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During the past 12 years there have been numerous papers on a relation between entropy and probability
which is nonadditive and has a paramegethat depends on the nature of the thermodynamic system under
consideration. Fog=1 this relation corresponds to the Boltzmann-Gibbs entropy, but for other valwgs of
is claimed that it leads to a formalism that is consistent with the laws of thermodynamics. However, it is shown
here that the joint entropy for systems havidifferent values ofq is not defined in this formalism, and
consequently fundamental thermodynamic concepts such as temperature and heat exchange cannot be consid-
ered for such systems. Moreover, fipe 1 the probability distribution for weakly interacting systems does not
factor into the product of the probability distribution for the separate systems, leading to spurious correlations
and other unphysical consequences, e.g., nonextensive energy, that have been ignored in various applications
given in the literature.
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I. INTRODUCTION

il

In 1988 a relation between entropy and probability for Se=k (q—1) (1)
thermal statistics was proposed by Tsdlli$, which is non-
additive and depends on a parametethat is presumably Wherek is a constantq is an undetermined parameter, and
determined by the nature of the thermodynamic system urthe quantitieq; are positive numbers that satisfy the condi-
der consideration. For the special cage 1, this relaton tion Zipj=1. In the limit g—1, one recovers the
reduces to the Boltzmann-Gibbs entropy, but for other value§0ltzmann-Gibbs form of the entropy
of g it is claimed that thisg-entropy leads to an alternative
formalism that is “entirely consistent” with the laws of ther- S;=—kg> pi In(py), (2

1 B4 i i

modynamics[1-6]. It will be shown, however, that this :

claim is not valid, because the total entropy of thermody-

: h in th : ) defi herek=Kkg is the Boltzmann constant. In this special case,
hamic systems that are in thermal contact Is not even de '”eﬁ is the probability for the occurrence of thth microstate,

in this formalism for the case where systems haveyng this identification has been extended to the cpéd.
g-entropies withdifferentvalues ofq. As a consequence, the Thjs extension, however, is not valid as can be seen from the
fundamental concepts of temperature and heat exchange bgsfinition of mean values for physical quantities associated
tween such systems cannot be introduced in this formulatioQith the g-entropy. For example, the internal energy, is

of thermodynamics unlespis a universal constant. But even gjven by the form

in this case, maximizing thg-entropy of the combined sys-
tems leads to unphysical results unless1. In particular,
for g# 1 the resulting joint probability for states of weakly

coupled systems is not the product of the individual prob-

abilities, and as a consequence the total energy of the conf!nere i correispé)nds qto theth energy eigenvalue of the
bined systems is not the sum of the mean energies of eadyStem andP; =pi/Z;pj’. The quantities; are called “es-
system, although the additivity property is assumed to b&Ort Probabilities in theg-entropy literature, but according
satisfied by the individual microstates. This nonadditive!® the c,onvent|onal definition Of. mean value in statistics,
property of the mean energy in tligentropy formalism is theseP;’s are the actual probgbllltles for_the state_s _qf the
manifestly incorrect, and not surprisingly leads to unphysicaFyStem' Hence fog1 thep;'s introduced in the definition

results, but the consequences have been ignored in variogg g-entropy, Eq.(1), are devoid of any physical meaning,

applications ofg-entropy in the literature, as will be illus- ?;gtgr? just functions of the probabilitis according to the
trated in some of the examples discussed here.

The definition ofg-entropy for a thermodynamic system P y
with microstates labeled by indexs given by[1—4] pi= Pilq/(; leq)- (4)

Ug=2> Piei, )

For values ofg# 1, theg-entropy expression introduced
in Eq. (1) is shown to be nonadditive by the following argu-
ments[1-4]. Suppose that two thermodynamic systefs
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system, andissumehat the joint probabilities for the states Tq=[1+(1-0)Sy/K]T, (13
of the combined system are the products of the probabilities

for the states of the individual systems. As we shall see later . . S
on, this fundamental factorization property is not satisfied b))n which case the condition for thermal equilibriu,(A)

the g-entropy formalism, but surprisingly this fact has been;e-lr-ggsr)é i\S/vai;[ihSﬁriSst;ybliqﬁlnlizlle?;;lthcizsagr?gtniggne?(];;?}r(;g d to
i d in the literature. According to E@}), then h ' ) ! . o
'gnored in the literature. According to E(g), we then have systemsA and B that are described bg-entropies withdif-

ferentvaluesq, andgg. In this case they-entropy of the
combined system, which is characterized by the quantities
pi7, Eq.(5), is not defined in terms of these tvepparam-
eters. Following thej-entropy formalism, one would have to
introduce a new parametel for the g-entropy and energy
Sy(AB)=Sy(A) + S4(B) +(1— ) Sy(A)Sy(B)/k.  (6) of the combined system, but then these thermodynamic vari-

q 9 d ' ables cannot be expanded in terms of the corresponding vari-
ables for the component systemAsand B [11,12. Instead,
according to Eq(6), the g-entropy of the combined system
would be given in terms gbseudeq-entropies for systemA
%de with the samenew parameteq’, and a similar prob-
Sem would occur with the expansion of the total energy, Eq.
(8), i.e.,

prP=plp}. (5

Substituting this form into the expression fgeentropy, Eq.
(1), one obtains the relation

