unity Prandtl and Schmidt numbers. The extension of binary mixing model to
multiscalar mixing is quite straightforward.
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I. INTRODUCTION accuracy with a nonzero compressibilifyfil—13. The
present day lattice Boltzmann equation, with its high-fidelity

In many practical flows involving pollutant dispersion, physics and computation-efficient formulation, is a viable al-
chemical processing, and combustor mixing and reactiorternative to the continuum methods for simulating fluid
mass and momentum transport within multispecies fluidglows. In fact, it can be argued that for many complex prob-
plays an important role. For these flows, it can be difficult tolems involving multifluid phenomena, the physics can be
construct continuum-based models from first principles. Furmore naturally captured by the Boltzmann-equation based
ther, these flows typically involve complex geometry and/ormethods rather than Navier-Stokes equation based methods.
multiple phases making computation with continuum-basedRecently LBE method has been extended to multiphase
models quite complicated. Therefore, for these flows, there iflows [15-18 and multicomponent flow$19-31], flows
a growing interest in using the lattice Boltzmann equationthrough porous medig82,33, and particulate suspensions in
[1-7]. fluids [34—-37. Most existing LBE models for multicompo-

In general, for computing fluid flow of any type, the lat- nent fluids[19-27 tend to be somewhat heuristic and make
tice Boltzmann equatiofLBE) [1-7] offers several compu- the single-fluid assumption. The single-relaxation-time or
tational advantages over continuum-based methods while r&hatnagar-Gross-KrookBGK) approximation[38] is used
taining the flow physics intact. Although the origins of the in most existing model§21—27] restricting applicability to
modern LBE can be traced back to lattice-gas automatanity Prandtl and Schmidt numbers.

[8-10], the new LBE models are free of some well-known A rigorous mathematical development of multifluid lattice
defects associated with their predecessors. Recent worlgoltzmann equation for multicomponent fluids is still in its
have unequivocally established that the lattice Boltzmaniinfancy and such is the object of the present work. As a first
equation is in fact connected to kinetic thedd/—6] and  step, in this work we develop a two-fluid lattice Boltzmann
completely consistent with the fundamental conservatiormodel which is based on kinetic theory for binary mixtures.
principles governing fluid flowf11-13. In these paperss  Such a model would be capable @f simulating arbitrary
priori derivation of the lattice Boltzmann equation from the Schmidt and Prandtl numbers, afit) accurately modeling
parent continuous Boltzmann equation is developed6]. the interaction between miscible and immiscible fluids. We
The Navier-Stokes equation also has its basis in the Boltzfollow a general approach within the framework of kinetic
mann equation—the former can be derived from the lattetheory for developing the lattice Boltzmann models for mul-
through the Chapman-Enskog analyfsid]. That very same tifluid mixtures. This work is a part of our ongoing effort to
Chapman-Enskog analysis can be used to show that the laget the lattice Boltzmann equation on a more rigorous theo-
tice Boltzmann methodology can be applied to solve anyetical foundation and extend its use to more complex flows.
conservation law of the continuous Boltzmann equation in\We derive a discretized version of the continuum Boltzmann
cluding the Navier-Stokes equations. It has also been proveeuations for binary mixtures. The extension of this method-
that the lattice Boltzmann equation tantamounts to an exelogy to multifluid mixtures is relatively straightforward.
plicit finite difference scheme of the Navier-Stokes equations Kinetic theory of gas mixtures has received much atten-
with second-order spatial accuracy and first-order temporaion in literature[14,39—53. Many of the kinetic models for
gas mixtures are based on the linearized Boltzmann equation
[38,52,53, especially the single-relaxation-time model due
*Electronic address: luo@NIAnet.org; http://research-NIAnet.org/to Bhatnagar, Gross, and Krook—the celebrated BGK model

~luo [38]. The kinetic-theory mixtures model employed in this
TElectronic address: girimaji@aero.tamu.edu work was proposed by Sirrovid3], which is also linear in
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1063-651X/2003/6(B)/03630211)/$20.00 67 036302-1 ©2003 The American Physical Society



L.-S. LUO AND S. S. GIRIMAJI PHYSICAL REVIEW E67, 036302 (2003

published as a Rapid Communication in Physical Review Ecies equilibrates within itself so that its local distribution
[31] and it is organized as follows. Section Il provides a brieffunction approaches a local Maxwellian distribution. This
review for some of the existing kinetic models of mixtures process of individual equilibration is also referred to as Max-
that form the theoretical basis of the present work. Sectionvellization. Second, the entire system equilibrates so that the
Il contains the derivation of the lattice Boltzmann model for velocity and temperature differences among different species
binary mixtures from the corresponding continuous Boltz-vanishes eventually. There are many different time scales in
mann equations. In Sec. IV, the hydrodynamic equations ofe equilibrating process of a multicomponent system. In ad-
the lattice Boltzmann model are determined. Section V condition, the Maxwellization itself can take place in many sce-
tains the derivation of the diffusion force and the mutual"@"0s depending on the molecular weights and mass frac-

diffusion coefficient in the lattice Boltzmann model, and thetIons of the participating species. Consider two mixtures,

diffusion-advection equations for the mass and molar con-each consisting of a light and heavy gas. In mixure 1, the

