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Optimal capacity of the Blume-Emery-Griffiths perceptron
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A Blume-Emery-Griffiths perceptron model is introduced and its optimal capacity is calculated within the
replica-symmetric Gardner approach, as a function of the pattern activity and the embedding stability param-
eter. The stability of the replica-symmetric approximation is studied via the analog of the de Almeida—Thouless
line. A comparison is made with other three-state perceptrons.
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[. INTRODUCTION The paper is organized as follows. In Sec. Il we recall the
BEG Hamiltonian and define the BEG perceptron model.

Recently an optimal Hamiltonian for a multistate network Section Ill presents a closed analytic formula for the replica-
has been put forwar.,2] on the basis of information theory Symmetric Gardner capacity of this model and studies its
by maximizing the mutual information content of the system.behavior as a function of the embedding constant and the
For a two-state network, this Hamiltonian equals the well-activity. Comparisons with other three-state perceptrons are
known Hopfield Hamiltonian extensively studied in the lit- Mmade. In Sec. IV the stability of the replica-symetric solution
erature[3,4]. For a three-state network, one finds a Blume-iS studied using an extension of the de Almeida-Thouless
Emery-Griffiths (BEG) spin-glass-type Hamiltoniaf,2,5.  analysis. The analytic form of the two replicon eigenvalues is
As spin glasses, these models have been studied for sorfibtained. Stability is found to be broken for smaller values of
time now. Thermodynamic as We" as dynamic properties aréhe aCtiVity and for Very Sma” embedding Stabllltles SeCtion
discussed in the literature for disorder in both the quadrati¢/ Presents some concluding remarks. In the appendixes, fur-
and biquadratic interaction. Many references can be found ifher technical explanations are given.

Ref. [6]. As a neural network model its study has been

started only recentlj2,10]. But it turns out already that both Il. THE BEG PERCEPTRON

the maximal capacity and the basin of attraction of this net-
work are enlarged, at least for Hebb rule learning, in com-
parison with the standard three-state networks such as, e.
the Q-Ising spin-glass models.

A natural question is then whether these improved re
trieval quality aspects are restricted to the use of the Hebg L MR fal
rule. In the same context, a further question is then whethebility distribution
we can extract a perceptron-type model with an optimal per- a a
formance_ out of this BEG recurrent network, as is done for P(EM)= = 8(eF— 1)+ 8(EF+1)+(1—a)d(&h), (1)
the Hopfield neural networ3,4]. The perceptron is by now 2 2
a well-known and standard model in theoretical studies and . -
practical applications in connection with learning and generyv ith a the activity of the patterns so that
alization [3,4,7—9. Consequently, a number of extensions 1
including the many-state graded response and colored per- lim — E (&)?=a. 2
ceptrons have been formulated in the literafulre—18. N N 5T

The aim of this work is precisely to introduce such a
BEG-perceptron model and, in particular, to study its Gard-Given the network configuration at time oy={c;(t)},]
ner optimal capacity. Although the method for doing that is=1, - . . N, the following dynamics is considered. The con-
standard and well know by nofil9,2q its generalization to ~ figurationay(0) is chosen as input. The neurons are updated
the problem at hand is highly nontrivial. Nevertheless weaccording to the stochastic parallel spin-flip dynamics de-
have succeeded in obtaining a closed expression for théned by the transition probabilities
replica-symmetric approximation to the Gardner optimal ca-

exd — Be{s'|on(1)}]

Consider a neural network consistingfneurons which
an take valuesr;,i=1,... N from the discrete sef=
=1,0+1}. Thep patterns to be stored in this network are
supposed to be a collection of independent and identically
istributed random variableg!, =1, ... p with a prob-

pacity. Prol{o;(t+1)=s' e S|on(1)= .
2, e~ Beifs|on(D}]
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e[ s|on(t)]=—sh(on(t)— 526, (o (1)), (4 Following a Gardner-type analysigl9] the fundamental
quantity that we want to calculate is then the volume fraction
where the following local fields in neuroncarry all the of weight space given by
information

p
v=f dIdKp(3,K) IT xen(h®, 6% k) (12)
hN,i<t>=]_2i Jijoy(b), eN,i(t>=J2i Kijo?(t), (5 w=1""0
with the characteristic function
with the obvious shorthand notation for the local fields. For

synaptic couplingsl;; andK;; of the Hebb type, ng(h“,ef‘;x)z 5§glg(hﬂlgﬂ)
12 = (€)% (|*|+ 0" — k) O (E5h* — k)
= 2 EhE (6) ’ 0
aN w=1

