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Critique of q-entropy for thermal statistics
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During the past 12 years there have been numerous papers on a relation between entropy and probability
which is nonadditive and has a parameterq that depends on the nature of the thermodynamic system under
consideration. Forq51 this relation corresponds to the Boltzmann-Gibbs entropy, but for other values ofq it
is claimed that it leads to a formalism that is consistent with the laws of thermodynamics. However, it is shown
here that the joint entropy for systems havingdifferent values ofq is not defined in this formalism, and
consequently fundamental thermodynamic concepts such as temperature and heat exchange cannot be consid-
ered for such systems. Moreover, forqÞ1 the probability distribution for weakly interacting systems does not
factor into the product of the probability distribution for the separate systems, leading to spurious correlations
and other unphysical consequences, e.g., nonextensive energy, that have been ignored in various applications
given in the literature.
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I. INTRODUCTION

In 1988 a relation between entropy and probability
thermal statistics was proposed by Tsallis@1#, which is non-
additive and depends on a parameterq that is presumably
determined by the nature of the thermodynamic system
der consideration. For the special caseq51, this relation
reduces to the Boltzmann-Gibbs entropy, but for other val
of q it is claimed that thisq-entropy leads to an alternativ
formalism that is ‘‘entirely consistent’’ with the laws of the
modynamics@1–6#. It will be shown, however, that this
claim is not valid, because the total entropy of thermod
namic systems that are in thermal contact is not even defi
in this formalism for the case where systems ha
q-entropies withdifferentvalues ofq. As a consequence, th
fundamental concepts of temperature and heat exchang
tween such systems cannot be introduced in this formula
of thermodynamics unlessq is a universal constant. But eve
in this case, maximizing theq-entropy of the combined sys
tems leads to unphysical results unlessq51. In particular,
for qÞ1 the resulting joint probability for states of weak
coupled systems is not the product of the individual pro
abilities, and as a consequence the total energy of the c
bined systems is not the sum of the mean energies of e
system, although the additivity property is assumed to
satisfied by the individual microstates. This nonaddit
property of the mean energy in theq-entropy formalism is
manifestly incorrect, and not surprisingly leads to unphysi
results, but the consequences have been ignored in va
applications ofq-entropy in the literature, as will be illus
trated in some of the examples discussed here.

The definition ofq-entropy for a thermodynamic syste
with microstates labeled by indexi is given by@1–4#
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Sq5k
S 12(

i
pi

qD
~q21!

, ~1!

wherek is a constant,q is an undetermined parameter, an
the quantitiespi are positive numbers that satisfy the cond
tion ( i pi51. In the limit q→1, one recovers the
Boltzmann-Gibbs form of the entropy

S152kB(
i

pi ln~pi !, ~2!

wherek5kB is the Boltzmann constant. In this special ca
pi is the probability for the occurrence of thei th microstate,
and this identification has been extended to the caseqÞ1.
This extension, however, is not valid as can be seen from
definition of mean values for physical quantities associa
with the q-entropy. For example, the internal energyUq is
given by the form

Uq5( Pie i , ~3!

where e i corresponds to thei th energy eigenvalue of the
system andPi5pi

q/( j pj
q . The quantitiesPi are called ‘‘es-

cort’’ probabilities in theq-entropy literature, but according
to the conventional definition of mean value in statistic
thesePi ’s are the actual probabilities for the states of t
system. Hence forqÞ1 thepi ’s introduced in the definition
of q-entropy, Eq.~1!, are devoid of any physical meaning
and are just functions of the probabilitiesPj according to the
relation

pi5Pi
1/q/S (

j
Pj

1/qD . ~4!

For values ofqÞ1, theq-entropy expression introduce
in Eq. ~1! is shown to be nonadditive by the following argu
ments @1–4#. Suppose that two thermodynamic systemsA
andB are weakly coupled or are the subsystems of a lar
©2003 The American Physical Society14-1
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system, andassumethat the joint probabilities for the state
of the combined system are the products of the probabili
for the states of the individual systems. As we shall see l
on, this fundamental factorization property is not satisfied
the q-entropy formalism, but surprisingly this fact has be
ignored in the literature. According to Eq.~4!, we then have

pi , j
AB5pi

Apj
B . ~5!