. . . tgtal mass of each species is the same, implying smaller
f;enntr?::]%nzé’g;h%rssyziet?é ﬁ]eocé'eoln g/éc(:jt!zﬁu\ilslecsotr?g Zhe(;rttsgraumber density for the heavier gas. In mixture 2, the number
gt Vi : ! u “densities of the two species is the same, implying the mass

paper with a summary of the present work and possible dIdens:ity(or mass fractionof the heavier species is larger. In

rections of future work. The three appendixes contain theyiyyre 1, the Maxwellization of light species is mostly due
details of:(a) the iterative procedure to solve the Boltzmanny, qet_collision, whereas the equilibration of the heavier spe-

equation; (b) the discretized equilibrium distribution func- jes is predominantly due to cross collisions. This is due to
tion; and, (c) the Chapman-Enskog analysis of the lattice e fact that the number of molecules of heavy species avail-

Boltzmann model for binary mixtures. able for collisions is small. In mixture 2, where the number
densities of the two species are comparable, Maxwellization
Il. KINETIC THEORY OF GAS MIXTURES of both species involves self-collision and cross collision.

When the process of Maxwellization is complete, the stress
; : : f the corresponding species becomes isotropic, or equiva-

Boltzmann equation for a pure system of single species, on@ ! o
d P y ge sp lently the heat conduction relaxes. Therefore, the time scale

can deriveN simultaneous equations for a systemNo§pe- ; . ) :
cies by reducing the appropriate Liouville equation. For theon which the stress becomes isotropic or the heat conduction

sake of simplicity without loss of generality, we shall only "€/axes is a suitable measure of Maxwellization.

discuss the Boltzmann equations for a binary system here.I The_ eqwhbrallt:qu am(t)ng d|fferen\t/ slpe_;;les E:jatn also t?ke
The simultaneous Boltzmann equations for a binary syste lace In several different manners. vVelocity and temperature
ifferences may equilibrate on the same temporal dealén

Following a procedure similar to the derivation of the

are . . L=
mixture 1 abovgor on vastly different scale@s in mixture
O fA+E VIA+ ;JlA.vng:QAAJr Q"B (1a) 2). In addition, these equilibrating processes need not to oc-
cur sequentially but also concurrently with the Maxwelliza-
o fB+ £ ViB+ag V 8=QBA+QPE, (1b)  tion.

There is a significant amount of literature on gas mixtures
whereQ”B=QB” is the collision term due to the interaction within the framework of kinetic theory14,39-51. In the
among two different specief and B. Obviously, for an Chapman-Enskog analysis for a simple gas, one assumes a
N-component system, there will B¢ such equations, each clear separation of scales in space and time, that is, to dis-
containingN-collision terms on the right-hand side. In gen- tinguish the spatial and temporal scales, which are much
eral, the collision term is larger than the mean free path and mean free time. An anal-

ogy for a mixture becomes difficult because of multiplicity
AB_ _ "Ac'B_ ¢AsB of length scales. In the classic work of Chapman and Cowl-
Q _f dsdQ ongl g5 = LAILF T - 1A15], () ing [1?1], the full Boltzmann equationéwith integral colli-

) ) ) ) o sion termg for a binary mixture are analyzed under the as-
where o g is the differential cross section &-B collision, sumptions that all scales are roughly of the same order, or
and() is the solid angle, ant{ A(f 'B) andf” (f®) denote the equivalently, that the phenomenon to be examined is smooth
post-collision and precollision states of the partiélg B), with respect to all collisional scales. Determination of the
respectively. Obviously, the equations for a system of mulvarious transport coefficients—viscosities, diffusivities, ther-
tiple species are much more formidable to analyze than thenal diffusivities and conductivity—was the main objective
comparable Boltzmann equation for a pure system of singlef that work. However, no attempt was made to describe the
species. The first modeling objective is to find a suitabledynamics of the evolution.

approximation for the collision term given by E() that Direct analysis or computation of the Boltzmann equation
would substantially simplify computation without compro- is not generally feasible. This is due to the difficulty involved
mising the essential physics. in evaluating the complex integral collision operators. To

