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Dynamic critical behavior of the XY model in small-world networks
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The critical behavior of th&X'Y model on small-world network is investigated by means of dynamic Monte
Carlo simulations. We use the short-time relaxation scheme, i.e., the critical behavior is studied from the
nonequilibrium relaxation to equilibrium. Static and dynamic critical exponents are extracted through the use
of the dynamic finite-size scaling analysis. It is concluded that the dynamic universality class at the transition
is of the mean-field nature. We also confirm numerically that the value of dynamic critical exponent is
independent of the rewiring probabili§y for P=0.03.
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I. INTRODUCTION II. XY MODEL ON WS MODEL NETWORK

L In the WS model for the small-world netwo[R], a regu-
. In recent years, there has been a surge of gctlwt)_/ n t_h?ar network is first constructed by arrangihgvertices in a
field of complex networks among statistical and 'merd'sc'pl"one—dimensional circular topology and connecting each ver-
nary physicistd1]. Quite naturally, various spin models of iy t4 % neighbors. Then one goes through each edge one at
statistical mechanics have been _studied on an underlying time, and with the rewiring probability detaches the far
complex netword2—4]. These studies serve a twofold pur- gige of the edge and reconnect it to a randomly chosen other
poses: First, they aid studies of the static network structure,grtex (with the restriction that loops and multiple edges
In many real-world situations, the network structure is aNmust not be forme)'j In this manner, a small-world network
underlying infrastructure for a dynamical system, and nonwith the sizeN is constructed with the model parametérs
trivial effects can emerge from the interplay between theand P. This procedure is illustrated in Fig. 1. The former
dynamical system and the netwdi]. Second, such studies parametek is not believed to give any significant change of
of spins systems on complex networks can illuminate thehe network structure fok>1, and thus we fixk=3
properties of the spin model itself in certain extreme situathroughout the paper.
tions. For example, both the Ising aixdr models can dis- The XY model consists of planar spins interacting through
play a critical behavior similar to high dimensional regular the Hamiltonian
lattices with a very low density of couplingsr edges in the
network between spin§2,3]. 1
One of the most central complex network models is the H=—2 Jijcos 6,— 6)), (1)
Watts-Strogatz(WS) model of small-world networkg6]. 2 7]
Briefly, this model is controlled by a parameter(the “re-
wiring probability”), and by tuningP from O to 1 one goes . .
from regular to random networks. The interesting region is/N€"€¢ € () at vertex is the spin angle, correspond-
that of intermediaté® where the network is clusterdtias a ng to the phase of the superconducting ordgr_ parameter in
. . - . . the Ginzburg-Landau theory of superconductivity. The cou-
high density of short circuits, or more specifically, triangles pling matrix J;; is given by
and a logarithmically increasing average path lengtie N
path length of a pair of vertices is the smallest number of
intervening edges In the XY model, each vertex is associ- (@)
ated with a two-dimensional spin angle. TH& model has
mostly been used to study phase transitions in superconduc
ors and superfluids, while it was also applied to, e.g., the
formations of bird flockg7]. The static properties of theY
model in the WS network have been studied 3}, where
critical exponents characteristic of a mean-field transition
have been found at any n_onze_r_o vaIuerfI_n the present FIG. 1. The construction of a Watts-Strogatz model network.
paper, we study thelynamic critical behaviorof the XY ope starts from a regular one-dimensional lattieg For every
model on the WS small-world network with focus on the yertex(we consider the black vertex specificallgne goes through
dynamic critical exponent. the edges on one sidéor the black vertex these are dashethen,
with probability P one detaches the other efiy) and reattaches it
(c) with the condition that no loop&dges starting and ending at the
*Electronic address: medv@tp.umu.se same vertexor multiple edges must be formed.
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For example, in theXY model on a two-dimensional square 0.6 [- 800 + 1
lattice where only nearest vertices interact, we haye:0 ;ggg:
except wheri andj are nearest neighbors. For convenience, ~ @ 04T 6400 |
we measure the temperatufen units of J/Kg . 02k |
Ill. SHORT-TIME RELAXATION METHOD or A B - Ml
AND SCALING ANALYSIS s . . .
. , o . o 100 200 300 400
To investigate the dynamic critical behavior of ther IN-Z

model on the WS network, we use the so-called “short-time

relaxation method,” which utilizes the relaxation behavior of ~ FIG. 2. Short-time relaxation d for P=0.2 atT=T.=2.23.

