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Synchronization in oscillator networks with delayed coupling: A stability criterion
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We derive a stability criterion for the synchronous state in networks of identical phase oscillators with
delayed coupling. The criterion applies to any netwewkether regular or random, low dimensional or high
dimensional, directed or undirecteid which each oscillator receives delayed signals fioathers, wheré is
uniform for all oscillators.
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[. INTRODUCTION wherek is uniform for all oscillators. In particular, the ex-
amples mentioned above—two oscillators, a square grid, a
Networks of oscillators with time-delayed coupling have fully connected graph—are all included as special cases. To
recently attracted attention because of their applications tdlustrate, we depict several connection topologies in Fig. 1
neurobiology[1-3], laser arrayg4,5], microwave devices that, if populated with phase oscillators, would have identical
[6,7], communications satellitel8], and electronic circuits ~stability criteria.

[9], and also because of their inherent mathematical interest Specifically, the model is given by the following equa-
[10-13. tions:
In the simplest models, the oscillators are described by

their phases alone, with amplitude variations neglected. For ) K

example, Schuster and Wagner considered two identical Gi(t):erEZ a;; f(0;(t—7)— 6;(1)), (1)
phase oscillators with delayed sinusoidal couplibiy Then =1

Niebur, Schuster, and Kammenh2] studied a two-

dimensional square grid of identical phase oscillators, eac _ : .
interacting with its four nearest neighbors, and again Coup|eg_equency,K IS the COUP"”9 st_rengthk IS t_he numb_er of
signals each oscillator receivdss the coupling functions

sinusoidally with a time delay. For certain parameter values; X i

their simulations showed that the array settles into a synchrdS the delay, and\ is the total number of oscillators. The
nized state in which all oscillators move in phase at a fixeddiacency matria;; encodes the connection topology: if 0s-
frequencyQ. The stability of this in-phase state was found cillator j sends a signal tg a;;=1; otherwisea;;=0. This
to depend on the values of the oscillators’ natural frequency,
time delay, and coupling strength. Niebefral. suggested a
condition for the stability of the synchronized state, based on
a physical argument, but they did not address the linear sta
bility problem mathematically. The analysis would involve
studying the eigenvalues of an infinite system of linear
delay-differential equations. To gain insight into this class of
stability problems, Yeung and Strogaftzl] began with a
simpler, idealized mean-field model in which each oscillator
is coupled equally strongly to all the others, and derived a

rigorous stability criterion for that special case.
Recently, we tried to extend this analysis to a one-
dimensional chain of phase oscillators, each coupled to its
nearest neighbors. When we did, we were surprised to finc
that the same stability criterion emerged as for the mean-fielc
@ © ®

N

Where6(t) is the phase of theth oscillator, e is its natural

(@ ®) ©

case. This seemed very strange—the dynamics of oscillato
arrays usually depend strongly on the dimensionality of the
underlying lattice, or more generally, on the topology of the , , S
T . . ’ . FIG. 1. E le of I topol d with
array. But as we will show in this paper, for a certain class of, xample of coupling topologiesa) square grid wi

. . o . periodic boundary conditionsk&4), (b) completely connected
connection topologies the condition for stable in-phase SYNgraph k=3), (c) directed graph where each oscillator receives sig-

chronization is independent of the topology. The only con-ai5 from two othersk=2), (d) ring with nearest neighbor and
straint is that each oscillator receives signals friomthers,  next to nearest neighbor coupling=4), () randomly connected
graph k=4), and(f) a tree in which the root node receives a signal
from one of its children K=1). Arrows indicate direction of cou-
*Electronic address: mgel@cornell.edu pling along an edge; edges without arrows are coupled bidirection-
TElectronic address: strogatz@cornell.edu ally.
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matrix defines a directed graph in the sense that oscillatorgeast one of the circle€,, ... ,C,, whereC; has its center
correspond to vertices, and edges correspond to coupling irt the diagonal entri;; and its radius equal to the absolute
teractions between oscillators. Each row in the matrix sumsum along the rest of the row, i.e., the radius is equal to
to k. The time delay can be viewed as arising from the finiteX; .;|b;;|. Applying Gerschgorin’s theorem to the eigenval-
speed of signal transmission between oscillators. The nomes ofA, we find that all the circles are the same with center
malizing prefactor X in the coupling means that each oscil- at the origin, since;; =0 for all i, and with radiuk. There-

lator is influenced equally by its neighbors. The in-phasefore all the eigenvalues & lie within this circle, and hence

synchronized state is given by
6;(t)=Qt, 2

where the collective frequendy is determined implicitly by
the algebraic equation
Q=w+Kf(—Q7), (3)

as found by direct substitution of E€R) into Eq. (1). Our
main result is that this state is linearly stable if and only if

Kf'(—Q7)>0. (4)

II. DERIVATION OF STABILITY CONDITION

We perform a linear stability analysis to determine the

local stability of solution(2) in the standard way by adding a
small perturbation

6i(t)=Qt+edi(t), ©)

where 0<e<1. To first order, the dynamics ab;(t) are
governed by the linear delay differential equation

. K N
H(0=1 (002 alg(t-n-4®].  ©

If Kf'(—=Q7)=0, we have neutral stability at linear order
(in this case, higher-order terms need to be examirfedm
now on, and for the rest of the paper, we assulig
(—Q7)#0. To find an equation for the eigenvaluesf Eq.
(6), we substituteg;(t)=v;e into Eq. (6) and obtain an
exponential polynomial in:

N
k@T[A+Kf’(—QT)]vi=Kf’(—QT)Zlaijvj. (7
=

Let

ker A +Kf'(—Q7)]
o= .