The justified approximation of the collision terms must make further progress one can follow one of two approaches.
rely on our clear understanding of the underlying physicalThe first, Grad’s moment method, is to obtain the non-
system. In a system of multiple species, there are a numberormal solutions of the Boltzmann equatiéire., the solu-
of competing equilibration processes occurring simulta-tions beyond the hydrodynamic or conserved varighg4).
neously. The approach to equilibrium in the system can be&losure modeling would then be required to express the un-
roughly divided into two stages. First, each individual spe-closed moments in terms of the closed moments. And the
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second is to derive simplified model equations from the the £o(0)
Boltzmann equation, which are more manageable to solve. J?°=—

i H ! no'kBTO'
Many model equations are influenced by Maxwell's ap-
proach to solving the Boltzmann equation by making exten- c2
sive use of the properties of the Maxwell molec[#&] and X(Ty,=Ty)—M, RT. 1] (u,—ug)?
the linearized Boltzmann equation. The simplest model equa- o
tions f(_)r a binary mixture is that by Grosg an(_j Krojgkl], wherec,=(&—u,,) is the peculiar(or therma) velocity of
which is an extension of the single-relaxation-time model for,[he o species, and
a pure system—the celebrated BGK mo[if]. '

g

3 ¢
#oCo (Us—Ug) + ur5| 57— 1

. (5

With the BGK approximatior38,41], the collision inte- popel 1 (n,—n.)
gralsQ’s [o,s e (A,B)] can be approximated by following M= pm—— | — + pfy ——————— : } (6)
linearized collision terms: p |Ps NyNg(M,+m;)

1 and up, i1, Mm, My, are positive and at most functions of
o= — —[f—fo00)], (3a)  density and temperatuf@3], the physical significances of
Ao these parameters are to be discussed next.
We now consider the following model equations for a

1 . . . . .
Jos— )\_[f,,_f(,g(o)], (3b) binary mixture due to Sirovicf43]:

Ts (9tf0+§'VfU+ag'ngo—:‘]oo-‘i‘:]ag, (7)

wheref?(©® and f7s(®) are Maxwellians o _ _ _
where the self-collision ternd?” is approximated with the
BGK model of Eq.(3a), and the cross-collision terdf’s is

fo(0) = g D/zef(ffua)zl(ZRaTa), (4a) given by Eq.(5). When the external force is not present
(27R,T,) (a,=0), and if up , 1, Mm, 1., are considered as constants
(for the sake of simplicity we can immediately obtain the
n ) following moment equations from the above equations:
frrg(O):—"/ef(gfuag) /(2RUTU§)’ (4b)
(ZWRUT(N)D 2 1 1
at(l'lzr_l“lg):_/-'l“D —+— (uo_u§)7 (83)
where D is the spatial dimensionR,=kg/m, is the gas o Fs
constant of ther specieskg is the Boltzmann constant and 1/1
m, is the molecular mass of the species. There are three (T, —T)= AN (T,—T,)
adjustable relaxation parameters in the collision terms; B\Ng N
A, and\,.=(n./n,)\.,. The first Maxwellianf’© is
S _0’§ S a. SO . . = 2 '\/'(Tg Mgo’
characterized by the conserved variables of each individual 4+ - (u,—uy)?.  (8b)
species: the number density,, the mass velocity,, and 3kg | N, ns

the temperatur@, ; while the second Maxwelliah”s(®) and _ . .
P 7 The above equations describe the exponential decay of the

f57(9) is characterized by four adjustable parameters:, ooty and ¢ wre diff for the t :
U, T,, andT_,. There are several considerations in de-Ve'oCly and temperature diferences for the two Species, as
discussed in the earlier remarks regarding the processes of

termining these arbitrary parameters: simplicity of the result-

ing theory, accuracy of approximation, and ease of COmpu,[alylaxwelllan|zat|0n and equilibration in the mixture. The

tion. Cross-collisional terms will be symmetric only if one Physical significances of the parametgsg, u1, pm, and
takesu, = U, =u andT,,=T.,=T, whereu andT are the ~ Hm become apparent in the_ above eq_uatlons—these. param-
velocity and temperature of the mixture. This is essential iffl€rs determine the relaxation rates in the Maxwellization
preserving a similarity to irreversible thermodynamics, espeP"0C€SSes. o

cially the Onsager relatiof56]. On the other hand, fewer  S°IVing Eqgs.(7) by means of iteratioricf. Ref. [43] or
terms in the expansion 6f aboutf”*® would be needed in APPendix A), one first obtains

many cases if one chooses,.=u, and T,.=T,, ie,

f7s(0=£7(0) One salient difference between usingnd T U= U=, (%)

of the mixture in the Maxwelliarf ”*(°) as opposed to using Tt o7 ob

u, andT, for the species is that the former choice leads to a o st (9b)

single-fluid theory, i.e., a set of hydrodynamic equations for 5

the mixture, while the latter leads to a two-fluid theory $oO 5O T)= Ny ex;{— (§—u)

[43,49, i.e., two sets of hydrodynamic equations for the spe- o (2wR,T)PR 2R, T |

cies. Obviously, in the cases where the properties between (90)

the two species are vastly different, the two-fluid theory is

preferred[56]. Substituting the above results into the left-hand side of Egs.
The cross-collision ternd’s can be better approximated (7), one has the following equation for the second-order so-

by expandingf? around the Maxwelliaf43] lution of f7 [43]:
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#iCo
f“(‘”(ngyuT) n, Got ot RIUTJ_(SU)'S‘J
2 > -ViInT
2RT 2/Cr ¥
1 a(0)
:_)\_[fo—_fo—(O)]_ n kBT IU“DCO"(UO'_UQ)
2
turl 3T T —1)(T =T,
2
-M, (SR T, —1)(U uy)?|, (10

wherec,=(é—u,), and the diffusion forcel, and the rate-
of-shear tenso§; are given by

n

(o n(TnS
d,=V| 2|+

n

=—d,, (119

1

andp=nkgT is the total pressure of the mixture. From the
above solution off”, one can compute for the relative ve-

locity (u,—u,), the temperature differencel {(—T,.), the
(tracelespstress tensop;; , and the heat flux [43]:

