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Dynamic critical behavior of the XY model in small-world networks

Kateryna Medvedyeva,1,* Petter Holme,1 Petter Minnhagen,1,2 and Beom Jun Kim3
1Department of Physics, Umea˚ University, 901 87 Umea˚, Sweden

2NORDITA, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
3Department of Molecular Science and Technology, Ajou University, Suwon 442-749, Korea

~Received 28 November 2002; published 24 March 2003!

The critical behavior of theXY model on small-world network is investigated by means of dynamic Monte
Carlo simulations. We use the short-time relaxation scheme, i.e., the critical behavior is studied from the
nonequilibrium relaxation to equilibrium. Static and dynamic critical exponents are extracted through the use
of the dynamic finite-size scaling analysis. It is concluded that the dynamic universality class at the transition
is of the mean-field nature. We also confirm numerically that the value of dynamic critical exponent is
independent of the rewiring probabilityP for P*0.03.
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I. INTRODUCTION

In recent years, there has been a surge of activity in
field of complex networks among statistical and interdiscip
nary physicists@1#. Quite naturally, various spin models o
statistical mechanics have been studied on an underl
complex network@2–4#. These studies serve a twofold pu
poses: First, they aid studies of the static network struct
In many real-world situations, the network structure is
underlying infrastructure for a dynamical system, and n
trivial effects can emerge from the interplay between
dynamical system and the network@5#. Second, such studie
of spins systems on complex networks can illuminate
properties of the spin model itself in certain extreme sit
tions. For example, both the Ising andXY models can dis-
play a critical behavior similar to high dimensional regu
lattices with a very low density of couplings~or edges in the
network! between spins@2,3#.

One of the most central complex network models is
Watts-Strogatz~WS! model of small-world networks@6#.
Briefly, this model is controlled by a parameterP ~the ‘‘re-
wiring probability’’!, and by tuningP from 0 to 1 one goes
from regular to random networks. The interesting region
that of intermediateP where the network is clustered~has a
high density of short circuits, or more specifically, triangle!
and a logarithmically increasing average path length~the
path length of a pair of vertices is the smallest number
intervening edges!. In the XY model, each vertex is assoc
ated with a two-dimensional spin angle. TheXY model has
mostly been used to study phase transitions in supercond
ors and superfluids, while it was also applied to, e.g.,
formations of bird flocks@7#. The static properties of theXY
model in the WS network have been studied in@3#, where
critical exponents characteristic of a mean-field transit
have been found at any nonzero value ofP. In the present
paper, we study thedynamic critical behaviorof the XY
model on the WS small-world network with focus on th
dynamic critical exponent.

*Electronic address: medv@tp.umu.se
1063-651X/2003/67~3!/036118~4!/$20.00 67 0361
e
-

g

e.
n
-
e

e
-

e

s

f

ct-
e

n

II. XY MODEL ON WS MODEL NETWORK

In the WS model for the small-world network@6#, a regu-
lar network is first constructed by arrangingN vertices in a
one-dimensional circular topology and connecting each v
tex to 2k neighbors. Then one goes through each edge on
a time, and with the rewiring probabilityP detaches the far
side of the edge and reconnect it to a randomly chosen o
vertex ~with the restriction that loops and multiple edg
must not be formed!. In this manner, a small-world networ
with the sizeN is constructed with the model parametersk
and P. This procedure is illustrated in Fig. 1. The form
parameterk is not believed to give any significant change
the network structure fork.1, and thus we fixk53
throughout the paper.

TheXY model consists of planar spins interacting throu
the Hamiltonian

H52
1

2 (
iÞ j

Ji j cos~u i2u j !, ~1!

whereu iP(2p,p) at vertexi is the spin angle, correspond
ing to the phase of the superconducting order paramete
the Ginzburg-Landau theory of superconductivity. The co
pling matrix Ji j is given by

FIG. 1. The construction of a Watts-Strogatz model netwo
One starts from a regular one-dimensional lattice~a!. For every
vertex~we consider the black vertex specifically!, one goes through
the edges on one side~for the black vertex these are dashed!. Then,
with probability P one detaches the other end~b! and reattaches it
~c! with the condition that no loops~edges starting and ending at th
same vertex! or multiple edges must be formed.
©2003 The American Physical Society18-1
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Ji j 5Jji 5H J if ~ i , j ! is an edge

0 otherwise.
~2!

For example, in theXY model on a two-dimensional squa
lattice where only nearest vertices interact, we haveJi j 50
except wheni and j are nearest neighbors. For convenien
we measure the temperatureT in units of J/kB .

III. SHORT-TIME RELAXATION METHOD
AND SCALING ANALYSIS

To investigate the dynamic critical behavior of theXY
model on the WS network, we use the so-called ‘‘short-ti
relaxation method,’’ which utilizes the relaxation behavior
the system towards equilibrium from the a nonequilibriu
initial state. By use of this method, several critical expone
have been successfully determined for the Ising model@8,9#,
for unfrustrated and fully frustrated Josephson junction
rays @10#, and for the classical Heisenberg spinXY model
@11#. The major advantage of the short-time relaxati
method~compared to dynamical simulations in equilibrium!
is the running time saved from the avoidance of equilib
tion.