+[1-(£5)210(—|h*[— 0~ k), (13
P 2 2 wherek is the embedding stability parameter measuring the
Kij :az(l—a)zN ;::1 [(&)°—all(¢f)°—al, () sjze of the basin of attraction for theth pattern angh(J,K)

is the following normalization factor assuming spherical con-

the corresponding neural network Hamiltonian straints for the couplings:
5(3-3-N)S(K-K —N)
1 1 _
H:_EZ ‘Jija-ia-j_zz KijU'iZO'jz (8) p(J’K)_ % . (14)
B 7 f dJdK 5(J-J—N)8(K - K —N)

has been discussed recenit]. It has been found that the

capacity and basin of attraction has been enlarged in conin order to perform the average over the disorder in the input

parison with other three-state networks. patterns and the corresponding output, we employ the replica
We would like to understand whether this better retrievaltechnique to evaluate the entropy per site,

quality is a general property of the model. Therefore, we

want to answer the following question: given the setpof

patterns specified above, is there a network of the

perceptron-type architecture which has these patterns as

fl_xed points of the deterministic form of the dynamlcs CON-yhere(- - - )) denotes an average over the statistics of inputs

S|dereo_l above? At zero temperature the up_datlng r_ule of thl?g_—y} and outputg &£}, recalling Eq.(1).

dynamics(3), and(4) is equivalent to the gain function !

v=lim %({In V), (15

N—c

oi(t+1) =g hy (010 ([ hy (1] + O (1)) ll. REPLICA-SYMMETRIC ANALYSIS
=g(hy (1), O, (1)), (9) _ In the repllcq approach the entropy per sitess computed
via the expression
with ® being the Heaviside function. Considering the per-
ceptron architectureN inputs with couplings); andK; and v= lim lim i(((v”))—1)= lim lim i InqV™)
1 outpu} we say that a given pattefgl ,&,i=1,... N}, N_en_o NN Nosen_o NN ’
with &5 denoting the output, is stored if the following rela- (16)
tion is valid:
whereV" is then times replicated fractional volume
gh=g(h*,0%) (10) )
with ((V”))ocf{l_[ dJ“dK“&(J“‘J“—N)E(K“-K“—N)}
a=1
1 0 1N no P
he=— 2 Jié, o*=— 2 K;(&H% (11 X « 9
N ;1 & m;; (&2, () << 1 ,}11 ng(h#,OM,K)>>, (17)

and{J,K}={J; ,K;} denoting the configurations in the space whereby we can forget, since the couplings are continuous,
of interactions. The factoN~ 2 is introduced to have the about constant terms such as the denominator in(E4).
weightsJ; andK; of order unity. The calculation then proceeds in a standard way although the

The aim is then to determine the maximal number of pattechnical details are much more complicated. For a short
terns,p, that can be stored in the perceptron, in other wordsaccount, we refer to Appendix A. Here we restrict ourselves
to find the maximal value of the loading=p/N for which  to the following important remarks. The main order param-
couplings satisfying Eqs(10) and (11) can still be found. eters appearing in the calculation are
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1 1
qaﬁ:NJa‘\]’B, raﬁ:NKa'Kﬂ! a<18' gTS(q!YvL) 2(1 q)l— ID(h0+K/J—)
. 1-a)
1 % ) XD(\/;go_Udﬁ'in(hO'aO)_z((l——q)
_\/_Nj:1Kj Y a. (18