__DkeTy " D,.d’ 12
(UU—UQ)—_ D U__no agsYo ( a
lu‘DIu’r"n mgms(na'_ng) 2
T,~To)= u,—u.*, (12b
(T To= = gy (Yo% (120
n(r n§ 2/~LD Ps Po
o= =2kt 43 0 e
X[(u(r_ug)i(uo'_uq)j_%(u(r_ug)zgij]v (12C)
5
q= EkBT[n(r( U,— U) + ng(ug_ U)]
5 Po  Ps
where the diffusion force
4 -V n,f Ty nyNg Vi PoPs
o — |t = T np ) np pp (azr ag)
(13
and the binary diffusion coefficiefi3] of the model
n,n.kgT
Dgg—W. (14)

PHYSICAL REVIEW E67, 036302 (2003

The self-diffusion coefficienD,, is a special case of the
above formula whem=n_=n,. The viscosityr and ther-
mal conductivityx can also be read from the above formulas
for p;; andq as the following:

kT n”+n* (153
v= T,
BN, A
Ps

=—k2 ( ) (15b)
)\U A

The above transport coefficients are determined by the pa-
rameters\, and up, put, mm, andu,: N, determines the
viscosity and the thermal conductivity of the species and
the combination oh ,’s determines that of the mixture:p
determines the diffusion coefficients in the model; and
ol wr determines the diffusion of the temperature differ-
ence due to velocity difference.

Two salient features of the model described by E@s.
should be addressed. First, the cross-collision t#ffrof Eq.
(5) is exact for the Maxwell molecules obeying the inverse
fifth-power interaction potential. Equatidid), therefore, can
be considered to be a model for the Maxwell j48]. One
immediate consequence of this approximation is that the dif-
fusion force of Eq(12g does not contain a thermal diffusion
term, as it should. Second, the BGK approximation of the
self-collision termJ?“ of Eq. (3a) imposes the limitation of a
unity Prandtl number. However, both these limitations of the
model can be overcome by using the linearized Boltzmann
equation[57-59 with multiple relaxation times and a non-
linear approximation of the collision terni43,49,60Q.

lll. THE LATTICE BOLTZMANN MODEL FOR BINARY
MIXTURE

We shall construct a lattice Boltzmann model for binary
mixtures based on the model given by Ed). In the present
work we only consider the isothermal case such that
=T.=T,=T=const. Consequently, we can also ignore the
terms related to thermal effects #7° of Eq. (5) by setting

MT=pm=pn=0, i.e.,

Pg fu’(O)

J7=- ™ p R,T (§—u)-(u,—uy),

(16)

where the equilibrium functiorf?® for the o species is
chosen to be the Maxwellian equilibrium distribution de-
pending on the mass velocity of the speciesu, as the
following:

(§-u,)?

fo(0) =
2R, T

17)

Po
exp —
(2wR,T)P? F{

Note that from hereaftef’(®) and f are the single particle
mass density distribution functions, as opposed to the single
particle number density distribution functions. We can derive
the lattice Boltzmann equation by discretizing the model
equation (7), following the procedure described in Refs.
[4,5]:
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fO(%+€,0,t+ 8) — F2(x ) =J77+IT—F5,, (18) IV. HYDRODYNAMICS

o . o The left-hand side of Eq18) can be expanded in a Taylor
where the self-collision terr‘da", the cross-collision term series in§t (up to second order Iﬁt) and the equation can be

J7%, and the forcing ternf, are given by rewritten as
1 1,
Jo7=— Z[fo— {90, (199 D, fo+ gﬁfDaf%JZ"HZ*—FZ&, (24)
TO'
1 p. fote0 whereD ,=d;+¢e,- V. Obviously,
= — 2 (e,—u)-(u,—uy), (190
™ p R,T
2 3= =2 FI=0, (259
€, 8y
Fo= —Wop e, (190
R, T vo
> 17%e,=0, (25b)
wherep, andp., andu, andu, are the mass densities and
flow velocities for species ands, they are the moments of 1 p,ps
the distribution functions: > 1%, =— T (U, —Uy), (250
@ D
=2 9= 199, 20 -
Po % a ; a ( a 2 Faea:_poatr' (25(])
_ on #(0) By means of the Chapman-Enskog analy®multiple-scale
Polls Ea: fa€a Ea: fo e (200) expansiol, we can derive the hydrodynamic equations for

the mixture from Eq(24) (see details in Appendix )C
andp andu are respectively, the mass density and the bary- The mass conservation laws for each species and the mix-

centric velocity of the mixture: ture can be derived immediately from EQ4):
1 o
P=PstPs (213 r?tpﬁV-(pgug):EV-[p pg(uo—ug) . (26
TDP
pU=p U+ peUs. (21b _
dp+V-(pu)=0. (27)

