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Ordering dynamics of one-dimensional Bloch wall system and domain size distribution function
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The dynamics of domain size distribution in the ordering process for a one-dimensional classical anisotropic
XY model is studied with a reduced equation of motion for the assembly of domain sizes. The system
possesses two types of the domain wall structures, thel dieBloch walls, depending on the strength of
magnetization anisotropy. In the Blewall situation the neighboring walls interact with one another in only an
attractive way. On the other hand, in the Bloch one, these walls interact in either an attractive or a repulsive
way depending on their chiralities. For the Bloch wall situation, we found that the domain size distribution is
characterized by solitonlike translational motion with a function fdrgp—y(t)) and a characteristic domain
sizey(t) for the domain size. This is in contrast to that in the Mewall situation, which can be described as
a scaling-type distribution functiog[y/I(t)]/1(t), as was obtained by Nagai and Kawasaki, with a certain
scaling lengtH (t). We discuss why such a solitonlike motion appears instead of the scaling-type distribution
function, show a proof for the absence of the scaling-type distribution, a qualitative estimation for the distri-
bution function in the Bloch wall situation, and an analysis for the realization probability of a specified
twistness.
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[. INTRODUCTION wherex is the one-dimensional coordinaig,is the complex
order parameter, angl is the strength of magnetization an-
Phase ordering processes of various systems quenchemtropy (without loss of generalityy is chosen to be posi-
from the homogeneous phase into a broken-symmetry phasive, so that the easy axis equals the real Jaxibe equation
have been widely studied for the last several decétles]. of motion is given by the TDGL equation,
The dynamical behaviors in such ordering process are de-

scribed by the motion and the coarsening of defects, walls, or . _ oH{y Yt} 5 . Y
other kinds of topological singularities depending on the P =- S (x,1) ==ty +§'
symmetries of their order parameters. An important aspect of ' 1.2

such ordering process is that the statistical quantities of those
systems are scaled with a single-length scaling parametéyy which the free energy decreases monotonically, i.e.,
I(t), which corresponds to the mean distance between sudli{, y* }/dt<0.
topological singularities or the mean diameter of domain |t is well known that a domain wall has different struc-
sizes, and diverges in the course of time. In the majority otures depending on the strength of anisotrply in a weak
such systems it is well accepted that the statistical quantitiesnisotropy region (& y<1/3) the stable domain wall is the
involving a length scale variable, e.g,,exhibit scale invari-  so-called Bloch wall, on the other hand, in a strong anisot-
ance by use of the single-length scalipf(t). Some ex- ropy region (/> 1/3), the so-called N wall is stable. Here-
amples exhibiting such scaling behavior are droplet growthafter, we refer to these regimes as Bloch andINeall re-
in binary mixture systemp4,5] and breath figure6]. How-  gimes, respectively. The characteristics of the Bloch wall is
ever, not all the systems undergoing such ordering processs chirality, which is the degrees of freedom corresponding
behave in self-similar ways, and there is a special case nab the clockwise or counterclockwise rotation of the phase of
obeying scaling behavior. the complex order parameter. In the dynamics governed by
In this paper, we consider the statistical dynamics of doEq. (1.2), the interaction of neighboring Bloch walls with the
main sizes in the phase ordering process quenched from th@me chirality is repulsive, while that with opposite ones is
disordered phase into the broken-symmetry phase in the dwttractive, and the pair annihilates when their distance be-
namics governed by the time-dependent Ginzgurg-Landagomes sufficiently close. The repulsive interaction feature in
(TDGL) equation without thermal noise for a classical one-the Bloch wall regime is in contrast to the &lavall regime,
dimensional (1D) anisotropic XY-spin system. The in which walls always behave in attractive ways. Reflecting
Ginzgurg-Landau free energy for the 1D anisotroy¥-spin  the difference in the interaction properties between walls, it
system in the broken-symmetry phase is given by is expected that there are different types of statistical behav-
ior for assemblies of domain sizes between both regimes.
Iy In a previous worK 8], done by the author and Fujisaka,
X the evolution equation for the domain sizes in the Bloch wall
(1.1  situation was derived from the TDGL equation and the fun-
damental properties of the domain wall dynamics were in-
vestigated; there the dynamics of domain size distribution
*Electronic address: tutu@i.kyoto-u.ac.jp function (DSDF were calculated numerically, and the DSDF
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for the different types of domain, classified by the combina-