3
x| D(ho) D(yto=wdp (o, bo)
Of course, in the replica-symmetriRS) approximation we I i
are focussing upon herg,z=q,r,z=r,L*=L. The first +0o(11—q)) (21
two order parameters are the overlaps between two distinct
replicas for the couplingd andK, the third one arises from with u=(aL+ «)/\a(1l—a). The integration regions read
the fact that the dynamia®) and, hence, also the character-

istic function(13), contains a second fielé quadratic in the hy<O
patterns. We remark that it describes the relative importance 1= 9,>0, (22)
of the active versus the nonactive neurons. Actually, in the
calculationaL will be the important quantity witta the sec- hoy' < 0,<0
ond moment of the pattern distribution, i.e., the pattern ac- )= (23
tivity. ho<<0,
The RS optimal Gardner capacity is obtained when the
overlap order parametegsandr go to 1. It is clear that these 6p<<0
limits have to be taken simultaneously but, in general, their 0ol y' <ho<—6p7', (24
rate of convergence could be different. Therefore, we intro-
duce (1-r)=7y(1—q), wherey is a new parameter which
one also needs to extremize. We expect this parameter ho>
depend on the pattern distribution through the actiaity 1= —holy' <8,<y'h (25
- . Y 0~7Y Mo,
Pursuing this approach then leads to
— 6ol v' <hg<6yly'
5= (26)
arnd @)= —extr fim ——— L1y (19 60=0.
v 901 2(1-q)gf g, y,L)
h0<0
. (27)
where “extr” means extremum ang¥q,y,L) reads ol Y < 8p<—7v'hq,
and the corresponding integrands are given by
R
03%0,7.0)= [ D)D) o
1 d1=h (29)
dh de
><<< '”J d*2 =h2+ 63, (29
2 2m(1—q) y27(1—q)
(h—ho)*+ (6 6,)* gRa— 1 02
X exp — in— — (hot+ " 60)%, (30)
ex‘{ 2(1-q) . ™14 (y)?
(20 R
1= ————(hy+7'6p)? 31
min= 12 et ' 00 (3D)
with I=al/ya(1—a), where
dmm h§+ 65, (32
D(ax+b)=(2m) Yadxexd (—1/2)(ax+b)?]
Ra o = (hy—y' )2 33
and where the integration regidi; is determined by the min 1+(y’)2( 0™ ¥ 60)% (33

Heaviside functions appearing in the characteristic function

ngah Vya(l—a)e; K) defined in Eq(13). The expression with y'=+/y(1—a) and where we remark that ttk,;, are
(20) for the functlong S suggests that an asymptotic expan-minimal distances between a point in the different integration

sion to compute the limig—1 is possible. Indeed, after regionsR;,R; ,i=1,2,3 and the border d2, (see Appendix
some tedious algebi@ee Appendix Bwe find for this limit ~ B). This may allow for a possible geometrical interpretation
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FIG. 1. The optimal capacitygg as a function of the pattern
activity a for several values of the stability constant The dots at FIG. 3. The information content per neurdnas a function of
a=1 refer to the optimal capacity of the two-state perceptron.  for k=0, 0.2, 0.4, 0.6, 0.8rom top to botton.

of the Gardner optimal capacity in the space of local fields,':Or a=1 our result is again consistent with the simple per-

. ceptron resulf19].
Flzsl]has been suggested for Qestate clock model in Ref. Comparing the optimal capacity of the BEG perceptron

: - ; 0 for k=0 and a uniform pattern, which is found to be 2.24
After inserting Eqs(21)—(33) in Eg. (19) and extremizin . . '
numerically Witﬁ rgspect td. and 3 we find the resultgs (see Fig. 1, with other three-state neuron perceptron models,

presented in Figs. 1 and 2. In Fig. 1 the capaei versus — © recall that fork=0 and uniform patterns, th@=3 Ising

the activitya is shown for several values of the embedding perceptron can maximally reac_h an optimal capacity equal to
stability constank. For biggerx, the capacity becomes, of L5, dependmg on the separation between_ the plateaus of the
course, smaller. Faa=1, i.e., binary patterns, we find back gain function(see Refs[14,15) for the precise detailsand