The collision termsJ;” and J;* are constructed in such a Note that the mass conservation does not hold for each indi-
way to respect the mass and momentum conservation lawgidual species at the Navier-Stokes level, although it does at
(The derivation of the forcing ternfy is given in Refs. the Euler level. However, the mass conservation law does

[17,18].) apply to the mixture as a whole. The right-hand side of Eq.
The equilibrium distribution functiof?(®) has the follow-  (26) reflects the mass flux due to diffusion.
ing form in generalcf. Appendix B: We can also derive the Euler equation for each species:
foO=]1+ ! (6,—U)-(Uu,—u)|f5eD (229 PadtUst Pols VU= =V D, +p,a,— L pabs
req RO.T (o3 loa a ' 0 TD5t p
X (U,—Uyg), (28
o(eq)_ (ea_u)'u (ea'u)2 . )
fa V= Wapo| 14+ — 2= 2R (22D wherep,=n,kgT=p,R,T is the partial pressure of the
7 v species, and the Navier-Stokes equation:
where coefficient§w,} depend on the discrete velocity set PodiUy+ poly- VU, = — VP, +pav,V2U,+ p,a,
{e,}. For the sake of concreteness and simplicity without
losing generality, we shall restrict ourselves to a nine- 1 peps 29
velocity model on a two-dimensional square latti@2Q9 ™6 p (Uy—uy), (29
mode). In this case,
where the viscosity of the species is
419, «a=0 .
w,= 1/97 a=1—4 (23) Vo= RO'T(TO'_Z)gt' (30)
1/36, a=5—-8 Equation(29) is consistent with the results in R¢#9].
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V. DIFFUSION IN ISOTHERMAL MIXTURES The mass flux of ther species, by definition, is
The difference between the two Navier-Stokes equations i = —u)=—76,pd
. . . . o p(r(u(r U) TpoiPa,,
for individual species ¢ ands) leads to the following equa-
tion: where we have used the identity thatu,—u)=p.(u,
—u,). The continuity equatioKi26) for the o species can be
Pp — written as
U,—Uu,)=— d,—{d6u+V-(udu
7-D‘S'[( G) PaPs { ‘ ( )

_ 1
+ V(v U,—vuy)}, (31) Dot psV UtV jo==56V-(pd,), (37)

where su=(u,—u,), u=12(u,+ uy), V- (udu)=u-Véu whereD=(d;+u- V). By assuming the incompressibility of
+ 8u-Vu, and the diffusion force the fluid (i.e., V-u=0), we obtain the following advection-
diffusion equation for an isothermal mixture:

_pops|( 1
= ppg ( Vp,— —Vpg) —(a,— ag)} Opytu-Vp,=V-7E8pd,, 5=(mp5—3). (39
n n Pop Similar to the Haon correction for the viscosit{61], the
=V<Fg) (F‘T— ?)V Inp+—— (ag— a,) diffusivity is modified by the second-order discrete effect:
pkBT 1 pkBT
N, PoP * e = -] S =——
:V<F g(ag a,) Dios nm,m, ( 70 2) Y nm,m, ook (39
=—d (32) Obviously, the self-diffusion coefficient in the lattice Boltz-
s mann model for ther species is
wherep=nkgT is the total pressure of the mixture, and the KT
total number density is D:'(r:miﬁ; 5. (40)
n=n,+n.= Pa +% (33 The mass concentratiaf and molar concentratiog (di-
o S mensionless order parametease defined as
The diffusion force includes the effects due to the molar (po—po) (n,—n.)
concentration gradier¥ (n,/n), the total pressure gradient p=—T—"2 =T (41)
and the particle mass differencen{—m,)V Inp, and the (p(,+p )’ (ng+ny)
external force §,—a,). d th lated t h oth
It has already been assumed in the derivation of the two‘:jm ey relatec fo each other
fluid equations that derivatives are slowly varying on the (m,—my)+(m,+m,)e
time scale of Maxwellizatiorji49]. Therefore, the terms in- b= (m,+mo)+(m,—m.)e’ (4239
side the curly brackets E431) can be neglected in the dif- 7 T s
fusion time scale. Thus, to the leading order, we have _(m—m,)+(m +m,)d b
PP ® (m§+mo')+(m§_m0')¢.
(u(r_ uq) =~ 7D 5t_d(r . (34) X i . i
PsPs The diffusion force can be written in terms ¢f and ¢:
Also, by definition[53], [Egs. (6.5—74], we have 1 p(1— $?)
R dy=5|Vet(e=4)Vin p+—(ag a,) |-
n
(UO'_ US) = DO’QdO" (35) . . . . . . .
n,ng The nonlinear diffusion-advection equations satisfied¢by
o o . ] and ¢ can be derived from E(38):
thus the mutual diffusion coefficient in the mixture is
1
KeT dp+u-Vop=—-V-(D5Vo+F), (433
Ly (39 ‘ pr Y
g s
. A *
Note that the difference between the above formula and Eq. dio+Uu-Vo= HV-(D¢V¢+ F), (43b
(14) is due to the difference of a factpr,p./p betweenl?®
of Eq. (19b andJ’® of Eq. (5), i.e., where
pops 1 ppd [ p\?  keT p?
TpOt= —. * = —
P o ¢ m,m,\n mym, n T % (443
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diffusion coefficientD};. depends onp, as given by Eq(39)
and it is independent of, and 7.; and (b) when (rp
—1/2)<0, spinodal decomposition or separati@mtidiffu-

