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Dynamical properties of lasers coupled face to face
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We derive a reduced model to describe two identical lasers coupled face to face. Two limits are introduced
in the Maxwell-Bloch equations: adiabatic elimination of the material polarization and large distance between
the two lasers. The resulting model describes coupled homogeneously broadened lasers, including semicon-
ductor lasers. It consists of two coupled delay differential equations with delayed linear cross-coupling and an
instantaneous self-coupling nonlinearity. The study is analytical and numerical. We focus on the properties of
steady and periodic amplitudes of the electric fields. In steady state, there are symmetric, antisymmetric, and
asymmetric solutions with respect to a permutation of the two fields. A similar classification holds for the
periodic states. The stability of these solutions is determined partly analytically and partly numerically. A
homoclinic point is associated with the asymmetric periodic solutions.
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[. INTRODUCTION moto model[5,6]. Coupled nonlinear oscillators with a time
delay may display multistability7], delay-induced “death”
This paper deals with the nonlinear dynamics of twoin which one oscillator prevents the periodic regime in the
semiconductor lasers coupled face to f@€2P): the output  other oscillatof8], and stochastic resonang®]. Analytical
of each laser is injected, after a suitable attenuation, in thexpressions for the boundaries of synchronized regimes were
other laser. The emphasis will be on the influence of theobtained in Ref[10]. The relevance of these studies to the
unavoidable delay due to the transit time between the twghysics of semiconductor lasers follows from the proof that
lasers. The subject of F2F coupling is not popular in experithe Lang-Kobayashi model for a single mode semiconductor
mental laser physics because the injection of a signal in afaser with external feedbadk 1] can asymptotically be re-
amplifier is a fine source of instabilities which are difficult to duced to a phase equation of which the Kuramoto equation is
control. Few studies have been made for gas or solid-statg particular limitf 12]. This result was extended to an array of
lasers in that configuration. However, with the emergence o§emiconductor lasers, with a systematic study of their syn-
chaos synchronization studies in semiconductor lasers motinronization propertiefl3,14.
vated by the prospect of transmitting coded informafibh In comparison with what is known in the theory of ordi-
two important factors that hampered the study of the F2R,,r and partial differential equations, the mathematics of

COHfIgUI:a..tIOH ha_ve turn_ed out to be useful_sources_ of ne\gﬁelay differential equations are underdeveloped due to the
IF;hsfrlsCZSa) éh(;g{?ndﬁg geslfaggurcee? rffg?ﬁ: Zlenlge twhﬁiéioilgte nherent difficulty associated with their structure. Few results
the perating gire, y . e simple and little is known about generic properties of this
propagation time between the two lasers has conS|derab? f i | i 85, it has b h
influence on the nonlinear dynamics by introducing a new. a>s Of €quations. In a recen Pai) » L Nas been shown
and easily controllable time scale in the system. Its relevanc@at in the_ long dr_elay time limit, th_e two La_ng_—Kobayasm .
is also related to the fact that, for semiconductor lasers, thEAt€ equations, which are the canonical description of a semi-
distance between the two lasers is usually much larger thafPnductor laser with external feedback, may be reduced to a
the laser dimensions. Although the derivation of the modefimpler problem which retains the essential features of the
equations will be quite general and not tied to a particulafull model. That reduced model consists of a single delay
type of |aser’ the choice of values for the parameters in thé|ﬁerent|a| equat|0n W|th delayed |Ineal’lty and Instantaneous
figures will be for semiconductor lasers. nonlinearity. The purpose of this paper is to extend that ap-
Stable localized synchronization of two different semi-proach to the case of two coupled lasers in a F2F configura-
conductor lasers coupled F2F was demonstrated in the peition.
odic and quasiperiodic regim¢&]. More recently, synchro- This paper is organized as follows. In Sec. I, we show
nization of two identical semiconductor lasers coupled F2Rhat, starting with the Maxwell-Bloch equations for two F2F
and operating in a chaotic regime was repoit8fl Some coupled homogeneously broadened lasers, the reference
formal aspects of synchronization in the F2F configuratiormodel is asymptotically obtained ky) adiabatically elimi-
have been considerdd]. nating the material polarizatiofii) by introducing the long
Independently of these studies, which specifically focusdelay time limit. The inherent symmetry of the problem sug-
on semiconductor lasers, there has been a large amount gésts several combinations of the electric fields. They are
research on the influence of the delay in the theory ofeviewed in Sec. IV. The steady state solutions, which are the
coupled nonlinear oscillators with an emphasis on the Kuraequivalent of the external cavity modes of the Lang-
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Kobayashi equations, are analyzed in Sec. V. Hopf bifurcaThe remaining dynamical equatiofiy—(3) become
tions arise on these steady solutions and lead to periodic

regimes which are analyzed in Sec. VI. These analytic results dZ“j ~ ] g%(1+i @j) ~
; ; —=xi| & —1+iA+———N
are complemented by a numerical study presented in Sec. dr | i Ky, (1+ a?) j
VIl and conclusions are drawn in Sec. VIII. e !
Il. DERIVATION OF THE REFERENCE MODEL + et — Téj)l, (4)