tion of neighboring chiralities, were found to show different

behavior. The qualitative property of the structural factor was

also investigated. However, our numerical result was limited

to the early stage of the domain size kinetics. The presen

study deals with the long term behavior of the DSDF in the

Bloch wall situation by using both numerical and analytical

calculations. o .
The DSDF for the Nel wall situation is practically iden- FIG. 1. Definition of variables.

tical with that for nonconserved bistable systems. Nagai and

Kawasaki (NK), and NK and Ogawd9-12], studied the ~we will obtain an Fokker-Planck-type equation and its solu-

dynamics of the DSDF and the structure factor in the ordertion corresponding to the solitonlike behavior. In Sec. VI, we

ing process governed by the TDGL equation Correspondingvm discuss the differences of the DSDFs betweereNsnd

to the 1D Ising-spin system a couple of decade ago. TheiBloch wall situations. Finally, we summarize our results in

approach was based on the following equation of motion foSec. VII.

the sizes of domains. Letting the size of tite domain be

Vi, its growth is described by the equation II. DYNAMICS OF BLOCH WALLS

yi=e Vi-1+e Vi+1—2e Vi, (1.3 Th(_e profille of the Bloch wall, with'the center bging>at
=X, is obtained as a stationary solution of Efj.2) with the

together with the annihilation process: when a domain siz&oundary conditionj(x— £ ) =+ y1+y==xX, (y>0),
becomes less than a cutoff size, the three adjacent domaifsXo being the uniform solutions of Eq1.2), i.e.,
merge and yield a new domain. NK obtained the exact form
of the DSDF as a scaling form[y/I(t)]/1(t) from the ki- Pa(X)=pXgtanH (x—xg)/E]+iqYsech(x—xg)/ €],
netic equation made from Ed1.3). Rutenberget al. [13] 2.1
also derived the DSDF by another simplified treatmisete
also Ref[14]). Due to the exponentially decaying force, the whereYo=1-3y, £é=1/\2y (the characteristic width of
average domain size exhibits a logarithmic growth behavioryg|l), p and g, respectively, take signs of either1 or
I(t)~Int, which was also observed by experimeft5—18  _ 1 Wwith the quantitypq, which is referred to as the chiral-
for nearly 1D magnetic material. ity of the wall, one can distinguish the rotation direction of

For the 1D isotropicX Y-spin model, Rutenberet al.[19]  coarse-grained spins on a wall.
discussed dynamical scaling for some types of order param- The ordering process of the present system is described as
eter correlation functions. For the 1D anisotrop{&-spin  the motion of walls and the pair annihilation of neighboring
model, however, studies close to the present subject seefalls with an opposite chirality. As sketched in Fig. 1, let us
absent. denote theith wall position asx; and its chirality as

In this paper, we will show that the DSDF in the Bloch (—1)'g;, where the factors{1)' andq; are, respectively,
wall regime obeys aolitorlike translational motion, and that  equivalent with the role op andq in Eq. (2.1). In addition,
the DSDF can be written in the function forth(y et us introduce théth domain sizey,=x,,—X and its
—Ya(t);t) [it can be written asi(y—yq(t)) in a good ap-  twistness Q=q;,,q;, which indicates whether thigh do-
proximatiori, where the peak positiopy(t) grows asyy(t)  main is twisted Q;= —1) or untwisted Q;=1). The num-
~Int and the width of the peak seems to saturate to a corper of domains runs from 1 tN(t) with N(t) being the total
stant value. The main aim of the paper is to elucidate th,ymper of domains at time and, in this paper, we impose
origin of the solitonlike motion and to obtain the qualitative the periodic boundary condition in which tHé+ N(t)]th
form of the functionh. domain is identical to théth domain.