However, this nonadditive relation for thgentropy leads
immediately to a difficulty in the interpretation &, as an
expression for the thermodynamic entrof®}. Since weak
coupling means that the energy eigenvalues of the combin
systems are essentially additive, we have

eijZ eiA~|— 6}3 , (7)

Sy (AB)=S;/(A)+S;/(B)—(1—0q") Sy (A) Sy (B)/K
and, according to Eq¥3) and (5), the total mean energy (14)
U4(AB) of the combined system is also additive:
and
Ug(AB)=Uq4(A)+Uy(B). (8)

Assume now that the combined system is isolated, while Ug (AB)=Uq/(A)+Uq (B). (15)
there is an infinitesimal exchange of energy between systems
A and B. Then the variationsyS;(AB)=0 and sU,(AB) Consequently, the concepts of thermal equilibrium, tempera-

=0, which implies that ture, and heat exchange cannot be formulated for such sys-
tems. For example, no meaning can be attached to the state-
8S4(A) 5S4(B) ment that a system described by the Boltzmann-Gibbs

— =- — (9)  entropy is in thermal equilibrium with a system described by
1+~ a)S(AK 1+(1-q)S(B)k g-entropy withg#1. In other words, a Boltzmann-Gibbs
thermometer would not be able to measure the temperature
of a g-entropic system, and the laws of thermodynamics
would therefore fail to have general validitg3].

It follows that the parametey must be auniversalcon-
stant, just like the Boltzmann constdqtwhich is applicable
to all systems in thermodynamic equilibrium.dfis univer-
sal, a thermodynamic formulation for an infinitesimal revers-
ible transfer of heatlQ can be given between systelsnd

and
O0U4(A)=—6Uy(B). (10
Combining these two equations, one finds that

[1+ (1= a)Se(AKIT(A)=[1+(1-0)S(B)/K]T(B),

(1D B with
whereT(A) andT(B) are the absolute temperatures defined
by the standard thermodynamic relation dQ=T(A)dS,(A)=—T(B)dS(B), (16)
a_SZE (12) corresponding to an exchanglJ,(A)=—dUy(B) in the
ou T internal energy of these systems. But one is faced with the

problem that in this case the temperatlifé\) is not equal to
For two systems in thermal contact, these two temperatureE(B), which violates a fundamental principle of thermody-
should be equal, but according to Efjl) this applies only if namics for systems in thermal equilibrium. Moreover, the
q=1. This problem is not unexpected, because temperaturgorresponding differential$,(A)dS,(A) and T,(B)dS,(B)
should be arintensivequantity, but this is not possible in a associated with the proposed redefinition of absolute tem-
formalism where the energy is additive, E8), while the  perature, Eq(13), do not have any physical significance. In
entropy does not satisfy this property. To avoid this problemprinciple, this problem can be solvéd4] by introducing a
it has been proposdd,8—-10 to redefine absolute tempera- different form SS for the g-entropy in the thermodynamic
ture as the quantity relation for the temperaturg,, so that
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(955 1 providedf(1)=f(0)=0, which corresponds to the require-
U T (17 ment that the entropy vanishes&t0.
a 'q
From the definition ofT, given by Eq.(13) it follows that Il. UNPHYSICAL PROPERTIES RESULTING
K FROM APPLICATIONS OF g-ENTROPY
g&:mm[lﬂl_q)sq]. (18) TO THERMODYNAMIC SYSTEMS

_ _ _ _ To illustrate the consequences of disregarding such basic
This alternative expression for tlieentropy was introduced considerations, | would like to call attention to some un-

by Reyni [15] in the form physical results, left unmentioned in the literature, that fol-
low from recent applications ofi-entropy to some well-
SR— k m(z p_q> (19) known thermodynamic systems. For example, many papers
4 (1-0q) T have been published on the applicatiorga#ntropy to black-