We consider two single mode lasers, each of which is

described by the usual Maxwell-Bloch equations for a homo- dN - - 492 -
is in- —A =yl ¥ -N—-———&|1°N;|. (5
geneously broadened laser. The output of each laser is in ar VIl Neq— Vj (1+a:?) Ay
jected in the other laser after a suitable attenuation. The LARER R
Maxwell-Bloch equations couple the intracavity figldwith We assume that the photon lifetimes inside the cavities,
the space average of the material polariza@?mnd inver-  l/k;, are identical. Therefore time can be usefully rescaled
sionf\fj of the active medium ast=«t and T=«/vy) is the dimensionless lifetime of the
carrier within the lasers. Consequently E¢®. and (5) be-
dé; L. , come
EZ_Kj(1_|Aj)gj_|gSj+Kj6j53,j(t,_7'3_]), (1) ~ ) -
d& - i g°(1+ia)) ~
d'Sj _ o iji(1+aj)
— ==y, (1-ia,)S+ig&EN,, (2 ~~
dt, - ! J o +€j(€3,j(t_7'3,j),
d; - e dV; 1. 4> -
—=— (N = Ngg) +2ig(&* S — ST E), (3) ——==| Neg= Nj— ———|&|°N; |.
v N Ned T2100575 7575 dt - TV T gy Qe

with j=1 or 2. Thex; are the damping rates of the two As a last step, we rescale the dynamical variables and the
lasing cavities and the\; are their normalized frequency feedback rates,

detuning. The parameteEﬁ account for the attenuation of = Te(s) _ 2, 9
each field before being injected in the other laser. The finite Ni=N®(1+2N) = (1+2N)) v, k(1 + ) g7,

distance between the two lasers and the finite velocity of

. . S . . ~ 1

light |m'ply thgt the injected fields are dglayed w.|th respect to g, =5a [2 yoy(1+ aj2)5j '
the emitted fields by;=L; /v, whereL; is the optical length g

between lasej and laser 3-j, andv is the light velocity _

between the two lasers. The active medium is characterized €= €\(1+ ajz)/(l-i- ag_j).

by the damping ratey, andy, the atom-field interaction ]
strengthg which is chosen to be real and, is the field- We also define the new parameters
matter frequency mismatch for a solid-state laser or the line ~ ~
enhancement factor for a semiconductor laser. Note that Ne= Nj®(1+2P)), vj=Aj+ay,
there is no generally accepted convention for the siga.of . .
This leads s%metimgs to agparent contradictions. It \?\/ould b hereP; is the Excess pumping ratg above threshold and
easy to generalize these equations to include different ligh e free running frequency of the lageAll this leads to the
velocities in each directions, different light-matter coupling set of equations
parameters, and different material damping rates. Given the :
two asymptotic limits we shall introduce, this would not —’:(1+iaj)N]-5j+iyj€j+ej83,j(t—7-3,]-),
change the structure of the resulting reduced equations. dt

A first asymptotic limit introduced in this problem is
based on the assumption that the polarization is a variable d_M: l N — N e |2

. ) & e [P;—Nj—(1+2N))[&j]7].

that relaxes much faster than the inversion or the field in any a1 7Y S
of the two lasers:y, > y|,x;. We also assume that the dif- .
ference between the two laser frequencies is much smallgy’€se equations have the form of two coupled Lang-

thany, so that the beat frequency is a slow variable. As a<obayashi equations if the; can be interpreted as fixed
result, the material polarization can be adiabatically elimi-constants. Nevertheless, for a pair of solid-state lasersy;the
nated, are still functions of the unknown lasing frequency.

A further simplification is to assume that the two delays
ig(1+ia)~ - are identical, i.e.,;j=73_j=7. Following the analysis in
- 7 N Ref.[15], we introduce a scaling which is useful in the large
Y. (1+a%) delay limit,

S
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With «k=10" and y;=10°, the parametef is equal to
10®. Accordingly, we choser= 7' equal to 16 and 18,
corresponding to a propagation length vacuun of 3 and
30 meters, respectively. The agreement between the bifurca-
tion diagrams obtained witfi/7=10"2 andT/7=0 is very
good.

To make contact with a more standard form of the model
equations, the fields will be described in a reference frame
rotating at the mean velocit = (Q,+Q,)/2. It is useful to
introduce the mean and the mismatch functions

[El

1
XEE(X1+X2),

S =D WA =N W RO =N WK

10

1
ox= E(Xl_ X2),
FIG. 1. Comparing the bifurcation diagrams obtained Tor
small but finite andT/7=0. From top to bottomT/7=0.1,0.01,
and 0. In each diagram, the exterma of the solutions are plotted. F
T/ 7 finite, Eqgs.(7) and(8) are integrated. Fof/7=0, Eqgs.(9) and
(10) are integrated.

wherex is any of the parameterg;,«;,p;, or ;. This
tEads from Eqgs(9) and(10) to the equations

E1=(1+ia)(p—|Ei/?)E + ne '“Ey+ 6F 1 (Ey,Ey),
(11)

Ej:\/;gj,Nj:T./\[j,pj:Pj/T, nj=TEj, . o .

Ey=(1+ia)(p—|Eal)E,+ ne ' PE + 6F,(E,,Ey),

s=t/7, Qj=r1v;. (6) (12
It yields where the function$F, and §F, have been defined as
Ej=(1+ia))NE;+iQEj+ 7Es_j(s—1), (7 8F1(E1,Ep)=i6adpE,+[ 6ne ' E,+i SQE,
T 2 , +6p(1+ia)E +ida(p—|E4|?)E,],

where the dot denotes the derivative with respect to the di-  SF,(E,,E;)=idadpE,—[dne 'CE,+i5QE,
mensionless tims.