. The paper is orgz;nized as follows. In Sec. I, we briefly  The growth velocity of théth domain size has been ap-
introduce the evolution equation for domain sizes and ShOVbroximater obtained as

its qualitative properties. In Sec. Ill, we present our numeri-

cal analysis of the DSDF. In Sec. IV, the master equation for _

the DSDF is derived, and the realization probability for Al=Qi+1e‘yi+1’§+Qi_le‘yifl’f—ZQie‘yi’f,
twistness configuration is also obtained. In Sec. V, we ana- dt

lyze the single domain size distribution function. There are (2.2

two subsections. First, we will prove that the scaling-type

solution is absent for the Bloch wall regime. In the samewhereA=(1— y/3)/[4\2y(1—37)] [8]. Equation(2.2) has
approach, as the studies by NK, we consider the kineti@lso been derived from the dissipative 1D sine-Gordon
equation for domain size assuming the scaling form for itsnodel by Kawasaki and Oh{&0]. In the derivation of Eq.
solution; however, it will be found that the equation leads to(2.2), we neglected the higher order powers of any exponen-
the divergence of the first moment, that being inconsistential force smaller tha®™Yi’¢. The pair annihilation of neigh-
with the scaling assumption. Second, with an alternative apboring walls must be taken into account if a domain size
proach incorporating the correlation effect between domaingeaches the cutoff sizg, (~§), i.e., when thekth domain
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size becomey, =Y., three consecutive domaink- 1)th, “or ' ' ; ' ' ' b

. . t=1.3x10 h
kth, and &+ 1)th with Q,=1, are merged into one domain [

and they are rearranged as ik o L. -]
10 * * v, ) L T A I AR U DU <
PR L SR T e e e bt N ey e M
Puantea™ s alin 2 2 perm 27 Wit s e ANt e e T e ey HARLY
Yk-1FTYe T Yk+1—= Yk s 1020 T ?&)’ == 200 = ~ R
(2.3 C ' ' N ' ' T =a0x10°
Qk-1QkQx+1(=Qk-1Qk+1) = Qx - oy S : . : B
>‘: Fo . .. .- . ". - :
For the case of the isolated domain, consisting of only a pair ;g: R o S SR
of walls, with sizey and twistnes®, Eq. (2.2) gives T Tt s & e e e e
0 100 200 300 400
160 j T j T T t=7.9‘x10“

— —yl& L
Ay=—2Qe V¢, (2.9 w0l
and its solution is obtained agt) = £ In(@@¢—2QuA) with ~ ~ 8of
the initial sizey(0). Thus, the size of the twisted domain 40l

.

M . . L. M .-'.' M o
. L, oo e b * . =
T ——p—t ~T st I N

LI B
(..

(Q=—1) grows, while that of the untwisted domai ( 0 100 20 300 400
=1) shrinks and eventually disappears. From a physical site number (i)
point of view, this concerns the twist energy of spins. FIG. 2. The evoluton of domain sizesly,(t)} (i

It is also noted that the time scale of B@.2) goes to  —1 . 400). The vertical and horizontal axes indicate the length
infinity on the transition pointy=1/3 between Nel and  of the domain size and the array index of domains, respectively.
Bloch walls. In such a case, higher order terms thak’é  Each snapshot shows the configuration of consecutive domain sizes
become relevant. However, in this paper we do not deal wittat each of the different timeg=1.3, t=4.0x10°, and t
such a critical situation. For later convenience, we write=7.9x 10", in order from top to bottom.
down here the dimensionless form of E@.2), y; andt
being scaled ag;/é—Yy; andt/(£A)—t, force in the cas®@=1, or they retain equal intervals among
d walls by a repulsive one of the caQ=— 1. Figure 2 shows
ayi —y v —y: the temporal evolution of consecutive domain sizes, which
ar - Qiea€ Qe 2Qeh 285 generated by E¢2.5) for the randomly distributed initial

sizes by keeping their average equal to 4.0 and initial twist-

The fundamental properties of the domain size dynamicgess with an equal probability for each state. Details of the
are as follows. In the dynamical process we have two conmethod of calculation are explained in Sec. Ill. Each snap-
servation quantities, the total domain sizBy;=L (L, the  shot shows the configuration of consecutive domain sizes
system sizgand the total winding number yi(t) (i=1,...,400) at each of the three successive times in