The Monte Carlo~MC! scheme is based on the Ham
tonian~1! and the standard metropolis local update algorit
@12,13#. The key quantity we measure is@9,14#

Q~ t !5F K sgnS (
i 51

N

cosu i~ t !D L G , ~3!

where the timet is measured in units of one MC swee
^•••& is the average over different time sequences from
same starting configuration, and average over different
work configurations, denoted by@•••#, should also be taken
Here the sign function sgn(x) measures the sign(61) of x.
The initial configuration is chosen asu i(0)50, giving
Q(0)51, and Q(t→`)50 since in equilibrium (t→`)
there is no preferred angle direction. We chose the trial an
du5p/6; the motivation is that it is sufficiently small in
order to obtain good convergence rate of the quantity
measure while it is big enough to make simulations fast@13#.

In order to obtain the dynamic critical exponent and d
tect the phase transition, we use the finite-size scaling of
quantityQ. Close to the critical temperatureTc , one expects
that in a finite-sized system the characteristic timet scales as
t;Nz̄, while the ratio of the correlation volumejV;uT
2Tcu2 n̄ to the system sizeN gives the second argument o
the scaling function@3,14–16#:

Q~ t,T,N!5F„t/Nz̄,~T2Tc!N
1/n̄
…, ~4!

where F(x1 ,x2) is the scaling function with the propert
F(0,x2)51. At Tc , where the second scaling variable va
ishes, the dynamic exponentz̄ is easily determined from Eq
~4! by the requirement that theQ(t) curves obtained for
different sizes of the networks collapse onto a single cu
when plotted against the scaling variabletN2 z̄. It is also
possible to determineTc from Eq. ~4! by applying an inter-
03611
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section method: Starting from the fully phase ordered n
equilibrium state,Q decays from 1 to 0 as time proceed
For timest, where 0,Q(N,T,t),1, we can fix the param-
eter a5tN2 z̄ to a constant for givenN and z̄. ThenQ has
only one scaling variable (T2Tc)N

1/n̄ and can thus be writ-
ten as

Qa~T,N!5F„a,~T2Tc!N
1/n̄
…. ~5!

If now we plot Q with fixed a as a function ofT for various
N, all curves should have a unique intersection point aT
5Tc . Finally, we can check the consistency by using the f
scaling form to collapse the data for different temperatu
and networks sizes onto a single scaling curve in the varia
(T2Tc)N

1/n̄ at fixeda5tN2 z̄. In addition, this is a consis
tency check of the value of the static exponentn̄.

To discuss the finite-size scaling in more detail, the fo
~5! is based on the assumption that there is only two len
scales in the system: the network sizeN ~or the number of
vertices in the network! and the correlation volumejV di-
verging atTc . However, it is known that in the small-world
network there is an additional spatial length scale rela
with the distance between shortcut end points, given bz
5(kP)21 @17#. Accordingly, in the presence of the thre
competing scales (N, jV , andz), the finite-size scaling func-
tion should take the formx(t/Nz̄,jV /N,z/N) @17,18#. Here,
we aim to use sufficiently large systems withN much larger
than z ~but, as we will see, this is difficult for smallP),
where x(t/Nz̄,jV /N,z/N) may be approximated a
x(t/Nz̄,jV /N,0). This leads to the above mentioned scali
forms ~4! and ~5! without z.

IV. SIMULATION RESULTS

We exemplify the critical behavior ofQ for WS model
networks withP50.2. This value is quite representative f
all P values of our simulations, but~as we will discuss later!
smallP requires larger system sizes, longer times series,
more averages. Figure 2 shows the finite-size scaling of
short-time relaxation given by Eq.~4! which atTc turns into
the simple form

FIG. 2. Short-time relaxation ofQ for P50.2 atT5Tc52.23.

Q is shown as a function of the scaling variabletN2 z̄. z̄50.52(1) is
found at the best data collapse~see the Appendix!.
8-2
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Q~ t !5F~ t/Nz̄,0! ~6!

with the only one scaling variablet/Nz̄. In Fig. 2 ~as well as
for all other P and T values!, we have performed a samp
average over 100 independent runs for 200 different netw
realizations. Instead of leaving bothz̄ andTc as free param-
eters, we useTc obtained from static MC simulations@3#.
Figure 2 displays the best collapse onto a single curve
broad range of the scaling variabletN2 z̄ with z̄50.52(1),
where the number in the parenthesis is the error in the
digit ~how z̄ is obtained is described in detail in the Appe
dix! @19#. Just as for static quantities@3# the obtainedz̄ is
consistent with higher dimensional regular lattices (d>4 to
be precise!, wherez̄50.5 is expected@16#.