A second asymptotic limit is the long delay time limit +6p(1+ia)Ey+ida(p—|E,x*)Eyl.
1/7—0, which leads to a substantial simplification of E8). (14)
since it reduces tdl;=|E;j|?—p; . Inserting this relation into
the field equation$7) leads to Equations(11) and(12) are two cross-coupled delay dif-

ferential equations plus a perturbatiék; which vanishes if
E1:(1+ia1)(pl—|E1|2)E1+i91E1+ ,,lgz, 9) the two lasers are identical. In that case, there is an obvious
analogy with the reduced equation

Ex=(1+iay)(po—|Ex|)E+iQE,+ 7pE1,  (10) E=(1+ia)(p—|E[)E+7e °E (15

with the notationk;(s) =E;j(s—1). S derived in the same long delay time limit from the Lang-
To estimate the validity of the above asymptotic limit, we Kobayashi equationfL5].

constructed numerically the bifurcation diagram of E3.
and (8) for two values of the ratidl/ and the bifucration
diagram of Eqs(9) and (10). The result is shown in Fig. 1.
Starting with =102 and a random initial condition, we An experimental setup has to match the two main hypoth-
integrate over 500 delay times to let the system reach its finases of the present study, as detailed in Sec. Il: the long delay
state. We then record the extrema, that is, the intensities &itnit with respect to the characteristic times constants of the
which their time derivative cross the zero value. Theris  lasers, and negligible retroreflection at the laser mirrors,
slightly increased and the procedure is repeated umtil since we are interested here only in mutual injection and not
=10. Then, we repeat the procedure beginning with10  in feedback effects.

and decreasingy. The numerical time integration used a  The former can be achieved by coupling the two lasers via
modified fourth order Runge-Kutta method with linear inter- a long single mode telecom fiber whose length should be of
polation of the delayed term, which gives a second ordethe order of 10 m if semiconductor lasers are used. More-
overall accuracy. over, unavoidable losses due to propagation effects are not a

IIl. PHYSICAL DISCUSSION
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problem here, since we only need an injection ratio of theRef.[16]. To simplify the algebra, we concentrate on the case
order of a few percent. As a consequence, the use of a neutral=0. We introduce two new complex functions,and Y,
density filter (NDF) is also needed in order to control the defined as

coupling strength between the two lasers.

The latter hypothesis can be fulfilled by placing a anti- S(s)=X(s)e'",
feedback(AF) device between each laser and the fiber. An iws
AF system will be composed, starting from the emitting face D(s)=Y(s)e'*",

of each laser, of a quarter wave plate with its axis oriented a\}vherew is a free parameter. Inserting these definitions in
45° with respect to a polarizer following it. Doing this, light E : '
X ) ) ; gs.(18) and(19) gives

entering parallel to the polarizer will end up perpendicular to
it after a first passage through the quarter wave plate, a re- K= —(1+ia)[(|X]|2+2]Y]2)X+Y2X* ]+ ne—i(mw)y
flection, and a second passage through the quarter wave
plate. Doing this, feedback effects can be suppressed with a —iwX, (20)
very good efficiency of at least 40 dBm.

Another method, proposed in Réf], is to remove the Y=—(1+ia)[(|Y|2+ 2|X[2)Y +X2Y* ]~ ne—i(mw)v
two quarter wave plates and to keep just one polarizer and a

NDF in order to force the lasers to operate on only one —iwY. (21)
polarization. However, retroreflection is no more controlled__, . . . -
in this case. This transformation allows the mapping of periodic and qua-

siperiodic solutions of Eqs(18) and (19) onto steady and

periodic solutions of Eqg20) and(21). As stressed in Ref.
IV. EXPLOITING THE SYMMETRIES [16], this parametric representation is not unique. If
(X(s),Y(s),w) is a solution of Eqs(20) and (21), the one-

. ) parameter family(X* (s),Y*(s),»*) defined by
We explore the dynamic of the system assuming the same

A. Symmetric and antisymmetric functions

set of parameter for both lasers, i.6x=0, so thatdF, X*(s)=ei(“"“’*)sX(s), (22)
=0. This restriction suggests to decompose the fields into
symmetric and antisymmetric combinations, Y*(S):ei(w—m*)sY(s)! (23)
S= E(ElJr E,), (16) wherew* is an a'rbit.rary real number, may also verify Eqs.
2 (20) and (21). This is because all members of the family

(X*(s),Y*(s),w*) correspond to the same physical solution
1 (E4(s),E»(s)). For the steady state solutions of E@20)
D=3(Ei~Ey), (170  and(21), i.e., whenX(s) andY(s) are time independent, it
follows from Eqgs.(22) and(23) that the parametric represen-

: . tation is unique, i.e.w=w* , while if X(s) and Y(s) are
to take advantage of the inherent symmetries of the problemy.™ .~ . . " :
When Eqgs(11) and(12) are expressed in terms 8fandD, n:l'éap;%rrl]odlc solutionse andw™ are only constrained by the

they lead to a pair of coupled equations where the cross
coupling appears only in the nonlinearity, -
w* = w+2k_|_—,
S=(1+ia)(p—|9>)S+ e s P
herek is an integer.
—(1+ia)(2|D|2S+D2S), (19 ~nerexisaninted

) . V. EXTERNAL CAVITY MODES
D=(1+ia)(p—|D|*)D—ne "D , , _
In this section, we analyze the plane wave solutions of
—(1+ia)(2|S°D+S?D*). (19  Egs.(16) and (17), which are the simplest nontrivial solu-
tions of these equations. These periodic states are the steady
The systen{16) and(17) exhibits the usual gauge invariance states of Eqs(20) and(21) in the parametric representation.
under the transformationS(D)— (S€?,De'?), common to  From the structure of these equations, it follows directly that
0ptica| devices without phase Conjugation_ Another SymmeSO'UtionS with the same constant intensity for both fields
try, which is trivial here since the two subsystems are idenmust be either in phase or dephasedrbyin addition, asym-
tical, is the invariance under the permutation of the fieldsnetric modes exist that break the symmetry of the equations.
(S,D)—(S,—D) or (E;,E,)—(E,,E;). Strictly speakingthere are no external cavity modes be-
cause there is no external cavity and therefore no feedback at
all. Still, we use this term to designate the steady state solu-
tions of Egs.(20) and (21) because they are algebraically
To study the bifurcation diagram of Eqd.6) and(17), a  very close to the external cavity modes of a semiconductor
parametric representation of the fields is useful, as shown ifaser with external mirror. The formal analogy stems from

B. Parametric representation
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FIG. 2. Bifurcation diagram of
the external cavity mode solu-
tions. Symmetric modes are in full
lines, antisymmetric modes are in
dotted line, asymmetric modes are
the loops in dash-dotted lines.
Thick lines indicate stable solu-
tions, thin lines indicate unstable
solutions.(a) Q=0; (b) Q= #/2;
(c) Q=m; (d) Q=3n/2. Com-
mon parameters for all figures
=3 and p=0. The insets in(a)
and (c) are focused on the first
asymmetric solution.