N(t)

W=, (-1)qg;,

order from top to bottom. These snapshots show the devel-
opment of clusters, where each of the clusters consists of
equal size domains and increases its population by absorbing

more domains, being d@=—1, arising from the annihila-

which multiplied by 7 is the net phase difference betweention of untwisted domains, at both sides. This behavior is
boundaries. The later is the consequence of the topologicavell explained by the linear stability argument mentioned
invariance for the elimination of the untwisted domains, be-above.
cause the elimination of th&th untwisted domain @,
=0+ 1=1) sandwiched betweekth and k+ 1)th walls
for which —qx+qy+1=0 holds does not changd. In a
statistical argument in Sec. IV B, it is also shown that the The direct integration of Eq(2.5 by the usual Runge-
ensemble average of the quant®)'VQ;/N(t) is a mono- Kutta methods spends too much time to complete the entire
tonically decreasing quantity. By using the central limit theo-Kin€tic stage, because the calculation speed becomes slow in
rem, Wis estimated a#v2~N(0) for largeN(0). a logarithmic time scale. For the_purpo;e of efﬁmeny integra-

In order to see the role diQ} when many domains are tion, the present study uses thariable time stemlgorithm.
present, let us consider the linear stability of the state ifFquation(2.5) is discretized as

which all domains have the same sﬁe\nd the same twist-

nessQ. Letting dy; be the deviation fron?for the ith do-
main size, the linearized equation féy; is given by

IIl. NUMERICAL ANALYSIS

yi(r+A7)=y/(7)
+[Qir18 Y+ 1+ Qe Vi-1-2Qe VAT,
EADY = —Qe Vi oy, 1+ By 1— 20yl (27) (3.0

Equation(2.7) indicates the negativépositive stiffness for ~ wherey| isy; =y;—ymin(t), i.e., the relative size measured
the cas€Q)=1 (Q=—1). The uniform state is therefore un- from the minimum domain sizg,;,(t), andA 7 is the thick-
stable(stablé for Q=1 (Q=—1). This suggests that do- ness of time defined bjt=A reYmin®_ The unit of time is
main sizes develop their size fluctuation by an attractivevaried in accordance with the fastest process, and the time
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the mean of all elemenitsand the initial values of twistness

-0 =2.7x10° : -

03 B8 ,-42010" | {Q1,Q5, ... ,QNO} were given _randomly with an equal
=0 1=1.2x10* probability for each state, whei®@~0 should be satisfied.
24 (=2 4x10” ] The other parameters were chosen as follows: the initial

number of domaind\(0)=Ny=2%, the number of samples

—~02 e t=6-7x10:z for statistical averageNs=204, the cutoff size for domain
= g > 1=5.6x10 sizes,y.=1, the time increment for the numerical integra-
= tion, A7=0.01.

Figure 3 shows the temporal evolution of the DSDF,
N(t)

f<y;t>—<N(t) 2 Sly=yiv) ), (3.2

where <-~->E(1/NS)E'S\IS denotes the average of the
Yy samples of different initial distributions with the sample
numberNg, andd(- - -) is the Dirac delta function. The time

evolution off(y;t) is represented by the successively plotted

:?l zlaxe;fifndic?ts tge \?aluesbcblty;t) and d%”:ain sizeyr,] rtespteg.-ﬁ curves consisting of different kinds of symbols, the kinds
vely. Dilerent kinds o symbols correspond to Snapsnots at cifter- corresponding to different times. The initial distribution