the original Gardner results, as we do in Fig, 2 showi the Q=3 clock and Potts model both reach an optimal ca-

as a function ofx for several values oé. Smaller activity pacity of 2.40[12,21]. Here we have to recall that th@

indicating a growing presence of zero-state neurons leads ttgs Ising perceptron and the BEG perceptron have the same

bigger capacities. Of course, this does not magmiori that opology structure in the neurons, whereas re3 clock

also the information content of the system is increased. Fo"flnd Potts models have different topologies.
completeness, we remark that the parameters

=al/ya(1—a) andvy that we have extremized over, depend IV. STABILITY OF TSH(ELEEIZLI\'ICA'SYMMETR'C
rather strongly but smoothly on the pattern activity. Ror
=1 we find back the two-state perceptron value lfoii.e., From the work of Gardnef19] we know that for the

L=0 (I==), and y=<. Finally, in order to have an idea pinary neuron perceptron, the RS solution is marginally
about the information stored in the network, we plot in Fig. 3stable against RS breakingRSB) fluctuations. From the
the information content per neuron, work on multistateQ-Ising neurong24] we know that the
RS solution may be stable or unstable depending on the gain
parameter, the number of spin states, and the distribution of
the patterns. Furthermore, in general, increasing the embed-
ding stability parametek lowers the capacity and enhances
the stability against RSB. Using these results for §re 3
spin states as a guide we also expect breaking for the BEG
perceptron model at hand. To confirm this and find out the
precise interval oh values where breaking occurs, we gen-
eralize the de Almeida—Thouless analy{€g,23.

First, the Hessian matrix associated with the funcdon
Eq. (A8), is computed, and then the eigenvalues are deter-
mined. As usual, two types of eigenvalues are found: longi-
tudinal eigenvalues describing fluctuations within RS and
transverse eigenvalues describing stability against RSB. We
find four transversal eigenvalues each with degeneracy
$n(n—3). In the limit g— 1 they can be calculated explic-
itly in terms of the minimal distances occuring in E¢23)—
(33). The result read&or more details we refer to Appendix
FIG. 2. The optimal capacitggsas a function of the stability &)

for several values of the pattern activity The straight-dotted line L N 5 5
corresponds to the optimal capacity of the two-state perceptron. N =3(Ag+tA)+32V(Ag—A) +4AG, (35

a
2

__ A@Rrs
In3

aln

l[(a)= +(1—a)ln(1—a)]|. (34
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N_=3(Ag+A)—3V(Ag—A)?+4AZ (36)

{Aq+A+(AG+A)(AZ=AA)

T+:

2(A2-AgA,)

+VAATH[AG— A+ (Ag— A (AGA, —AD T2,
(37)

= A A (A AD(AZ—ALA,)
Z(Ag—AqAr){ q r ( q r( c q=r

—VAAZH[Aq— A+ (Ag—AD(AA, —ADTZ,
(39)

with the A’s given by

—_24rs E f D(ho+ k/\a,\yf,—1)

Aa” (1-q)2 =
2

1 52
2? m.n(hoﬁo)

1—-a
((1 q‘;‘fsiE Dlho,\y6-w)

2
+o(11-qD, (39

1
X[ E 8_dmlln(h0’ (90)

aaRs
A=
" y2(1- q>22

18 5 2
X Ea—ezdmm(ho,eo)

D(ho"’ K/\/_ \/;00 t)

f D(ho,\'y8p— )

y2(1-q)* =1

1 P 2
X[Eﬁ_‘ggdmm(ho eo>] fo(1f1-q]),  (40)

o= 2RS 2

y(1-a)?

1 2 ® 2
X{E —ahoaaodmin(ho’a(’)}

(1-8)ags <
+—y(1—q)2 21 fRi,D(hOv\/;eo_U)

2
+o(1[1-q]), (41

dt (Mo, 6o)

1 2
X{E dhod b

Ag=(1-0)? (42)
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FIG. 4. The first replicon eigenvaIUeRl as a function ofa for
several values ok. The dots aB=1 refer to the optimal capacity
of the two-state perceptron.