; 8
Kf'(—=Qr) ®
and we write Eq(7) in matrix form

Av=o0v, 9

wherev=(v4, ... vy). From this equation it is clear that
is an eigenvalue oA.

satisfy
|o|<k. (10
Now we rewrite Eq(8) in the following form:
ape'’=er (A +a), (12)

whereo=|ole'?, B=(|o|/k) €[0,1], anda=Kf'(— Q7).

The conditions for local stability of Eq2) come from the
following proposition.

Proposition 1 For all\ that satisfy Eq(11), Re(\)<O if
and only if >0.

To prove Proposition 1, let=r +is and write Eq(11) in
terms of its real and imaginary parts:

apBcogf—rs)e” "=r+a, (12
aBsin(—rs)e” "=s. (13

Squaring and adding the two equations yields
a?B?e 2" =(r+ a)’+5°. (14)

First, we prove the 4) direction of Proposition 1. We
assume, to the contrary, that there exists aatisfying Eq.
(11) such thatr=0, and thate>0. In this casex=|a], r
=|r|, and Eq.(14) becomes

y=14(r2+s2+2|r||a|)/ a?, (15)
where y=g2e27"l. On the one handye[0,1], since B
€[0,1] andr=0; on the other handy=1, with equality
only if r=s=0, i.e.,A=0. This special case corresponds to
an eigenvalue o=k, whose associated eigenvector is
(1,1, ...,1). This eigenvector reflects the rotational sym-
metry of Eq.(1); the system is neutrally stable to perturba-
tions in which each phase is changed by the same constant
amount. This is, however, the only such neutral perturbation;
because the network is assumed to be connected, this eigens-
pace is strictly one-dimensionél4]. Hence, for all other
perturbationsh # 0; and therefore the right hand side of Eq.
(15) is strictly greater than 1, which contradicts the earlier
conclusion thaty<1. Therefore, the ) direction of the
proof is complete.

Now we prove the £) direction of Proposition 1 by
proving the contrapositive. That is, we will show thatdif

Although we cannot calculate the eigenvalues without fur-<0, there existsat least one solution witlr=0. Since here
ther assumptions on the topology of the graph, we can bound= —|«/, Eq. (12 becomes

their locations as follows. Gerschgorin’s circle theorgid]
states that every eigenvalue of a matBx[bj;] lies in at

plale”"=r—|a|, (16)
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FIG. 2. Graphical solution to Eq18).
FIG. 3. Graphical solution to E¢19) for K>0; “@®@” denotes a
where p=— B cos@—1s)e[—1,1]. First consider the case stable state and®” denotes an unstable state.

where O<p<1. Equation(16) can be written as cept. For very small and positive K, the line is approximately

_ —ar vertical and intersects the sine curve once, meaning there is
r=(1+|ple”™)|al. (17) : .
one in-phase synchronous frequeifzy Now as the horizon-

The right hand side of this equation is always positive, sd@l interceptwr is varied, the stability of the synchronous
r>0 for this case: hencall such modes are unstable. Now State periodically changes as the line alternates from inter-

consider the alternative case wherel<p<0. Equation secting the sine curve at a negative slope to intersecting it at
(16) can be written as a positive slope. For largk, the line is approximately hori-

zontal and there are many intersections with the sine curve,

which guarantees that there exists a stable in-phase synchro-
=r—|al. (18 nous state.

By studying this picture further, it is clear that only the

_ ) _ ) extrema of the coupling function are needed to determine
Plotting the left hand side and the right hand side of @8 stanility [16]. Thus, the stability diagrams for coupling func-
versusr, we see there always exists a solution to Btf)  tions f( ) =sin™(6), wherem>0 is odd, are identical since
with r>0, as shown by the intersection of the two curves inthese functions have the same extrema. We plot this stability
Fig. 2. (A negative solution also exists, but is irrelevafihe diagram in Fig. 4. The same diagram was found in R&f]

Tr

~lallple”

(=) direction of the proof is now complete. for a special case of the problem considered here. It is inter-
esting to note that if you alter the coupling function so that
I1l. EXAMPLE the extrema with negative slope in between are closer to-

gether horizontally, the regions of instability K/ versus

To illustrate our results we consider the sinusoidal cou-_t space become thinner.

pling function f(#)=sin(f). The collective frequency) of
the in-phase synchronous state is determined by (Bp. 0.5
which, for this example, can be written as

1 ®
— i Q1)+ 2 =sinQ7). (19 %
K,
®

We graphically display the solution in Fig. 3, as done in Ref.
[15], by simultaneously plotting the left hand side and the
right hand side of Eq(19) versus() 7. The left hand side is
simply a line with slope-1/K = and horizontal intercepb .

Applying the stability criterion4) for positiveK, we see =0
that if the line intersects the positive slope of the sine curve
(denoted by filled circles in Fig.)3the in-phase synchronous
state at that particular frequendy is stable. The state is
unstable if the line intersects the negative slope of the curve, giG. 4. Stability diagram for coupling functiofi 8) = sin™(6),
denoted by open circles. wherem>0 is odd.T=27/w is the natural period of oscillation. In

To gain intuition on how changing parameters affects stathe white regions, one or more stable uniformly rotating synchro-
bility, first fix w, fix 7, and increas&. This corresponds to nous states exist. In the shaded regions, no stable uniformly rotating
rotating the line counterclockwise about its horizontal inter-synchronous states exist.

=1
W
(5]

H|a
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IV. DISCUSSION a;; . In that sense, the same stability condition holds for any

. - ... network in which each oscillator receivksignals, indepen-
Remarkably, the single conditiad) ensures that an infi- dent of all other details of its topology.

nite number of eigenvalues—corresponding to the infinite
dimensionality of th_e delay—dlfft_arentlal_equatlon linearized ACKNOWLEDGMENTS

about the synchronized state—is kept in the left half plane.
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