Substituting this form into the expression forq-entropy, Eq.
~1!, one obtains the relation

Sq~AB!5Sq~A!1Sq~B!1~12q!Sq~A!Sq~B!/k. ~6!

However, this nonadditive relation for theq-entropy leads
immediately to a difficulty in the interpretation ofSq as an
expression for the thermodynamic entropy@7#. Since weak
coupling means that the energy eigenvalues of the comb
systems are essentially additive, we have

e i , j
AB5e i

A1e j
B , ~7!

and, according to Eqs.~3! and ~5!, the total mean energy
Uq(AB) of the combined system is also additive:

Uq~AB!5Uq~A!1Uq~B!. ~8!

Assume now that the combined system is isolated, w
there is an infinitesimal exchange of energy between syst
A and B. Then the variationsdSq(AB)50 and dUq(AB)
50, which implies that

dSq~A!

11~12q!Sq~A!/k
52

dSq~B!

11~12q!Sq~B!/k
~9!

and

dUq~A!52dUq~B!. ~10!

Combining these two equations, one finds that

@11~12q!Sq~A!/k#T~A!5@11~12q!Sq~B!/k#T~B!,
~11!

whereT(A) andT(B) are the absolute temperatures defin
by the standard thermodynamic relation

]S

]U
5

1

T
. ~12!

For two systems in thermal contact, these two temperat
should be equal, but according to Eq.~11! this applies only if
q51. This problem is not unexpected, because tempera
should be anintensivequantity, but this is not possible in
formalism where the energy is additive, Eq.~8!, while the
entropy does not satisfy this property. To avoid this proble
it has been proposed@4,8–10# to redefine absolute tempera
ture as the quantity
03611
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Tq5@11~12q!Sq /k#T, ~13!

in which case the condition for thermal equilibrium,Tq(A)
5Tq(B), is satisfied by Eq.~11!. But this definition of tem-
perature, which must be universal, cannot be extended
systemsA andB that are described byq-entropies withdif-
ferent valuesqA and qB . In this case theq-entropy of the
combined system, which is characterized by the quanti
pi , j

AB , Eq. ~5!, is not defined in terms of these twoq param-
eters. Following theq-entropy formalism, one would have t
introduce a new parameterq8 for the q-entropy and energy
of the combined system, but then these thermodynamic v
ables cannot be expanded in terms of the corresponding
ables for the component systemsA and B @11,12#. Instead,
according to Eq.~6!, the q-entropy of the combined system
would be given in terms ofpseudo-q-entropies for systemsA
andB with the samenew parameterq8, and a similar prob-
lem would occur with the expansion of the total energy, E
~8!, i.e.,

Sq8~AB!5Sq8~A!1Sq8~B!2~12q8!Sq8~A!Sq8~B!/k
~14!

and

Uq8~AB!5Uq8~A!1Uq8~B!. ~15!

Consequently, the concepts of thermal equilibrium, tempe
ture, and heat exchange cannot be formulated for such
tems. For example, no meaning can be attached to the s
ment that a system described by the Boltzmann-Gi
entropy is in thermal equilibrium with a system described
q-entropy with qÞ1. In other words, a Boltzmann-Gibb
thermometer would not be able to measure the tempera
of a q-entropic system, and the laws of thermodynam
would therefore fail to have general validity@13#.