Ai=(1-1)?=9*(1-q)* (43)
Thentworeplicon eigenvaluesgr, andAg, can be defined as

)\R :)\+T,,

1

)\Rzz)\,TJr. (44)

Stability of the RS solution requires that both ,Ag,<0. In

Figs. 4—6 we present the numerical results concerning the
stability analysis. In Fig. 4 the first replicon eigenval?u,g1

is shown as a function d&f for several values ok. It is seen
that for small values ok this eigenvalue becomes positive
for smaller values of and hence replica symmetry is bro-
ken. We remark that foa=1 our results are consistent with
those of Gardn€fl9]. Figure 5 presents a closer view of this
for k=0. For 0<a=0.48(8) the RS solution is unstable.
Storing only zero-state sping=0, or binary spinsa=1
leads to marginal stability. As a first explanation one could
remark that for increasing, allowing more = states, the
disorder is increased up to about a uniform distribution of
patterns,a=2/3. It is clear that for biggek, the stability
against RSB increases. In fact fa>0.0061 already no
more breaking occurs. Finally, Fig. 6 shows thfhtz is al-

ways negative and, hence, plays no role in the breaking of
the RS stability.

0.01

0.00

-0.01 1

-0.02 r

-0.03

0 02 04 06 08 1

a

FIG. 5. The first replicon eigenvaerhl as a function ofa for
«=0 on a different scale. RSB occurs for smaller values.of
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-04 : , : : occurs for small activities and very small embedding con-
stants,x<<0.0061. This is consistent with the stability results

05 found for theQ=3 Ising perceptrons.

06 | These results strenghten the idea that the better retrieval
properties found for the Blume-Emery-Griffiths model in

=07 ¢ comparison with th&)=3 Ising model are not restricted to
the specific Hebb rule.

-08 1
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APPENDIX A: REPLICA ANALYSIS
V. CONCLUDING REMARKS AND REPLICA-SYMMETRIC ANSATZ

In this work we have introduced a perceptron model In this appendix we outline the main steps in the calcula-
based upon the recently studied Blume-Emery-Giriffiths neution of the n times replicated volumé17) extending Ref.
ral network, containing ternary neurons. We have obtained19] to the case at hand. In order to perform the quenched
an analytic formula for the replica-symmetric optimal Gard-average we use thé-function representation
ner capacity. For the embedding stability constant equal to
zero and uniform patterns, e.g., we find a bigger optimal « dh®dh® R 1
capacity,ags= 2.24, than that for th@=23 Ising perceptron, 1=j 57 Eex ihfﬁ( h,——= > J'E ) :
ars= 1.5, which has the same topology structure for the neu- -
rons. Since, in general, perceptrons turn out to be very useful
models in connection with learning and generalization, this is o N
an interesting observation. It is also consistent with earlier _ f“ d9,do, F{-"a( o L a z”

X 1= —E Eexgift] 69——= >, KX(&)

results derived for the Hebb rule. —w 2T e \/—

We have studied the stability of the replica-symmetric so- (A2)
lution by generalizing the de Aimeida—Thouless analysis and
deriving an analytic expression for th@o replicon eigen- to take the local fields out of the characteristic function and
values that play a role in the Gardner limit. Breaking only obtain

nop n do“de® dh*dh”
a pa. _ M M [ad [ad
<<CH1 ;Lllx A K)>>_ILI_[1 }_:[1 2m 2w

nop
x<<H 11 ng(hz,ﬂfj;K)>> . (A3)
&

Introducing the order parameteB8) and their conjugate variables, and using the identities

* dqaﬁdaaﬁ ~
- SN —Je. 38
! f_m aﬂﬁ 2N SXHAap(NGag= I I, (Ad)
» droedies
- ECyTO —Ke.KA
! f*“ a]';[ﬁ 2ai/N exqraB(Nraﬂ KK )]1 (AS)
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"odLedle | .
H expiL®