IEI

the mutual injection which leads to a generalization of thethe bifurcation point aty,, the first branch of the pair can be
reduced Lang-Kobayashi equatiofi5] which are valid in  expressed agp?,0,.0]=[ e7,/(1+ any),0,7,] provided that
the case of weak feedback, that is if there is only one reflecz= ;,— 5, <1 is positive. The other branch is given by
tion against the external mirror. The other justification for[pi,o,w]:[enk/(l_m]k),o,_ nJ. It should be noticed
using this terminology is that the bifurcation diagram of
these steady states has much in common with the bifurcati
diagram of Eq.(15).

that the first solution is always supercritical while the second
%ranch can be either super- or subcritical, depending of the
sign of 1— an. In a similar way, pairs of AS modes emerge
from the trivial solution from another set of bifurcation
points n,= 7/2+ 2k . The expression qﬁf, for AS modes is
The symmetric external cavity modg$ modes are  the same as the expressiongdffor the S modes. The prop-
(X(s),Y(s),w)=(px.0w). Inserting this definition in Egs. erties of the bifurcations leading to the S and to the AS
(20) and(21) leads to the relations modes are the same. These results are summarized in Fig.
2 2(a). For all the figures@=3 andp=0.
pyx=ncoswt ), 24 For Q=/2, a mixed pair of(S, AS modes emerges at
(25) the origin (o, ) =(0,0) as shown in Fig.®). For <1, the
S mode can be approximated py,,0.w]=[ 7*(1+ a7),0,

A. Symmetric and antisymmetric modes

w=—nlacofw+Q)+sin(w+Q)].

The antisymmetric external cavity modésS modes, de- — 7] and the AS mode by0,p, ,w]=[0,7*(1-a7),7].
fined by (X(s),Y(s),w)=(0,p,, ), lead to the steady state These branches. are bo'th.stable anq sqpercntlcal Qnd they
relations merge at the origin. This is shown in Fig(b3. As #» in-
creases, other mixed pairs emerge from the trivial solution at
p§=— 7 cofw+ ), (26)  the bifurcation pointsy,=k, k being a positive integer.
For those pairs, the S mode can be expresse@bé@,w]
w=rn[acodw+Q)+sinw+Q)]. @7 =lend[1-an(—1)<,0,— n(—1)< and the AS mode by
[0.07, 0]={0,em /[ 1+ and—1)], n(—1)} wheree=17
We first consider the cas® =0. A single branch of ex- — 4, <1. For the parameters=3 andp=0, we havea

ternal cavity mode emerges from a Hopf bifurcationzat > —1/7,. Thus, close to the bifurcation from which they
=0. This solution$ a S mode which is stable in the vicinity emerge, the S modes are supercrititaibcritica) and the
of the bifurcation point where it is supercritical. It can be AS modes subcriticalsupercritical if k is odd (even.
approximated forp<1 by (pi,o,w)z(n,o,—an). Increas- Finally, it follows from the definition of the S and AS
ing the feedback strength, pairs of S modes emerge from modes, Eqs(24) and (25) and Eqgs.(26) and (27), respec-
Hopf bifurcations on the trivial solutiop=0 located atp, tively, that addingr to Q is equivalent to the mode permu-
=3m/2+ 2k wherek is a positive integer. In the vicinity of tation S2AS. Thus the considerations f&=0 and 7/2

036201-5



JAVALOYES, MANDEL, AND PIEROUX PHYSICAL REVIEW E67, 036201 (2003

[E| frequency, wher@ is the integer part oft 7.,/ The curve
0.43 p_2= 7 ?s drawn _in F_ig. 2. It is more visible in the expanded

' view displayed in Fig. &).
0.38 e C. Asymmetric modes

o
Solutions of a differential equation which is invariant un-
0.33 vl der a symmetry group do not necessarily share that symme-
% () try property. In this section, we analyze the existence of

symmetry-breaking steady state solutions, where neither the

0.2 0 .
8.2 0.23 0.26 0.29 n 0 0.05 0.1 0.15 S nor the AS components vanish:
FIG. 3. Expanded view of Fig.(B) for Q= /2 close to the X(8)=px.

origin. (a) Detail of the first loop of asymmetric modédashed-
dotted ling. The thick lines are stable states, the thin lines are
unstable states. There is a small domain of bistability between th
symmetric and asymmetric modes in the upper part of the I@mp.
Merging of the mixed pair of solutions at the origin. The stable
mode is the thick full line, the AS mode is the dashed line which is
stable close to the origitthick dashesand becomes unstable via a
Hopf bifurcation marked by a circle, the emerging periodic orbit is
not drawn. The upper thin line i€|= /% which is the maximum
that the field amplitudes can reach.

Y(s)=p,€'?.