body radiatiorf 19—2§. After laborious analysis and numeri-
which is additive[16], as can be verified by substituting for ¢g| computations, the authors in Ref@3—25 find that for
the pi's the form in Eq.(5). o q#1 there are deviations from the well-known Stefan-
However, there are additional problems with either ofBoltzmann law, which states that the radiation energy de-
these two definitions of-entropy, even whemja=0g=0.  pends on the fourth power of the temperati2@|. But since
Maximizing such entropy functions subject to the constraintgoltzmann derived this result from purely thermodynamical
of constant energy, Eq3) yields theg-probability distribu-  reasoning, without any statistical assumptions about the form
tion [1-4] of the entropy, it seems at first sight strange that such a
_ deviation can occur in a formalism that is supposed to satisfy
pix[1-(1-q)Boe ]9, 29 the laws of thermodynamics. The explanation is that as a
consequence of the nonextensivity property of drentropy
fgrmalism, the blackbody energy as well as the entropy do
not dependent linearly on the volume of the cavity, as was
originally assumed by Boltzmann. Hence, tpenergy den-
sity and theg-entropy densitglepend on the volum¥ of the
cavity, although there is no comment concerning this un-
physical property in any of the-entropy calculations in
p(eiA+ ejB)zp(e{*)p(ejB)[lJr(q—l)Bz( 56{*561-5)]. Refs.[19-26. As follows from simple dimgnsional argu-
(21) ments, the volume dependence must l_:)e given by a d!men—
sionless parameter/a(T)3, wherea(T) is a characteristic
In the limit g=1, Eq.(20) reduces to the Boltzmann-Gibbs length that can depend only on the temperafurerom sta-

wheredei=€;—Uq, Ug is the mean energy, E(B), andg is

a parameter related to the inverse temperature. It is clear th
the corresponding distributiop;’{* for the combined system
AB does not factor into the produgy’p;’ even when the
energies of the microstates are additive, EQ, unlessq

=1. For example, to first order ig—1 [17], one finds that

exponential form for the probability18], tistical mechanics we learn tha{T)=(%c/kT) in fact cor-
responds to the mean thermal wavelength of the blackbody
picexp — € /kT), (22 photons. Moreover, expansions in a power series of this pa-

rameter which have been applied to fit the cosmic back-
ground radiation19—-26 are nonsensical, because in this
casea(T) is of order 1/10 cm while the cavity voluméhas
p(eiA)p(ejB)= D(EiA+ ejB). (23) cosmological dimensions. On .purely thermodynamic
grounds it can also be shown that if the temperature depen-
The Boltzmann-Gibbs form for the entrof® Eq. (2), then  dence of the blackbody energy density were to have the form
follows from the assumption that uxT4* then the Maxwell-Boltzmann relatiop=(1/3)u
for the thermal radiation pressupewould lead to a power
SZE flo. (24) law volume dependencex=V®3 and correspondingly
i (Pi), «T(T3V)1" %3 in accordance with our previous dimensional
argument. Similarly, one finds that<V%2 for the entropy
where the functionf(p) is determined uniquely. Applying density. But unles$=0, such a volume dependence is in-
the thermodynamic definition of temperatuss/oU = 1/T, compatible with Kirchhoff's law which states that the ratio
and the Boltzmann-Gibbs definition of the probability distri- of emissivity to absorption of radiation in the walls of the
bution, Eqg.(22), one obtains the relation cavity must be a universal function of the temperature and
the frequency of the radiation. These properties are required

where 8= 1/kT. As is well known, this canonical distribu-
tion follows uniquelyfrom the factorization requirement that

df(pi) in order that such a cavity reach thermal equilibrium. His-
zi: pi(e—U) dp +k|n(pi)}—0. (25 torically, this law was the original basis for the universality
properties of blackbody radiation that culminated in Planck’s
Hence famous derivation. Finally, the application gfentropy to
blackbody radiation fog+ 1 [19-26] violates also the well-
f(pi)=—kp; In(p;) (26)  known detailed balance relation for the emission and absorp-
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tion of radiation deduced by Einstein in 1917, with conjec-
tured transition probabilites which subsequently were Z:; exp(— ey /T), (27)
derived from quantum electrodynamics.

Actually, the application of they-entropy formalism to wheree,= — R/n? are the bound-state energy levels &is
any system that consists of weakly interacting componentghe Rydberg constant. But the divergencepfvhich occurs
leads to unphysical properties. For example, for an ideal gasp this case because the terms of the series approach unity as
the energy is found to depend nonlinearly on the number ofy becomes large, is related to the growth of the mean radius
particles, the gas pressupds not equal to 2/3 of the energy of the hydrogen atom, which increasesds Obviously, in a
density, and there are correlations between the energies ghs of hydrogen atoms in thermal equilibrium, this radius
any pair of particle28-30, contrary to the very well- cannot become larger than the mean distance between atoms.
known result of kinetic gas theory and statistical mechanicsTherefore this distance provides an effective cutoff for the
Similarly, for a system of weakly interacting magnetic mo- applicability of the hydrogen bound-state energy eigenvalues
ments, anomalous dependences are found for the magnetiza- the partition sum, because for larger valuesnothese
tion and susceptibility on the number of sp{i@], although  atoms can no longer be treated even approximately as a gas
claims have been also made that the magnetization repr@f noninteracting particles. Instead, for these states, the gas
duces experimental results in certain mangarn@s33 The  must be viewed as a neutral plasma of electrons and protons
reason for the failure of this formalism to give physically interacting via long range electromagnetic forces. Hence the
sensible results is not hard to see—it is due to the fact thag-entropy formalism, which supposedly gives a finite parti-
the probability distribution, Eq(20), for any two compo- tion function [41], actually fails to account for the correct
nentsA; andA, is not the product of the probabilities for the physics of this problem. These and other failures, e.g., to
separate components, as would be expected if these compgnderstand the solar neutrino fl{%2,43, in the application
nents are weakly interacting. Hence, contrary to basic physief g-entropy to well-known physical systems mirror the in-
cal principles, this formalism gives rise to spurious correla-consistencies that are inherent in a formulation of thermody-