the system towards equilibrium from the a nonequilibriumQ is shown as a function of the scaling variabiNe ?. z=0.52(1) is
initial state. By use of this method, several critical exponentdound at the best data collapéee the Appendjx

have been successfully determined for the Ising mggléel,

for unfrustrated and fully frustrated Josephson junction arsection method: Starting from the fully phase ordered non-
rays[10], and for the classical Heisenberg spity model  equilibrium state,Q decays from 1 to O as time proceeds.
[11]. The major advantage of the short-time relaxationFor timest, where 6<Q(N,T,t)<1, we can fix the param-
method(compared to dynamical simulations in equilibrium etera=tN~Z to a constant for giveiN andz. ThenQ has

is the running time saved from the avoidance of equilibra-omy one scaling variableT(— TC)Nl/? and can thus be writ-

tion. _  ten as
The Monte Carlo(MC) scheme is based on the Hamil- -
tonian(1) and the standard metropolis local update algorithm Qa(T,N)= F(a,(T—TC)Nl’V). (5)

[12,13. The key quantity we measure[i8,14]
N If now we plot Q with fixed a as a function ofT for various
2 3 N, all curves should have a unique intersection poinf at
9 “= cosi(t) ’ ) =T,.. Finally, we can check the consistency by using the full
scaling form to collapse the data for different temperatures
where the timet is measured in units of one MC sweep, and networks sizes onto a single scaling curve in the variable
(---) is the average over different time sequences from th¢T—T )N at fixeda=tN 2. In addition, this is a consis-
same starting configuration, and average over different ”eE'ency check of the value of the static expongnt
work configurations, denoted ljy - - ], should also be taken. 14 giscuss the finite-size scaling in more detail, the form
Here the sign function sgrf measures the sigri(1) of x.  (5) js pased on the assumption that there is only two length
The ‘initial configuration is chosen a§;(0)=0, giving  scales in the system: the network side(or the number of
Q(0)=1, and Q(t—)=0 since in equilibrium (—=)  yertices in the netwoikand the correlation volumé,, di-
there is no preferred angle direction. We chose the trial anglgerging atT... However, it is known that in the small-world
60=/6; the motivation is that it is sufficiently small in petwork there is an additional spatial length scale related
order to obtain good convergence rate of the quantity W&yith the distance between shortcut end points, givery by
measure while it is big enough to make simulations [f&8{. =(kP)~! [17]. Accordingly, in the presence of the three
In order to obtain the dynamic critical exponent and de'competing scalesN, &, and?), the finite-size scaling func-

tect the phase transition, we use the finite-size scaling of thﬁon should take the forny(t/NZ &, /N, /N) [17,18. Here
guantityQ. Close to the critical temperatuile., one expects we aim to use sufficiently Iargé s\g/stéms o ,ucr.w Iarge,r

that’\:? af|:'||te—tsr:zed styste;nttr]he chara}cttgrlst|c tlnfrm:ales_?s than ¢ (but, as we will see, this is difficult for smaP),
~N?_while the ratio of the correlation volumé,~| where x(t/N%&,/N,{/N) may be approximated as

t?]gcsCalitr? t?fn(s:gstfénlzli?qglves the second argument of x(t/N?%,&,/N,0). This leads to the above mentioned scaling
9 ' : forms (4) and(5) without .

Q(t)=

— z /v

QUL TN =FE/NS(T=TINT), @ IV. SIMULATION RESULTS
where F(x4,X,) is the scaling function with the property We exemplify the critical behavior o® for WS model
F(O'XZ): LAt TC_' where the secgnd Sca"”g variable van-.nyorks withP=0.2. This value is quite representative for
ishes, the dynamic exponenis easily determined from Eq. g P values of our simulations, buias we will discuss later
(4) by the requirement that thQ(t) curves obtained for smallp requires larger system sizes, longer times series, and
different sizes of the networks collapse onto a single curvgnore averages. Figure 2 shows the finite-size scaling of the
when plotted against the scaling varialtld™*. It is also  short-time relaxation given by E¢4) which atT, turns into
possible to determin&_ from Eq. (4) by applying an inter- the simple form
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FIG. 3. Finite-size scaling of the short-time relaxatiorQivith
P=0.2 and aff=2.18, 2.20, 2.21, 2.23, 2.25, and 2.27. The inset
an intersection plot with fixed/L*=a and (z,a)=(0.52,3.0); this
is consistent withT .~2.23, while the main part of the graph dis-
plays the full scaling oQ=F(t/N%(T—T,)L"") with the mean-  displays the dependence of critical temperafliréobtained

FIG. 4. The dynamic critical exponemtas a function of the
rewiring probabilityP. The inset showind . as a function ofP is

consistent with Fig. 4 in Ref.3]. The dashed line ig=0.54.

field value ofy=2 Ref.[3]. as discussed aboyeponP and is consistent with what has
been obtained from static M{3].
Q(t) =F(t/N*,0) (6) V. SUMMARY
with the only one scaling variab®NZ. In Fig. 2 (as well as In conclusion, we have studied the dynamic critical be-

for all otherP and T values, we have performed a sample havior of theX’Y model on WS model networks by means of
average over 100 independent runs for 200 different networkynamic Monte Carlo simulations. We have used the short-

realizations. Instead of leaving bathand T, as free param- time relaxation method, based on the relaxation from a non-
eters, we usd, obtained from static MC simulatiors]. equilibrium state, and determined the critical temperature