It follows that the parameterq must be auniversalcon-
stant, just like the Boltzmann constantk, which is applicable
to all systems in thermodynamic equilibrium. Ifq is univer-
sal, a thermodynamic formulation for an infinitesimal reve
ible transfer of heatdQ can be given between systemsA and
B, with

dQ5T~A!dSq~A!52T~B!dSq~B!, ~16!

corresponding to an exchangedUq(A)52dUq(B) in the
internal energy of these systems. But one is faced with
problem that in this case the temperatureT(A) is not equal to
T(B), which violates a fundamental principle of thermod
namics for systems in thermal equilibrium. Moreover, t
corresponding differentialsTq(A)dSq(A) andTq(B)dSq(B)
associated with the proposed redefinition of absolute te
perature, Eq.~13!, do not have any physical significance.
principle, this problem can be solved@14# by introducing a
different form Sq

R for the q-entropy in the thermodynamic
relation for the temperatureTq , so that
4-2
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]Sq
R

]Uq
5

1

Tq
. ~17!

From the definition ofTq given by Eq.~13! it follows that

Sq
R5

k

~12q!
ln@11~12q!Sq#. ~18!

This alternative expression for theq-entropy was introduced
by Rèyni @15# in the form

Sq
R5

k

~12q!
lnS (

i
pi

qD , ~19!

which is additive@16#, as can be verified by substituting fo
the pi ’s the form in Eq.~5!.

However, there are additional problems with either
these two definitions ofq-entropy, even whenqA5qB5q.
Maximizing such entropy functions subject to the constra
of constant energy, Eq.~3! yields theq-probability distribu-
tion @1–4#

pi}@12~12q!bde i #
1/(12q), ~20!

wherede i5e i2Uq , Uq is the mean energy, Eq.~3!, andb is
a parameter related to the inverse temperature. It is clear
the corresponding distributionpi , j

AB for the combined system
AB does not factor into the productpi

Apj
B even when the

energies of the microstates are additive, Eq.~7!, unlessq
51. For example, to first order inq21 @17#, one finds that

p~e i
A1e j

B!5p~e i
A!p~e j

B!@11~q21!b2~de i
Ade j

B!#.
~21!

In the limit q51, Eq. ~20! reduces to the Boltzmann-Gibb
exponential form for the probability@18#,

pi}exp~2e i /kT!, ~22!

whereb51/kT. As is well known, this canonical distribu
tion follows uniquelyfrom the factorization requirement tha

p~e i
A!p~e j

B!5p~e i
A1e j

B!. ~23!

The Boltzmann-Gibbs form for the entropyS, Eq. ~2!, then
follows from the assumption that

S5(
i

f ~pi !, ~24!

where the functionf (p) is determined uniquely. Applying
the thermodynamic definition of temperature,]S/]U51/T,
and the Boltzmann-Gibbs definition of the probability dist
bution, Eq.~22!, one obtains the relation

(
i

pi~e i2U !Fd f~pi !

dpi
1kln~pi !G50. ~25!

Hence

f ~pi !52kpi ln~pi ! ~26!
03611
f
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provided f (1)5 f (0)50, which corresponds to the require
ment that the entropy vanishes atT50.