Eor this purpose we use the equivalent representation
s(E1,E5), which leads to simpler expressions. Inserting the
nontrivial asymmetric solution

Ei(s)=p.€'“",
Eax(s)=p,e'“'e'’

into Egs.(11) and(12) and equating real and imaginary parts
apply to Q== and 37/2, respectively, after exchanging leads to
symmetric and antisymmetric modes. In this way, Figs) 2

and(d) are generated from Figs(&@ and (b). In Fig. 2, the p3=1psC0§ 6 (w+Q)], (28
stability off all the steady state branches has been indicated. 5

One more information about the stability appears in that fig- p2=np1C04 0+ (w+Q)], (29)
ure. All branches which emerge subcritically from the trivial 5 _

solution end at a limit point where they acquire a positive 0=wp1+ap;—npsif—(0+Q)], (30
slope. Near the limit point, the new branch of solutions is

always stable and loses stability at a Hopf bifurcation. The 0=wpo+ap3+ npiSin 0+ (w+Q)]. (39
method followed to determine the stability of these solutions ) -

is given in Sec. VII. Equations(28)—(31) are also verified by the S and the AS

modes, for whichp;=p,=p and =0 or m, respectively.
The asymmetric modes are drawn in Fig. 2. Eb+=0 and
B. Extrema 7, the first loop is magnified in the inset. For= /2, a
The maximum steady state intensity allowed by Hgd) maghnification of the loop formed by the asymmetric mode
and (25) and (26) and (27) is eitherpiz n or p§: 7. Itis c_Iosest_to the (_)_rigin is_ di_splayed i_n Fig(aB with an in_dica-
reached for special values of the parameters, sipemdw  tion of its stability. This first loop is somewhat atypical and
must verify Fig. 4 shows the second loop which is the scaled model of all
other asymmetrical loops. Another difference is that all the
w,=—[(2n+ &) 7+ Q], asymmetric loops, except the first one far=7/2, are en-
tirely unstable. IfQ)= /2, there is in the first asymmetric
loop at least one stable branch. Close to the upper end of that
loop, there is little domain of bistability between the asym-
metric and the symmetric branches, as shown in the inset of
where&=0 for the S modes ang=1 for the AS modes. For Fig. 3(a).
these values oy, the phases of the 8\S) modes increase Equations(28)—(31) were solved numerically. As shown
by an even(odd) number of half period during one time lag in Fig. 2, the asymmetric solutions with+0 or 7 and p;
since o= w, implies E;(s—1)=E;(s). These maxima are # p, always emerge from an S or an AS solution, never from
reached by the modes with, <0 if >0 and by the modes the trivial solution. They also do not form isolas, i.e.,
with 0, >0 if #<<0. These relations imply that the maxi- branches of solutions isolated from other branches. This sug-
mum intensity of the S and AS modes are interleaved perigests a perturbative analysis to find the condition of emer-
odically and separated byn=m/«a. The intervalén de- gence of asymmetric modes. Using the invariance of Egs.
pends ona only, while Q) defines the position of the first (28)—(31) under the transformation(6)—(— n,0+ ),
maximum. The intensity difference between two maxima iswe may restrict the analysis to valuestlose to zero, that
equal to the variation ofy: 6l = 6. Therefore in any given is, to the asymmetric modes emerging from the symmetric
interval [ 0,7max] Of n, there will bep modes with negative external cavity modes. The solutions branching from the AS

Nh=—ow,la,
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FIG. 4. Expanded view of the second loop in Figa)2 There
are two steady bifurcations at; and z,. The full line is the un-
stable steady state. For the field amplity&, there is a degen-

eracy: the upper trace refers eitherEg(#) or E,(— 6) and the
lower trace refers to eithdg,(6) or E,(— 6), respectively.

modes are simply deduced by changindgnto — 7. We de-
fine a small parameter and a vicinity of the bifurcation by

n= 10+ €57,
6=0+ €50+ 0(€?),
w=wy+ 28w+ 0(ed),
p1=po+ €dp+0O(e?),
p2=po—€dp+O(e?).

From Egs.(28)—(31) we have, up to first order, the fol-
lowing system:

0=lg+ el +0O(€?), (32
0=1y—€l,+0O(€?), (33
0=Hg+eH,+0(€?), (34)
0=Hg— eH;+0(€?), (35)

where thel; andH; are defined as
l0=p5— 70pCOK wo+ 1), (36)

11=3p58p — 1ol 36poSin wo+ Q) — SpeCOg wo+ )],
(37)

Ho={wopo+ 7ol @ cOL wo+ Q) +sin(wo+ Q) ] po}, @9

Hi=wgdp+ 1o{ 86 a sin(wg+ Q) —cog wy+ Q)] pg
—8placodwy+ Q) +sin(wy+Q)]}. (39

The structure of Eq$32)—(35) implies that the solution is
lj=H;=0. The solution ,=H=0 is nothing else than the
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Sincel;=H;=0 is a homogeneous system of two equations
involving the two variablesid and 6p, we impose the van-
ishing of the determinant of this system in order to have
(66,6p)#(0,0) at ordere. Using the property ,=H,=0

we find that the condition to be verified to have an asymmet-
ric mode emerging frm a S branch is

2ol asiw+Q)—cofw+Q)]+wtan w+Q)=0.
(40)

For the asymmetric branches emerging from the AS modes,
the condition is

2ol sin(w+Q)—cogw+Q)]—wtan w+Q)=0,
(41)

with 7 and w verifying Egs.(26) and(27).

One of these asymmetric solutions is displayed in Fig. 4
for Q=0. In the domainy> 74, the solution is symmetric
and the two fields have equal amplitudes. At the first bifur-
cation pointy= #7;, the amplitude of one of the fields grows
as the other decreases while the phase difference becomes
nonzero. At the second bifurcation point, locatedyat 7,,
both moduli are again equal and the phase shift between the
fields vanishes again. The system being invariant under a
permutation of the two fields, there is another symmetry
breaking solution obtained from the permutatle=E,. It
generates the same loop for the moduli Butshould be
changed into— 6. All the branches displayed in Fig. 4 are
unstable. This is not true for Fig(& where the bifurcation
diagram is calculated faf) = 77/2. Between the two bifurca-
tion points (p;<#n<7n,, the S mode is unstable and the
asymmetric mode is stable. Moreover, there is a small do-
main where both the S mode and the AS mode coexist as
stable solutions.