Figure 2 dlsplays the best collapse onto a single curve in dc. the dynamic critical exponerzt as well as the static

broad range of the scaling variabibi~Z with z=0.521),  correlation-volume exponent. The dynamic critical expo-
where the number in the parenthesis is the error in the lastent was determined to kze=0.54(3) for the networks with

digit (how z is obtained is described in detail in the Appen- rewiring probability P=0.03, while the static critical expo-

dix) [19]. Just as for static quantitidg] the obtainedz is nent was found to be~2.0. We believe that this result will
consistent with higher dimensional regular latticés=¢ to  hold for anyP>0 but that the system size needed to confirm
be precisg wherez=0.5 is expected16]. this diverges a®—0. The exponent, as well as two oth-
However, the above method presunagsriori knowledge ~ €rs, critical exponenta and 8 of the specific heat and mag-
of T,. To check out the consistency of determinatioriTpf ~ Netization, respectively, have been obtained in R&ff. The
one can use an intersection method described in Sec. Ill. lobtained value=2, 8=1/2, anda=0, which also have
the inset of Fig. 3, we displa@) as a function ofT for  been shown to be independent from the valu® oéstablish
different network sized\ with a fixed value ofa=tN~%?in  the mean-field nature of the transition X\ model on WS

the first argument of the scaling form in E@). We find a  hetworks. The result of the present paper support this picture
unique crossing point & =T,=2.23 andz=0.52. In some and since the upper dimensionality for the mean-field theory
=2 52. .

caseg(typically for smallP values, the T, has to be slightly 1S d=4, oné can conclude that the phase transitioXi
altered(from the values of Ref3]) to get both the collapse model on WS networks is in the same universality class as a

and intersection plots of Fig. 3 correct. We then psndT regular lattice of dimensionalitg=4.
. ’ ' . ¢ An interesting observation is that for a regular hypercubic
estimated as above to make the full scaling plot @ias 9 g yp

. . . . lattice, this behavior requires a number of edges larger than
displayed in the main n part of Fig. 3. A very smooth collapse8N whereas in our simulations we have much feweki(3

here is obtained withy=2.0 which is again consistent with edges; and most probabky=2 (giving 2N edges gives the
Ref. [3]. _ _ same behavior. We also note that there is no additional criti-

The procedure described above f8=0.2 is then re- 3| pehavioinducedby the WS model other than the transi-
peated for various values &f to obtain Fig. 4. As one can tjon from linear (“large-world”) to logarithmic (small-
see, except folP=<0.03, z=0.54(3) [20] throughout the world) behavior in average geodesic length Ribecomes
broad range oP. We believe that the nature of the transition finite.

(and hencg) is independent oP for all P>0. The larger

values ofz for smallP is a result of a failure of the assump-
tion that we can neglect the length scdlesince N>¢ This work was partly supported by the Swedish Research
(~1/P) cannot be valid for smalP. The inset of Fig. 4 Council through Contract No. 2002-4135. B.J.K. was sup-

ACKNOWLEDGMENTS

036118-3



MEDVEDYEVA et al. PHYSICAL REVIEW E 67, 036118 (2003

ported by the Korea Science and Engineering Foundatiofherex;(z') is the set of all numerical values ofl 2 and

through Grant No. R14-2002-062-01000-0. thus depends on the value of chosen.(Note thatt and
hence,x are discrete variablesNow it is clear that if the
segmentation can be done so t@atan be reasonably well

This appendix concerns the estimatiorzdfom data col- ~ @PProximated by the line segmergst bix, i.e., if Q(x) is
lapses as illustrated in Fig. 2. The problem we are faced witismooth enough, then=min, A(z') will converge to the cor-
is that we are looking for a collapse over a large range ofect value as the number of samples &hgd,are increased.
x=tN~Z, and that the functional form d®(x) is not easily The remaining consideration is how to choose the seg-
expressed on a closed form or in low degree series exparentation. In general, one needs the segments large enough
sions. To get around this problem, we partition fh@nge in  to get a small error in the linear regression, and small enough
Ngeg SEgmMentsX;, 1<i=<Ngyg and fit a line & +b;x, x  for the line-segment approximation to be feasible. In prac-
e X;) to theQ point set within each segme(uf. [21]). Then tice, the method seems to be rather insensitive for the parti-
we sum the square of the deviations from the lines tion method. We choose to partition the whole range of
segments of equal length, withs.=30. The minimization
A(?)= 2 2 (Q(x)—a—bx)2,  (AL) of A is conveniently done by a Newton-Raphson method
0==Nseg xe Xi(2') [22]. The error inzis calculated by jackknife estimati¢@3].
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