II. UNPHYSICAL PROPERTIES RESULTING
FROM APPLICATIONS OF q-ENTROPY

TO THERMODYNAMIC SYSTEMS

To illustrate the consequences of disregarding such b
considerations, I would like to call attention to some u
physical results, left unmentioned in the literature, that f
low from recent applications ofq-entropy to some well-
known thermodynamic systems. For example, many pap
have been published on the application ofq-entropy to black-
body radiation@19–26#. After laborious analysis and numer
cal computations, the authors in Refs.@23–25# find that for
qÞ1 there are deviations from the well-known Stefa
Boltzmann law, which states that the radiation energy
pends on the fourth power of the temperature@27#. But since
Boltzmann derived this result from purely thermodynamic
reasoning, without any statistical assumptions about the f
of the entropy, it seems at first sight strange that suc
deviation can occur in a formalism that is supposed to sat
the laws of thermodynamics. The explanation is that a
consequence of the nonextensivity property of theq-entropy
formalism, the blackbody energy as well as the entropy
not dependent linearly on the volume of the cavity, as w
originally assumed by Boltzmann. Hence, theq-energy den-
sity and theq-entropy densitydepend on the volumeV of the
cavity, although there is no comment concerning this u
physical property in any of theq-entropy calculations in
Refs. @19–26#. As follows from simple dimensional argu
ments, the volume dependence must be given by a dim
sionless parameterV/a(T)3, wherea(T) is a characteristic
length that can depend only on the temperatureT. From sta-
tistical mechanics we learn thata(T)5(\c/kT) in fact cor-
responds to the mean thermal wavelength of the blackb
photons. Moreover, expansions in a power series of this
rameter which have been applied to fit the cosmic ba
ground radiation@19–26# are nonsensical, because in th
casea(T) is of order 1/10 cm while the cavity volumeV has
cosmological dimensions. On purely thermodynam
grounds it can also be shown that if the temperature dep
dence of the blackbody energy density were to have the f
u}T41d, then the Maxwell-Boltzmann relationp5(1/3)u
for the thermal radiation pressurep would lead to a power
law volume dependenceu}Vd/3, and correspondinglyU
}T(T3V)11d/3, in accordance with our previous dimension
argument. Similarly, one finds thats}Vd/3 for the entropy
density. But unlessd50, such a volume dependence is i
compatible with Kirchhoff’s law which states that the rat
of emissivity to absorption of radiation in the walls of th
cavity must be a universal function of the temperature a
the frequency of the radiation. These properties are requ
in order that such a cavity reach thermal equilibrium. H
torically, this law was the original basis for the universali
properties of blackbody radiation that culminated in Planc
famous derivation. Finally, the application ofq-entropy to
blackbody radiation forqÞ1 @19-26# violates also the well-
known detailed balance relation for the emission and abs
4-3
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tion of radiation deduced by Einstein in 1917, with conje
tured transition probabilities which subsequently we
derived from quantum electrodynamics.

Actually, the application of theq-entropy formalism to
any system that consists of weakly interacting compone
leads to unphysical properties. For example, for an ideal
the energy is found to depend nonlinearly on the numbe
particles, the gas pressurep is not equal to 2/3 of the energ
density, and there are correlations between the energie
any pair of particles@28–30#, contrary to the very well-
known result of kinetic gas theory and statistical mechan
Similarly, for a system of weakly interacting magnetic m
ments, anomalous dependences are found for the magne
tion and susceptibility on the number of spins@31#, although
claims have been also made that the magnetization re
duces experimental results in certain manganites@32,33# The
reason for the failure of this formalism to give physica
sensible results is not hard to see—it is due to the fact
the probability distribution, Eq.~20!, for any two compo-
nentsA1 andA2 is not the product of the probabilities for th
separate components, as would be expected if these co
nents are weakly interacting. Hence, contrary to basic ph
cal principles, this formalism gives rise to spurious corre
tions among these components of such systems.

Some proponents ofq-entropy have argued that this fo
malism should be considered only for systems for which
Boltzmann-Gibbs thermodynamic formalism suppose
‘‘fails.’’ Frequently mentioned as candidates are syste
with components that interact primarily through long ran
forces, such as gravitational forces, for which the total
ergy and entropy are nonextensive. In Nature, such syst
correspond to astrophysical objects such as stars and g
ies, but these objects are generally not found atmaximum
entropyand ~correspondingly! uniform temperature. For ex
ample, stars are either evolving slowly in time, like ma
sequence stars, which have a large temperature gradient
the interior to the surface, and emit thermal radiation~black-
body energy and entropy!, or else have reached a degener
state such as dwarf stars or neutron stars, provided ce
mass limits are satisfied@34#. Otherwise, stars eventually ex
plode into supernovas, sometimes leaving remnants that
lapse into such degenerate states, or into a black hole~which
are states having maximum entropy!. The equilibrium prop-
erties of stars are obtained by hydrostatic equations sup
mented bylocal thermodynamic equations for matter an
radiation based on the Boltzmann-Gibbs entropy@35,36#.
Rather than being a failure, the Boltzmann-Gibbs statis
has been applied to stellar structure with enormous succ
A q-entropy formalism, however, predicts the existence
finite isothermal polytropes as the end products of stel
evolution ~states of maximum entropy!, which fails com-
pletely to account for the observed property of stars in
universe. Suchq-polytrope solutions have also been d
cussed as models for galaxies@38–40#.