VI. PERIODIC SOLUTIONS

A. Characteristic equation

In the previous sections, we have discussed the steady
state solutions of Eqs(20) and (21). As the feedback
strength 7 increases, all branches eventually become un-
stable via a Hopf bifurcation. In this section, we focus on
these bifurcation points. We seek the conditions for a peri-
odic solution of Eqs(20) and(21) to emerge from a steady
states external cavity mode. For that purpose, we assume that
the periodic solution is emerging foa S mode. The AS
case is treated in exactly the same way. We perform a mul-
tiple time scale analysis in the vicinity of the Hopf bifurca-
tion as follows. We define the small parameter &§<1 as
the deviation from the steady state

n=1no+ €0,
and the slow time scale
2

o= €"S.

Treating the two times as independent, the differential opera-

locus of the S mode and is verified at the bifurcation point.tor is decomposed using the chain rule

036201-7



JAVALOYES, MANDEL, AND PIEROUX
d 2
ds= dst+ €79, .

With these definitions, th& andY components of the fields
in the parametric representation, E¢20) and (21), can be
expanded in powers aof

X(8,0)=Xo+ €X;(s,0) + €X5(S,0) + . . .,
Y(s,0)=0+ €Y (s,0)+ €2Y(S,0)+ .. ..

At order zero, Eqs(20) and (21) lead to the steady state
solution (26) and (27). The first order ine leads to the dif-
ferential equations

AX 1= _(1+ia)[2|xo|2X1+X§X’{]+ nefi(Qer)Yl
dsY1=— (1+ia)[2|Xo|2Y 1+ X2Y*]— pei(@Fe)y,

At the Hopf bifurcation, we seek solutions & (s,0) and

PHYSICAL REVIEW E67, 036201 (2003

If wy is nonzero, it follows from Eq(26) that p,= 7%
=w=0. Thus, this necessary condition is verified only at the
origin of the bifurcation diagram where it is also sufficient.
Everywhere else, the vanishing of one determinant implies
that the other determinant does not vanish.

B. Phase relations in the vicinity of the Hopf bifurcations

We have to distinguish two cases: eitherMét;) =0 and
detM(— 7)#0 or deM(— »)=0 and dewvi(»)#0.

If det M(7%)=0, (py (0),p, (0)) is an eigenvector of
M(7). Since detM(—7)#0, we have(p, (0),p, (7))
=(0,0) and therefor&/'(s,0)=0. The two fields are iden-
tical up to first order ine, i.e., E;(s,0)=E,(s,0)+O(€?)
with

Ei(s,0)=S(s,0)+D(s,0)+0(€) (46)

={Xo+ €Xy(s,0)}e' S+ {0+ €Y,(s,0)}€'“S

+0(€?)

:{px+é[p:'(o_)eins_,r_px—(o_)e—inS]}eiws

Y1(s,0) describing undamped oscillations on the fast time

scales and amplitudes varying on the slow time scale
X1(8,0) = py (7)€ M+ py ()€™ W, (44)
Yl(S,O')Zp;(O')eins'f' p;(o)e_i"’Hs. (45)

The compatibility condition for a nontrivial solutig@4) and
(45) factorizes into a product of two determinants

det M(n)det M(—7)=0.

M(= ) are matrices defining thg, and pj coefficients.

The factorization of the compatibility condition is obvious
since Eqs(42) and(43) are independent. This independence
is a property of the field’'s decomposition into symmetric and

antisymmetric components. The determinaniAdf ») is
detM( ) =[i(w+wy)+2(1+ia)pi— e (T oten)]
X[—i(w—wp)+2(1—ia)pi—ne@Feomen)]

—(1+a?)p}.

+0(€?).

If det M(—7)=0, (p;(a),p;(a)) is an eigenvector of
M(—7n) andX,(t,o)=0. This implies that the two fields

Ei(s,0)=95(s,0)+D(s,0)
={putelpy (0)€' W+ p, (o)e ' *w]}eles

+0(€?), (47)

Es(s,0)=95(s,0)—D(s,0)
={px—elpy (0)€' v+ p, (o)e w]}ele

+O(62),

oscillate with a phase mismatch

E,(s,0)e'?=E; +0(€?)

T
S+7H,0'

Let us show that the two determinants cannot vanish si-

multaneously. It is easy to verify that datl(») and
det M(— ») are second order polynomials i

det M(* 7)=A*=Bn+C»?

whereA, B, andC are complex functions o, wy ,a,pi,
and (). A necessary condition to have d&t(=»)=0 is
B=0. Using the steady state relatiof@6) and (27), the
conditionB=0 becomes

wycoy Q)+ w)=0,

o Sin(Q+w)+27n=0.

with ¢= o/ wy .

Therefore Hopf bifurcations can occur on symmetric
modes to give symmetric periodic solutiof#6) as in Ref.
[15]. However, symmetry breaking bridges of periodic solu-
tions (47) can also emerge from perfectly synchronized
states. This requires that the two lasers start to describe the
same periodic trajectory in the phase space but with a phase
mismatch. As there are only two eigenvalues which cross the
imaginary axis, the only way for the system to break the
symmetry is via such a phase mismatch. Straightforward cal-
culations show that the above results still hold at the second
order ine.
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C. Two modes approximation and the bridges formation IEI
mechanism

Bridges connecting steady solutions with the same sym- 0.75
metry have been analyzed in R¢L7] and this analysis is
applicable here without significant modifications. We extend
this analysis to study bridges that connect symmetric and 0.5}
antisymmetric solutions. LdE(s) andE,(s) be written as