sion) between different species in the mixture occyfhe
details of the numerical results will be reported elsewhere.

Df; = pr’,g ot (44b)
F=[(¢—¢)Vp+3p(l—gd)(a—a,)]hd, (440

Azg[u—w) L (Ate)
2| m m

. (44d)

g S

VIl. DISCUSSION AND CONCLUSIONS
Obviously, whenm,=m_, ¢=¢, and then Eq(433 and

Eq. (43b) become identical. We have constructed a lattice Boltzmann model for binary

mixtures with several important features. All the modeling
issues are addressed at the continuum level within the frame-
work of extended kinetic theory. The lattice Boltzmann
As discussed in Sec. Il, short and long time behaviors of anodel is then directly derived from the continuous kinetic
binary mixture involve different Maxwellization and equili- model equations using a formal discretization procedure. The
bration processes. This is reflected in the macroscopic equéattice model thus inherits the sound physics and mathemati-
tions derived in preceding sections. In an initial stégjeort  cal rigor incumbent in kinetic theory. This is in contrast to
time), the diffusion velocity (,—u,) is significant, thus the previous lattice Boltzmann models for mixtur§d2—27,
system is described P(+1) equations, i.e., two sets of which are not directly based on the fundamental physics of
mass and momentum conservation laws for each speciemntinuum kinetic equations. These models rely on fictitious
given by Egs.(26) and (29). As the system equilibrates so interactiong 22,23 or heuristic free energig24—27 to pro-
that the diffusion velocity §,—u,) is diminishing, the phys- duce the requisite mixingMany defects of the free-energy
ics is then described byD(+2) equations: the continuity models[24—27 are due to the incorrectly defined equilibria
equation of the mixture, Eq27), the Navier-Stokes equation [18].) These nonphysical effects present a further problem
for the barycentric velocity of the mixturei, and the since they are not easily amenable to mathematical analysis
diffusion-advection equation for the mgsq. (43a] or mo-  [17,18. The heuristic elements of the previous lattice Boltz-
lar [Eq. (43b)] concentrations. Only in very late stage of mann model§22—-27 have been eliminated, resulting in a
equilibration, the concentration behaves more or less as physically justifiable model that is simple to compute. Fur-
passive scalar. ther, due to the close connection to kinetic theory, the deri-
The Navier-Stokes equation faoris vation of the hydrodynamic equations associated with the
lattice Boltzmann model is significantly simplified and ren-

VI. SHORT AND LONG TIME BEHAVIORS

pdu+tpu-Vu=—Vp+V-II+pa, (45 dered mathematically more rigorous. The derivation of the
wherep=kgT(n,+n.) _ n d hydrodynamic equations from the previous lattice models are
P=Kel(N;TNs), pA= P8, T Psds, AN much less rigorou§22—27,.
The second important feature of the present work is that
H:Z povo[(Vu,)+(Vu,)'] the model is based upon a two-fluid theory of binary mix-
o tures. The previous mode[]49-27,5], on the other hand,
~(pgvg+pgvg)[(Vu)+(Vu)*]. (46) are derived from a seemingly simpler, but highly restrictive,

one-fluid theory. In the single-fluid models with BGK ap-

In the derivation of Eq(45), we ignore two terms: one is proximation one is constrained to use theé hoc “equilib-
(7pD¥.n/R,Tn,n,)V(pd,)?, and the other is in proportion fium velocity” [22,23,5]
of u(u,—u,) due toJ?® [cf. Eq. (C7)]. These terms are
negligible when the mixture is more or less homogeneous.
Also, when the diffusion velocityy,— u.) vanishes, the ap-
proximation in Eq.(46) becomes exact.