ent times, the correspondences being indicated within the figureT nctlon takes an exponential forn(y:0)o ex —(
The time intervals between successive snapshots are separated P y; y

an approximately logarithmic time order, so the snapshots are yc)/(y Yo, which is the manifestation that shows that the
equally separated. assembly of the initial wall positions obeys Poissonian sta-
tistics. After the early collapse of short size domains, one can
steps spent by the process until the collapse of the fastesbserve a translational motion of the DSDF, i.e., the position
domain are proportional to its size, which is simultaneouslyof the peak temporally moves rightward in a logarithmic
the smallest domain sizg,;,(t). The whole algorithm is time scale~Int, and the height has a tendency to saturate
summarized in the following statement#). find the domain into a constant value.
being the smallest sizpy,(t) =Yymin(t)] with the positive More detailed information can be obtained with the joint
twistness Q,=1), (ii) guess the time steps spent until the distribution function fory and Q,
occurrence of the next annihilation event, and do a numerical
integration for those step§ii) if the annihilation event oc-
curs[y,(t)<y.], return to(i) and add the time spent in that
process to the real timg or else go ta(ii). In the present

Study, the numerical integration between successive annthhere 5Q ) is the Kronecker’s delta. Figure(@ exhibits
N

lation events was dope by the Runge—thta-Glll method. thatf(y,1;t) decreases its peak height and broadens its peak
The |n|t|.al dlstr_lb_u_tlons_, for our calcul_atlons were preparedwiolth This behavior may bring the expectation thay,1:t)

as follows: The initial sizes of domaing/1,y2, ... Yno}  has the same property as in théeNeall situation, i.e., the

were given randomly by the constray(tO) 4 (bar denotes scaling property. However, this expectation is not completely

FIG. 3. Temporal evolution of(y;t). The vertical and horizon-

N(t)

fy.Q0={ gy 2 2000w ). (3

0.16 T : .
i -0 =2.7x107
0.14 G /=4.2x10"
I =% r=1.2x10"
0.12 AA o0 4x107
+—+1=1.2x10"°
_0.10
=
2 0.08
S
0.06
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@ y (o) y

FIG. 4. Temporal evolution of(y,Q;t). Figures(a) and(b), respectively, shovi(y,1;t) andf(y,—
corresponding kinds of symbols are the same as those in Fig. 3.

1;t). The times of snapshots and the
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i 0-0=2.7x102 | 0-04=2.7x107 |
58 1=4.2x10" G-E1 1=4.2x10"
251 ] 0.25 ]
025 0 1=1.2x10* i _ =0 1=1.2x10" |
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s
0.10 <R0.10
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(a) y (b) Y-y,

FIG. 5. (a) Temporal evolution of 5(y;t), and(b) its profiles for different times on the frame-y4(t). The times of snapshots and the
corresponding kinds of symbols are the same as those in Fig. 3.

realized, which will be shown in a later numeridakee the ingly, we can assume the distribution functibi(y,Q;t) for

explanation below Fig. )6and theoretical analysisee Sec. eachQ not to depend o, i.e., f~(y,Q;t)=g(y;t). Then,

V A). Figure 4b) indicates that the drift motion observed in we have

Fig. 3 is owing to the behavior dof(y,—1;t). This implies

that the DSDFf(y,—1;t) can be written asf(y,—1;t) f(y,Q;t)=1<(y,Q;t)+g(y;t). (3.5

~h(y—yq4(t)) with y4(t) corresponding to the position of

the peak andh(z) being a function independent of time. We also assume that the dynamical evolution generated by
For the purpose of helping the present analysis, let u&d. (2.2) brings aQ-dependent effect for the domain size

suppose that the DSD@.3) can be divided as kinetics in the regiory<<y* (t), where twisted domainsQ