Ei(s)=S(s)+D(s), 0.25}

E,(s)=5(s)—D(s),

with %5 3 35 2 n
S(s)zpsei @S, FIG. 5. Comparison between the analytical approximattbm
line) and the numerical resu(thick line) for the bridge connecting
D(s)=p dei wgs. a symmetric and an antisymmetric steady state. The ufipeer)
part of the bridge emerging from the steady states is the maximum
The nonlinear term in Eqg11) and(12) are (minimum) amplitude of the periodic solution. Full line: symmetric

_ _ steady state. Dashed line: antisymmetric steady state.
|El?E1=ps€' | pel 2+ 2| pal 1+ pae' | pal >+ 2] ol °]

+h.h. otic solutions are not drawn on this diagram. They cannot be
’ obtained from this algorithm.
E.|12E,= p.ei®sS 24 20 p.[21= p.eiS@ds 24902 From the originp= =0, a stable steady state emerges.
[Bal"Eo=ps s Tlpal"+ 2lpal") = ps [lpdl™+2lpd"] If Q=0 or , that steady state is unique. It is symmetric for
+h.h., Q=0 and antisymmetric fof)=. If Q=m/2 or 37/2, a

pair of symmetric and antisymmetric solutions emerge. They
where h.h. stands for higher order harmonics. Equating thgre both stable very close to the oridiRig. 3(b)]. For Q
term ine's® ande'“® in Egs.(11) and(12) separately gives = 7/2 (respectively 3/2), it is the AS (respectively $
the two complex equations mode that becomes unstable first via a Hopf bifurcation. The
coexistence of stable solutions emerging from the same bi-
furcation point results from the degeneracy of all the bifur-
cations of the trivial solution, as analyzed in REf5].
Pd- Branches of periodic solutions usually form bridges, as
shown in Refs[17,19. These bridges can connect either
branches of the same symmetly to S and AS to Ag or
branches of different symmetridS to AS. In Fig. 6, the
bridges of periodic solutions should not be confused with the
loops of asymmetric steady state solutions which already ap-
pear in Fig. 2. The mechanism which generates these bridges
of periodic solutions has been described in REfZ,19. In

fwgps=—(1+ia)|pd®+2|pgl?1pst e (7 dpg,

iwgpa=—(L+ia)[|pdl®+2|pd*1pa— ne ("

Assumingpspq# 0, a further simplification is
lps|?=7[2 cogQ+wg) +cogQ+wy)1/3, (49
|pdl®=n[2 co$Q+wg) +cog N+ wy)/3, (49

0=ws+ 7] @ coLQ + wg) +SiN(Q+ ws) ], (50

0=wq— 7l cOLQ+ wy) +Sin(Q+ wgy]. (51) |EI
Figure 5 shows that the agreement between the analytical 3
result (48)—(51) and a numerical simulation is very good. 2.5t
Note that this approximation breaks down if the two frequen-
cieswg and wy are too close of each other, i.e., if combina- 2r
tion tones can interfere with eithess or wy. 15l
VIl. NUMERICAL RESULTS 1t
We have analyzed numerically the reference model using 0.5t
a continuation algorithm adapted to delayed differential
equations[18]. This leads to a bifurcation diagram of all O0 5 4 6 8 n

steady and periodic solutions of Eq20) and(21). Figure 6
shows the bifurcation diagram including all steady and peri- FIG. 6. The complete bifurcation diagram for the steady and the
odic solutions, with an indication of their stabilitithick  periodic external cavity mode solutions with=0. Same graphical
lines). More complex solutions such as quasiperiodic or chaconvention as in Fig. 2.
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(=] : : : : : , 161
~ 1.5}

0.3t
1.4}
0.2 1.3}
1.2}

0.1}
1.1}
0 : : : : ' - 11

28 29 3 31n 32 33 34 M
FIG. 7. Birth of a bridge of periodic solutions connecting a g4 s . . . . . L L L .

symmetric and an antisymmetric bridg€l)()=107/20; (2)Q 0 0.2 04  y1. 06 0.8 1
=117/20; (3)Q2 = 127/20; (4)Q) = 147/20. Steady and periodic so-
lutions are all unstables in this figure. FIG. 9. Profile of the homoclinic connection in terms of the

intensity of the two fields. The period of the solution T,
Ref.[15], a mechanism of bridge destruction has been found=2000.

that leads from bridges of periodic solutions to open

branches of periodic solutions. All these results apply to thisssymmetric solutiongcounting from the origina Hopf bi-
problem, without any change, to bridges connecting solufyrcation, indicated by a little circle in the figure, produces a
tions of the same symmetry. We show in Fig. 7 that thepranch of periodic solutions with,; # E,+# 0. The amplitude
mechanism of bridges formation can be extended to thgf the oscillations grows from zero at the bifurcation until
mixed periodic solutions connecting an S and an AS modene homoclinic point Wher& = E, mi, and where the pe-
This bridge can emerge only at a point where the S and A$joq diverges. ' '

modes coincide. This is the case {(s) =E(s)=0 only. Although there is no obvious fit of the numerical solutions
As Q=g+ m/2 ande—0", the two Hopf bifurcations lim- gisplayed in Fig. 9, the decomposition of the solutions in
iting the bridge of periodic solutions on the S and ASterms of thdS| and® functions displayed in Fig. 10 is very

branches approach the axi|=0 and ate =0 they merge \ye|l approximated by classical soliton profiles
with the Hopf bifurcations from which the S and the AS