Another example that has been cited as a so-called fa
of Boltzmann-Gibbs entropy, because it involves long-ran
electromagnetic forces, is the divergence of the partit
function Z calculated for the bound states of the hydrog
atom @41#. In this case
03611
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exp~2en /T!, ~27!

whereen52R/n2 are the bound-state energy levels andR is
the Rydberg constant. But the divergence ofZ, which occurs
in this case because the terms of the series approach un
n becomes large, is related to the growth of the mean rad
of the hydrogen atom, which increases asn2. Obviously, in a
gas of hydrogen atoms in thermal equilibrium, this rad
cannot become larger than the mean distance between at
Therefore this distance provides an effective cutoff for t
applicability of the hydrogen bound-state energy eigenval
in the partition sum, because for larger values ofn these
atoms can no longer be treated even approximately as a
of noninteracting particles. Instead, for these states, the
must be viewed as a neutral plasma of electrons and pro
interacting via long range electromagnetic forces. Hence
q-entropy formalism, which supposedly gives a finite par
tion function @41#, actually fails to account for the correc
physics of this problem. These and other failures, e.g.
understand the solar neutrino flux@42,43#, in the application
of q-entropy to well-known physical systems mirror the i
consistencies that are inherent in a formulation of thermo
namics based onq-entropy, Eq.~1!.

III. CONCLUSION

We have shown that aprerequisiteto have aq-entropy
formalism which is consistent with the laws of thermod
namics is that the parameterq must be auniversalconstant,
as is the case also with the constantk that corresponds to
Boltzmann’s constant forq51. Moreover, for weakly
coupled systems the entropy as well as the energy mus
additive, which is a condition explicitly violated by the Tsa
lis entropy, Eq.~1!. Although this condition appears to b
satisfied by the Re´yni q-entropy, Eq.~19!, this is actually not
the case, because the probability distribution obtained
maximizing this entropy forqÞ1, Eq.~20!, does not satisfy
the required factorization condition, Eq.~5!, which is re-
quired for weakly coupled systems. Thus, we have sho
that the only value ofq consistent with the laws of thermo
dynamics is q51, which corresponds to the familia
Boltzmann-Gibbs form for the entropy, Eq.~2!. Indeed, it has
been explicitly demonstrated here that the application o
q-entropy formalism to blackbody radiation, and to oth
systems with weakly interacting components, leads to
physical results whenqÞ1.

It has been suggested in the literature thatq-entropy cal-
culations are useful because they provide an additional
rameterq for comparing theory with observations, but th
rationale fails to take into account the fact that such calcu
tions would be inconsistent with the fundamental princip
of thermodynamics and statistical mechanics. Hence,
small departure ofq from unity is found in a fit to data, as is
claimed, for example, in various analyses of the cosm
blackbody radiation@19–26#, such a fit cannot provide an
physical insight whatsoever into the source or meaning of
deviations.

Finally, we remark that theq-probability distribution, Eq.
4-4
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~20!, which is obtained by maximizing either of the tw
q-entropy relations, Eqs.~1! and~19!, constrained to a fixed
pseudo-energy-function, has also been applied tononequilib-
rium problems. For example, data on turbulence in a pu
electron plasma column@44# and the velocity distribution in
turbulent flow@45,46# have been fitted by such a probabili
function @47,48#. But absolutely no physical justification ha
been given for applying to nonequilibrium systems a fun
mental condition—maximum entropy—which is associa
in statistical mechanics with systems in thermal equilibriu
While such a probability distribution can also be obtain
from other ad hoc assumptions@47,48#, its connection to
a
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m

,
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ct

th
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ct

s
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q-entropy and nonextensivity is completely unfounded. A
though theq-probability distribution appears to be a goo
phenomenological parametrization for some turbulence d
its deduction from physical principles has not been est
lished @49#.
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