However, the above method presumesa priori knowledge
of Tc . To check out the consistency of determination ofTc ,
one can use an intersection method described in Sec. II
the inset of Fig. 3, we displayQ as a function ofT for
different network sizesN with a fixed value ofa5tN2 z̄ in
the first argument of the scaling form in Eq.~4!. We find a
unique crossing point atT5Tc52.23 andz̄50.52. In some
cases~typically for smallP values!, theTc has to be slightly
altered~from the values of Ref.@3#! to get both the collapse
and intersection plots of Fig. 3 correct. We then usez̄ andTc
estimated as above to make the full scaling plot forQ as
displayed in the main part of Fig. 3. A very smooth collap
here is obtained withn̄52.0 which is again consistent wit
Ref. @3#.

The procedure described above forP50.2 is then re-
peated for various values ofP to obtain Fig. 4. As one can
see, except forP&0.03, z̄50.54(3) @20# throughout the
broad range ofP. We believe that the nature of the transitio
~and hencez̄) is independent ofP for all P.0. The larger
values ofz̄ for smallP is a result of a failure of the assump
tion that we can neglect the length scalez since N@z
(;1/P) cannot be valid for smallP. The inset of Fig. 4

FIG. 3. Finite-size scaling of the short-time relaxation ofQ with
P50.2 and atT52.18, 2.20, 2.21, 2.23, 2.25, and 2.27. The in

an intersection plot with fixedt/Lz̄5a and (z̄,a)5(0.52,3.0); this
is consistent withTc'2.23, while the main part of the graph dis

plays the full scaling ofQ5F„t/Nz̄,(T2Tc)L
1/n̄
… with the mean-

field value ofn̄52 Ref. @3#.
03611
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displays the dependence of critical temperatureTc ~obtained
as discussed above! uponP and is consistent with what ha
been obtained from static MC@3#.

V. SUMMARY

In conclusion, we have studied the dynamic critical b
havior of theXY model on WS model networks by means
dynamic Monte Carlo simulations. We have used the sh
time relaxation method, based on the relaxation from a n
equilibrium state, and determined the critical temperat
Tc , the dynamic critical exponentz̄, as well as the static
correlation-volume exponentn̄. The dynamic critical expo-
nent was determined to bez̄50.54(3) for the networks with
rewiring probabilityP*0.03, while the static critical expo
nent was found to ben̄'2.0. We believe that this result wil
hold for anyP.0 but that the system size needed to confi
this diverges asP→0. The exponentn̄, as well as two oth-
ers, critical exponentsa andb of the specific heat and mag
netization, respectively, have been obtained in Ref.@3#. The
obtained valuesn̄52, b51/2, anda50, which also have
been shown to be independent from the value ofP, establish
the mean-field nature of the transition inXY model on WS
networks. The result of the present paper support this pic
and since the upper dimensionality for the mean-field the
is d54, one can conclude that the phase transition inXY
model on WS networks is in the same universality class a
regular lattice of dimensionalityd>4.

An interesting observation is that for a regular hypercu
lattice, this behavior requires a number of edges larger t
8N, whereas in our simulations we have much fewer (3N)
edges; and most probablyk52 ~giving 2N edges! gives the
same behavior. We also note that there is no additional c
cal behaviorinducedby the WS model other than the trans
tion from linear ~‘‘large-world’’ ! to logarithmic ~small-
world! behavior in average geodesic length asP becomes
finite.
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APPENDIX: DETERMINATION OF z

This appendix concerns the estimation ofz̄ from data col-
lapses as illustrated in Fig. 2. The problem we are faced w
is that we are looking for a collapse over a large range
x5tN2 z̄, and that the functional form ofQ(x) is not easily
expressed on a closed form or in low degree series ex
sions. To get around this problem, we partition thex range in
Nseg segmentsXi , 1< i<Nseg, and fit a line (ai1bix, x
PXi) to theQ point set within each segment~cf. @21#!. Then
we sum the square of the deviations from the lines

L~ z̄8!5 (
0< i<Nseg

(
xPXi ( z̄8)

~Q~x!2ai2bix!2, ~A1!
n

.

k
s

S

e

.

03611
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whereXi( z̄8) is the set of all numerical values oftN2 z̄8 and

thus depends on the value ofz̄8 chosen.~Note that t and
hence,x are discrete variables.! Now it is clear that if the
segmentation can be done so thatQ can be reasonably wel
approximated by the line segmentsai1bix, i.e., if Q(x) is

smooth enough, thenz̄5minz̄8L(z̄8) will converge to the cor-
rect value as the number of samples andNseg are increased.

The remaining consideration is how to choose the s
mentation. In general, one needs the segments large en
to get a small error in the linear regression, and small eno
for the line-segment approximation to be feasible. In pr
tice, the method seems to be rather insensitive for the p
tion method. We choose to partition the whole range ofx in
segments of equal length, withNseg530. The minimization
of L is conveniently done by a Newton-Raphson meth
@22#. The error inz is calculated by jackknife estimation@23#.
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