tions among these components of such systems. namics based og-entropy, Eq.(1).
Some proponents aj-entropy have argued that this for-
malism should be considered only for systems for which the Ill. CONCLUSION

Boltzmann-Gibbs thermodynamic formalism supposedly
“fails.” Frequently mentioned as candidates are systems We have shown that arerequisiteto have ag-entropy
with components that interact primarily through long rangeformalism which is consistent with the laws of thermody-
forces, such as gravitational forces, for which the total enhamics is that the parametgmust be auniversalconstant,
ergy and entropy are nonextensive. In Nature, such systen&s is the case also with the const&nthat corresponds to
correspond to astrophysical objects such as stars and gala®eltzmann’s constant forq=1. Moreover, for weakly
ies, but these objects are generally not foundnaiximum  coupled systems the entropy as well as the energy must be
entropyand (correspondingly uniform temperature. For ex- additive, which is a condition explicitly violated by the Tsal-
ample, stars are either evolving slowly in time, like mainlis entropy, Eqg.(1). Although this condition appears to be
sequence stars, which have a large temperature gradient frosatisfied by the Rei g-entropy, Eq(19), this is actually not
the interior to the surface, and emit thermal radiatiblack-  the case, because the probability distribution obtained by
body energy and entropyor else have reached a degeneratemaximizing this entropy fog# 1, Eq.(20), does not satisfy
state such as dwarf stars or neutron stars, provided certathe required factorization condition, E¢5), which is re-
mass limits are satisfig®4]. Otherwise, stars eventually ex- quired for weakly coupled systems. Thus, we have shown
plode into supernovas, sometimes leaving remnants that calhat the only value of] consistent with the laws of thermo-
lapse into such degenerate states, or into a black(adleh  dynamics is q=1, which corresponds to the familiar
are states having maximum entrgpyhe equilibrium prop- Boltzmann-Gibbs form for the entropy, E@). Indeed, it has
erties of stars are obtained by hydrostatic equations suppléeen explicitly demonstrated here that the application of a
mented bylocal thermodynamic equations for matter and g-entropy formalism to blackbody radiation, and to other
radiation based on the Boltzmann-Gibbs entrdf3%$,36.  systems with weakly interacting components, leads to un-
Rather than being a failure, the Boltzmann-Gibbs statisticphysical results when+1.
has been applied to stellar structure with enormous success. It has been suggested in the literature tp&ntropy cal-
A g-entropy formalism, however, predicts the existence ofculations are useful because they provide an additional pa-
finite isothermal polytropes as the end products of stellarrameterq for comparing theory with observations, but this
evolution (states of maximum entropywhich fails com- rationale fails to take into account the fact that such calcula-
pletely to account for the observed property of stars in outions would be inconsistent with the fundamental principles
universe. Suchg-polytrope solutions have also been dis- of thermodynamics and statistical mechanics. Hence, if a
cussed as models for galaxig&8—40. small departure of] from unity is found in a fit to data, as is
Another example that has been cited as a so-called failurelaimed, for example, in various analyses of the cosmic
of Boltzmann-Gibbs entropy, because it involves long-rangenlackbody radiatiorf19—2€], such a fit cannot provide any
electromagnetic forces, is the divergence of the partitiorphysical insight whatsoever into the source or meaning of the
function Z calculated for the bound states of the hydrogendeviations.
atom[41]. In this case Finally, we remark that the-probability distribution, Eq.
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(20), which is obtained by maximizing either of the two g-entropy and nonextensivity is completely unfounded. Al-
g-entropy relations, Eqg1) and(19), constrained to a fixed though theg-probability distribution appears to be a good
pseudo-energy-function, has also been applietbtzequilib-  phenomenological parametrization for some turbulence data,
rium problems. For example, data on turbulence in a pureits deduction from physical principles has not been estab-
electron plasma columi#4] and the velocity distribution in  lished[49].

turbulent flow[45,46 have been fitted by such a probability
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