Some remarks to place the present work in perspective aii@ the equilibrium distribution functiorig(o) in order to sat-
in order. Unlike most existing lattice Boltzmann models for isfy the local conservation laws. As a result, the viscous re-
binary mixtures[22—27, the mutual diffusion and self- laxation process and the diffusion process are inseparable.
diffusion coefficients of the present model are independent of he analysis of these models therefore becomes unnecessar-
the viscosity.(We note that an existing model proposed byily tedious and cumbersom&2,23. The models with free
Flekkty [20] already has this featupeThe diffusion coeffi- energies24—27 do not yield correct hydrodynamic equa-
cients depend on the relaxation parameigrand relevant tions[17,18, mostly due to the incorrectly defined equilib-
physical properties of the mixture, such as the molecularium distribution functions used in these mod¢lk3,62.
masses of each specimg. andm,, etc. The present model is Furthermore, single-fluid models cannot be applied to mix-
therefore capable of incorporating more general physics. Itures of species with vastly different properties. In the
addition, the present model can simulate both miscible angresent two-fluid model, the diffusion behavior is decoupled

(T§p0u0'+ T(Tp§u§)
(Tspot Tops)

ulea)—

immiscible binary mixtures by changing the sign ofp(
—1/2), i.e., for positive ¢p—1/2), the mixture is miscible,

from viscous relaxation. The diffusivity is determined by the
parameterrp and the physical properties of the mixture. The

and for negative {5, — 1/2), the mixture is immiscible. We model is capable of simulating either miscible or immiscible

have performed numerical simulations to verify th@: the

fluids by changing the sign ofrf—1/2).
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The proposed LBE model for binary mixtures simulatesChapman-Enskog procedure, the temporal derivatives are re-
diffusion by considering a mutual interaction term leading tomoved by using the conservation equations
the diffusion velocity (,—u;), which is directly related to

the diffusion driving force in binary mixtures. The diffusion gp" ==V (pu),
velocity (u,—u,) is of the first order in the density gradient
Vp. This suggests that the proposed model, however, does Ju™ D= —u.Vu+a— EV-P(”),

not include any higher-order terms of the density gradient.
This in turn implies that the proposed model does not have a
surface tension, which is related to the density gradient 9" V=—-V.(eu)+pa-u—V -q"+pPM:Vy,
square|Vp|2. To include the effect due surface tension, the _ . _
terms related tgV p|2 must be explicitly considered. wheree is the internal energy ane=(D/2)nkgT for ideal

To further improve the proposed lattice Boltzmann modeldases, an® and g are the stress tenor and the heat flux,
development of a multiple-relaxation-time model for the hydrodynamical moments, u, ande are computed from the
self-collision term{57—59 that will significantly enhance the (n+1)th iteration solutionf* % but their superscript r(
numerical stability of the schen{®8,59; (b) consideration + 1) are omitted since they are conserved quantities. On the
of models with surface tensioi) inclusion of thermal dif-  other hand, the stress tensdand the heat flu, which are
fusion effects which may be important in combustion appli-not conserved, are denoted with the superscrips they are
cations; and, (d) development of a model for non- obtained from the solution of the previous iteratitify.
Maxwellian molecules. It should be noted that all the In general, the iterative procedure described above is ex-
existing lattice Boltzmann models are only applicable to thePected to converge more rapidly than a procedure of succes-
Maxwell molecules as a direct consequence of the linearizaSive approximation, such as the Chapman-Enskog procedure
tion of the Boltzmann equa‘[ion_ This limitation can be Over-for the Boltzmann equation. The reason is that in the iterative
come by either using a different expansion of the distributiorProcedure thenonlineay integral equation must be solved at
function, or by including the non-Maxwellian effects in the €ach step as given by EA2), whereas in the Chapman-

collision terms. Enskog procedure the integral equation is only solved at the
initial step and at all approximation of higher order only the
ACKNOWLEDGMENTS linearized integral equation is solved.
L.-S.L. is in debt to Professor D. d’Hunmies for his criti- APPENDIX B: THE EQUILIBRIUM DISTRIBUTION
cal comments and insights regarding E@6) and(39), and FUNCTION

the discussion in Sec. VI, is also grateful to Professor V.

Sofonea for sharing Ref51] before its publication. This We consider the equilibrium distribution function of Eq.
work is partly supported by the United States Air Force Of-(17) for o species based on its mass veloaity. The distri-
fice for Scientific Research under Grant No. F49620-01-1bution function can be written in terms of the mixture veloc-

0142. ity u as follows:
_ 2
APPENDIX A: ITERATIVE SOLUTION ex;{ 1wy
OF THE BOLTZMANN EQUATION 2 R,T
We present a short description of the iterative procedure B 1 (£-u)? (§—u)-(u—u,)
[43] to solve the Boltzmann equation - 2 R,T X R, T
D.f=Q[f], (A1) 1 (u—u,)?
Xexpg — E T;T (B1)

whereD,=¢,+ & -V andQ[ f] is the collision term. Ther(
+1)th iteration solutionf"**) is obtained from theth it \vitn the procedure described in Refd,5], 79 of Eq.