- [
—o a=1 ZW/\/N

N
INL* =2 KJ-“)
i=1

(AB)

allows us to express the replicated fractional volume as al

integral over them, viz.,

" dE* dF*

a=1 4w Ai

I1

ome [T TS X

—

oc[ " dLedie

0 d0apd 0 AT edT s
a<p 2miIN 2mi/N

exdN®d], (A7)

with & given by
b= aGl(an !ra,B vLa)+GZ(Qaﬁ1ARaB ,I:a)
+G3(Aap T aprQup:Rap), (A8)

where

I1

w=1 2T 2

= | & de*dg* dhdhe
Gl=|nf

exp[i > (h*h*
a=1

—o0

n n
. . a .
+0%0%)—iaY, 9L~ X h°hfq,,
a=1 2 4321

a(l-a) <& . .
_ o
2 a,BZZI 00 raﬁ:|
n
><<<H Xf(ha’ea”‘)>> : (A9)
a=1 go
Gzzlnf [H dJidKe eXF{—— Y (QupP
—oo| a=1 2 a,ﬁ:]_
n
+R,KKA) =i S LeKe, (AL0)
a=1
n
1 2, ~
Gs=3 ;Zl(QaﬁQaﬁRaﬁRaﬁ), (A11)
and
Qaﬁ:éa5aﬁ+aaﬂ(l_5aﬁ)i (A].Z)
ﬁaﬁ:ﬁaﬁaﬁ_*—?aﬂ(l_aaﬁ), (Als)
Qaﬁ:5aﬁ+qaﬂ(l_5aﬂ), (A14)
Rop=OaptTap(1— Sap)- (A15)
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point without using an explicit form for the characteristic
function x,(h®, 6% «). Using the RS ansat® can be sim-

plified further and the saddle-point equations @rQ,R,R
become algebraic so that they can be solved explicitly, lead-
ng to the resul(19), (20).

APPENDIX B: g—1 LIMIT

In order to compute the asymptotic expansion of €§)
we proceed as follows. We split the integral ovér (6y)
into two parts, i.e.{), determined by the Heaviside function
in x¢, and its complemenf({},). The first integral gives
zero contribution in the limitg— 1, while the second one
gives a contribution of order (£q) L. Indeed, the integra-
tion over (h, ) parametrized byg is nothing but an expo-
nential Dirac-delta representation. Whenever the peak of this
o representation lies in the regid,, which means that
(ho,00) € Q, the integral results in a finite contribution.
The contributions of order (2q) ! arise from the points
(ho,00) € C(L),). Therefore, we can write

gi‘%q,y,L>=<< fcm )D(hom(ﬁeo—nln[l]g(ho,ao)» :
£ ¢

(B1)
where we have introduced the shorthand notation
[1]§(h0'00):f an i
9¢ V2m(1-q) V2m(1-q)
X exr{ U h;)(zlt(;)_ Lk (B2)

Next, for a given g, 00) € C({2,) the main contribution
arising from the functiorj 1],(ho, 6y) is obtained for those
points (, ) € (), that minimize the distanceh(- ho)?+ (6
—60)%. To calculate this minimal distance, we split up
C(Q)) into three subregions according to Fig. 7 in the case of

=1

K
ho<—

Ry= Va (B3)
60>0,

(ho— %) H(1—a)< 6,<0

Ro= (B4)

We remark that thes-function representation of the local
fields has allowed us to perform the calculations until this
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y 4 y A
Ri :
o E QE:I
(hO’OO) E ’/'
= e
"l \‘\ ,
i (ho,80)
.. /, Qg:o S
(ho, Bo)
FIG. 7. Schematic representation of the subregions and minimal FIG. 8. As Fig. 7 forC(Q2,=0).
distances foC(Q,=1).
2
0,<0 df2 = L _hy| +62 B7
0 min_ E 0 0 ( )
Rs= to
—_— <ho< —0pVy(l—a).
vy(l-a) \/— Va (85) " 1 K ?
B5 3 — - / — o)
dmin 1+ y(l—a) ( \/a 60 ’y(l a) ho) . (88)