branches emerge. Thus fer—0" four Hopf bifurcations

- . Z . t—t
coincide, while fore—0" there are only two Hopf bifurca- |S|=Ap+A,| 1—tank? 0”,
tions. This indicates the complexity of the bifurcation point Th
at Q) =x/2.
Another feature of the periodic solutions found in the ref- t t—t
erence problem(20) and (21) is the occurrence of a ho- q>S_A2+A3tank(l>_
moclinic solution. Figure 8 shows the vicinity of a ho- T Th
moclinic point for =0. From the second loop of
]
1.141F
IEI T 11k
1.25 1,max 10° 1.09f
1'08_ 1 1 1 1 ]
1of _ 0 0.2 0.4 06 08 14T,
-~ IDI
1.15 - o
’ 1,min 0.2
1.1 o0 - “l . . . . .
0 0.2 0.4 06 08 1
1.05 2,max 2
05+
~ 0
2,min I 05 ) ) ) ) ,
2141 216 218 22 214) 216 2.18 22 ) 02 0.4 06 08 1
L™ n M, n
FIG. 10. Same as in Fig. 9 but in terms of the S and AS com-
FIG. 8. Vicinity of the homoclinic solution ag,, for Q= r. ponents of the fields.
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However, there is no simple approximation f@| because and asymmetric solutions. The properties of the symmetric
its profile is too asymmetric. We did not pursue the search ofolutions are similar to those of the Lang-Kobayashi equa-
a good fit further since the branch of periodic solutions andions in the long delay time limit and have already been

its homoclinic limiting point are anyway unstable. studied in Ref[15]. They are not repeated here. With minor
changes, the same analyses apply also to the antisymmetric
VIIl. CONCLUSION solutions and therefore they are also not presented here. The

_ _ ) new feature of the coupled Egd.l) and(12), compared to

In this paper, we have studied a model for single modene single delay differential equation studied in Rés], is
lasers coupled in a F2F configuration. The model can benerefore the asymmetric solutions which can be of two dif-
derived from the Maxwell-Bloch equations, assuming thatferent kinds, either steady state loops or periodic bridges.
the material polarization can be adiabatically eliminated and |t js seen in Fig. 6 that even if the bifurcation diagram is
that the two lasers are far away from each other. In additionsestricted to steady and periodic solutions, it is extremely
each laser is assumed to be pumped close to the lasingmplex. Although most of the solutions are unstable, it is
threshold of the isolated laser. The resulting equations argecessary to draw them to understand the origin of the stable
Egs.(11) and(12). The same equations are obtained in thepranches. This is especially clear with the branches of steady
same large delay limit for semiconductor lasers coupled F2Fstate emerging subcritically from the trivial solutions as un-
There is also the implicit assumption that any refection of &staple solutions. All these branches become stable over a
beam from the incoupling mirror of the other laser is eitherfinite interval of the scaled feedback paramejeabove the
negligible or canceled by a dedicated setup. This can bfmit point. The other reason to display that bifurcation dia-
achieved, for instance, with polarized light. o ram is more pedagogical: it is to show how the addition of

This paper focuses on the properties of the periodic a”&ven a small linear but delayed term in an ordinary differen-
quasiperiodic solutions of Eqél1) and(12). The analysis is  jg) equation can deeply change its properties.
made possible because these solutions correspond to the

steady and periodic solutions of a set of equations obtained

fr.o.m Egs.(11) and(12) by a uni_tary trgnsformation. In gd_— ACKNOWLEDGMENTS

dition, we have found a homoclinic point and solutions in its

vicinity are also described. Much of the analysis is numeri- We wish to acknowledge useful discussions with Koen
cal, though analytic results are presented whenever possibEngelborghs. This research has been supported by the Fonds
and new. The solutions for identical lasers coupled F2F cailational de la Recherche Scientifique, the Interuniversity At-
be classified according to their symmetry properties under &raction Pole Program of the Belgian government and a
permutationE;=E,. There are symmetric, antisymmetric, Marie Curie grant of the European Union.

[1] G. D. VanWiggeren and R. Roy, Int. J. Bifurcation Chaos (1999.

Appl. Sci. Eng.9, 2129(1999. [11] R. Lang and K. Kobayashi, IEEE J. Quantum ElectrQf-
[2] A. Hohl, A. Gavrielides, T. Erneux, and V. Kovanis, Phys. Rev. 16, 347(1980.
Lett. 78, 4745(1997. [12] P. M. Alsing, V. Kovanis, A. Gavrielides, and T. Erneux, Phys.
[3] T. Heil et al,, Phys. Rev. Lett86, 795 (2001). Rev. A53, 4429(1996.
[4] J. K. White, M. Matus, and J. V. Moloney, Phys. Rev6B,  [13] G. Kozyreff, A. G. Vladimirov, and P. Mandel, Phys. Rev. Lett.
036229(2002. 85, 3809(2000.
[5] Y. Kuramoto, Chemical Oscillations, Waves and Turbuence [14] G. Kozyreff, A. G. Vladimirov, and P. Mandel, Phys. Rev. E
(Springer, Berlin, 198)4- 64, 016613(200])

[6] S. H. Strogatz, Physica @43 1 (2000.
[7] S. Kim, S. H. Park, and C. S. Ryu, Phys. Rev. L&8, 2911
(1997.

[8] D. V. R. Reddy, A. Sen, and G. L. Johnston, Phys. Rev. Lett.
80, 5109(1998. Phys. Rev. B63, 036211(2001).

[9] S. Kim, S. H. Park, and H.-B. Pyo, Phys. Rev. L&2, 1620 [18] K. Engelborghs, Technical Report No. TW-305, K.U. Leuven,
(iggg o ’ o ’ ' ' Leuven, Belgium(unpublishegl

[10] M. K. Yeung and S. H. Strogatz, Phys. Rev. L&3®, 648 [19] D. Pierouxet al, Phys. Rev. Lett87, 193901(2001).

[15] D. Pieroux and P. Mandélinpublishedl
[16] B. Haegemaret al, Phys. Rev. 66, 046216(2002.
[17] D. Pieroux, T. Erneux, T. Luzyanina, and K. Engelborghs,

036201-11