. . ( ) . . X ) i
eration solutiorf™ by solving the equation (22b) is the second-order Taylor expansion of the first expo-

Q[f (™ ]=D ™ (A2) nential in_the _right-hand side o_f the apove equality. Because
' the velocity difference —u,) is considered to be a small
subject to the following conservation constraints quantity [49], the second exponential in the right-hand side
of the above equality can be approximated by its first-order
1 1 Taylor expansion:
| g ¢ = [ o 1 MY exfp, (6w (um U= 1+ By(E0) (), (B2
13 3

whereB,=1/R,T. Since the velocity differenceu-u,) is
where f(O=£0)(p(+1) y(n+1) T(M*1)) is the equilibrium small, the third exponential in the right-hand side that de-
distribution function that depends on the hydrodynamicalpends on ¢—u,)? can be neglected in a first-order approxi-
momentsp, u, andT computed fromf("* %), Following the  mation. It should be noted that this term affects the tempera-
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ture difference[cf. Egs. (8b) and (12b)], and must be ©
included if thermal diffusion is important. For the case of 2 T2¥€i€4=RyTpydij+ polilj+ po| (Ug—U)iL;
isothermal mixing considered here the simplifications yield “
the final result of the equilibrium distribution function for u;u;u- (u,—u)
fg“’) given by Eq.(229 after the velocity spacéis properly +(Ug—Uu)ju;— — RT
discretized 4,5]. v
~ RU'Tpa'(sij +pu'uiuj ’ (C3C)
APPENDIX C: CHAPMAN-ENSKOG ANALYSIS
u-(u,—u
In the Chapman-Enskog expansion, we introduce a small >, fg(o)eaieajeakz R, TpsAjjau| 1— u-(Uy =)
parameter (which is the Knudsen numberand @ R,T
f":f”(o)—i-sf”(l)-i--n, (Cl@ +R0Tp0Aijk|(u0_u)|+"'
) ~R,Tpy(8ijUgkt SjkUgi+ Skilgj),
r?t=8(7t +e (9t +"', (Clb)
0 1 (C3d
V—eV. (€19  \where e, is theith Cartesian component of the vecty

The left-hand side of Eq18) is expanded in a Taylor series and
in &, up.to second-order first, and then is substituted with the Ajg =8 St 848y + 8, 8.
expansions of: i j i j

In the second- and third-order moments ©f® in Egs.
(C30 and(C3d), respectively, the terms involving products
=£6D,f7+ %SzﬁtzDaDan_‘_ . of the velocity and the velocity difference are neglected.

“ “ With the substitution of Eg(C2b), Eq. (C20 becomes

fo(xit+e, o, t+6)—fo(x,t)

=e5DOf70 4 825t(gtlfg(0)+ DOfo()
5L, 170+ DOF I+ DO~ 5F )]
+36DODOfoOy 4.

. _ L 5ot fot@ ca
where Eqs(C1) have been substituted, and —T_a[ Dy fo =11 (CH

= . 0)— . . .
D,=d+e, V, and D,'=d +€ V. Therefore, the second-ordg@n &) equation for the mass con-

, . , , . servation is
The first few equations of a set of successive equations in the

order ofe obtained from the lattice Boltzmann equatidr®)

are é’tlpUZEV'

1 pops
™™ P

1

(u(r_ uq)} = zé\tv : pdu’!
(ea_u)'(uo_u) (CZ@ (CS)
R, T ' where the spatial variation of the external force is neglected
1 because it is canceled out by properly setting the velocity

1. (0)f0(0)— _ — fo(1), qos_ change due to the external forcing o= 3ad, in the equi-
80D T, Tgf“ T 0Fa,  (C2D) librium distribution function[63,64.

By construction of the forcing ternfr, [given by Eq.

(190], we have

e f 7= 14

&% 8(ay F O+ DD+ 55D PID V1) =~ Tifg“’ :

(20 > Folui€s=0. (o)
In the Chapman-Enskog analysis, it is assumed that the mu- ‘
tual interaction ternd;* as well as the forcing terd, are of  Therefore, the forcing term has no contribution to the pres-

the first order ine [17,18,63,64 o ~ sure tensor. However, the partial pressure tensor for each
The first few moments of the equilibrium distribution indjvidual species is affected by the cross-interaction term
function f7(®) can be easily computed: J%5 because
§9(0)— o 1 pop
% a Pos (Cga ; \]ageaieaj:_T_D o 5 (Ui5Uj+Uj5Ui)
> 70 =p_u (C3b) Lt S C
= a a— PaYo s RUTUinU' uj, ( 7)
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where su=(u,—u,), and éu;=(u,;—U,). The effect due =— Ta5t[¢9t0( Ry TPy +poUit) + R, T(djp Uy
to J7° is of higher order inu andu,,, and thus can be ne-
glected in the pressure. Consequently, the partial pressure +3ipoUgit 6jV-poUs) ]+ -

tensor can be approximated as the following: ot S[RT(9 put V- p NS+ (potill)
— T 700 e toFo "PoYa) Cij to\FoHit]

Pﬁ(l): 2 fg(l)eai eaj + RG'T( (?jpa'uai + [?ipo'ua-j )] T
~ T(r(stR(rT(&jpau(ri + &ipo'u(rj)l (CS)
— 0)f0(0)a o .
T‘Tatza: Dafa™ eailey where the terms smaller thad(M?) (M is the mach num-

ben are dropped as usugd5]. Therefore,

—_ 70a a e f70g o
- Ta'at ﬁtog fa ealeaj+§ v eafa ealeaj ajPioj-(l)%_TaétRanovzuai . (Cg)
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