Computing the minimal distances for such subregions is

straightforward and leads to By redefining hy— x/\a—h, and ' = \7(1=a) we re-

2 cover the expression28)—(30).
df]iln: ( AN ho) , (B6) _We p_rocged analogously fpr the regiﬁmglzo). _We split
Ja this region into three subregions as shown in Fig. 8

hy>0
Ri= 1 (B9)
— | hyt —| <y<y(1—a)h
Haal e f o= * hail-a)
N (0+ “ ><h<—1 <0+—K )
Ha-a)| ° Vral-a))  ° i-a)l  Jya(l-a)
RYy= (B10)
K
— < fp<e,
ya(l—a)
Ri= 1 (B1D)

<00 \'y(l a ho

- _h +L -
W(l—a)( ° Va Jya(l-a)’
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The minimal distances are given by @
Ac=——| D(ho)D(\ybp—1)

dRi_[\/ya(l—a)HO-i—K-f- ahg]? a0 ar
T airya-a] 0 P L 2
X — ——— In[1](hg, 0 , (C4
' ) ) 75 oy [1]e(ho, o) § (C4
d%2 =hZ+| ——x=+10 B13 °
min 0 ( ’—ya(l—a) 0 ( )
iR [Vya(1—a)6y+ k— ahy]? oy Ag=(1-0)?, (CH
e ) I
and redefining«/\ya(1—a)+ 6,— 6o, we find Egs.(31)— Ar=(1-1)2=9%(1—0q)? (C6)
(33).
APPENDIX C: RS STABILITY where we recall that (£r)=+vy(1—q) and the function

. . . [1]4(ho,6p) is defined in Eq(B2).
Starting from the stability matrix formed by the second Next, the limit g—1 has to be taken. Using the

derivatives of® [recall Eq.(A8)] with respect to the order : . . : .
parameters and the conjugated variables, we find that Om%symptotlc expansion ¢fl1¢(ho, ) discussed in Appendix
, we can compute the asymptotic behavior of the coeffi-

transverse fluctuations are relevant. onts A A dA. . Aft ot of alaeb fnall
These transverse fluctuations are characterized by four efeNtSaq, Ar, anda. Alter a lot of algebra, we finally

: _ . i t the expression89)-(43) with the integration re-
genvalues with degeneraayn— 3)/2, given by the roots of arrive & S : . :
the fourth-degree characteristic polynomi(\) gions and minimal distances given by E(&2)—(33). In this
' limit, it turns out that an analytical expression can be found

Ag—N A, 1 0 for the eigenvalues. First, we notice that the determinant of
the matrix remains finite in the limit. Since the determinant is

P(\)= Ac  ArmA 0 1 the product of the eigenvalues, it follows that this product is
1 0 Ag—A 0 finite. Two possibilities arise, either all eigenvalues are finite,
0 1 0 A=\ or two of them tend to zero and two to infinity with the same
ratio. It is not hard to prove that the first choice is incorrect.
=[(Ag=M)(AG—N)—L1][(A—N)(A;—N)—1] Hence, two of the eigenvalues have to behave asympotically
5 as (1—q)*". One can check that only=2 is possible. This
—A(AGTM(ATN), (C1) allows us to splitP(\) into two polynomials that give the
with the coefficients given by ?gfl;étions around zero and around infinity. These polynomials

A= f D(ho)D(\y6p—1)
q Po(M)=[Aq(Ag—N)—11[A,(A;—N)~1]

2 2 —AHAGTM(AF-N),
X ﬁln[l]g(ho,ao) g, (C2) (C7

0
P.(M)=(Aq—N)(A,—\)—AZ.
(64
a=5 | Dthoyp305-1

From these two polynomials, the four eigenval(@s)—(38)

1 52 | h ? can be found. We remark that in the linait~1 we find back
X ;, 07_6% n[1]¢(ho, 6o) ’ (C3) the stability criteria for the original Gardner capacity prob-
§ lem.
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