=—1) tend to correlate in their neighboring sizes, while

untwisted domains @=1) disperse their sizes. This also

leads to a sharpenind)= —1) and broadening@=1) of

each DSDF in that region. Hence, the function

fly, Qi) =f=(y,Q:t) +f7(y,Q;1), 3.4

where the superscripts. and >, respectively, signify the

regionsy<<y*(t) andy>y* (t) with a sizey* (t) separating fo(y;t)=f(y,—1;t)—f(y,1;t)=f<(y,— 1:t)— f=(y,1;t)
behaviors of the DSDF. For the regigo-y* (t), we assume (3.6)
that the domain size kinetics are governed by annihilation '
and creation process among domains, &), and which  extracts theQ-dependent part from both distributions.
break aQ-relevent memory effect among domains. Accord- Figure 5a) shows the time evolution of(y;t). The

——— T ——————— 10 : : : ——s
06L 00 1=2.7x10% | 00 4=2.7x10° 3
| E'-E'z=4.2x1o; ] G- /=4.2¢10" ]
051 =0 1=1.2610" 10" 0 1=1.2x10" 3
LA 122 4x10 FC A =2 4x107
~ T +—+ 1=1.2x10" ] = +—+ 10 ]
I\'><.04— 1=1.2x10"" | I\>: 2l 1=1.2x10 " 1
= | | =107
™ =
= 0.3} . s
12 I, 3
é - é’]O
0.2 .
0.1 . 10
- M|
1

0 Ll 105L— N R R T R S S
8 . 20 . 4.0 00 10 20 30 40 50 60 70 80
() yiy(®) (b) yiy(®)
FIG. 6. (a) The result of the scaling.7) for f(y,1;t), and(b) its linear-log plot, where the vertical axis is the logarithmic scale. The last

two pieces of data far=6.7x 10*2,5.6x 10'® used in the previous figures are dropped to maintain clarity, but the rest of the data are the same
as those in Fig. 3.
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100 T T T T T

function fp(y;t) obviously exhibits translational motion, in
which the location of the peak moves with an equal speed in
a logarithmic time scale, i.eyq(t)~Int. Figure §b) shows
the evolution of fy(y—yq(t)) on the moving framey
—yq4(t). The probability mass aroung=yy(t) corresponds
to the population of the domain sizes that compose the clus-
ters as seen in Fig. 2. Reflecting the formation of the clusters,
the total mass off 5(y—yq(t)) increases from zero and
gradually saturates to a constant, where most of the mass of
fo(y;t) comes fromf(y,—1;t), i.e., the DSDF for the small
size regiony<y*(t), is dominated byf<(y,—1;t) [f=(y,
—1;t)>f<(y,L;t)].

Another point of interest is what kind of statistical behav-
ior describegy(y;t). In order to see that, we have attempted
the scaling form

oy
o y®
L o ¥y,
L2 y@®

FIG. 7. Growth of the peak location 6f(y;t), yq(t), the mean
domain size?(t), and the mean domain size over the samples of
untwisted domainsy ., (), and twisted domaing,_(t), are, respec-
tively, plotted with different kinds of lines. The correspondence
between the kinds of lines and the quantities is indicated within the
figure.

f(y,Lit)~a(y/y(t)/y(t)

3.7

to f(y,1;t) in Fig. 6, where we usd(y,1;t) instead of
g(y;t), and Eq.(3.7) is the same type scaling as the élle

wall situation. For the scaling length, we have used the meag,q retained in a large size region by subsequent annihilation

domain sizey(t)=L/(N(t)). Figure a) shows the result of
the scaling(3.7) for f(y,1;t). Obviously in the small size
region the scaling assumptid8.7) is broken. Figure @) is

the linear-log plot of Fig. @&). f(y,1;t) has the exponentially
decaying part written as-e~*¥Y/y(t) for the large size

region y/y(t)>z(t), wherezs(t)=2.0 for the last data in
Fig. 6(b), andz.(t) gradually increases in the course of time.
These results imply that(y,1;t) is no longer written in an

events, collapses away from the side of the small size region.

The results in this section also suggest that in the 1D
anisotropicXY-spin system, the DSDF changes its property
from a scaling form to a solitonlike translational motion at a
certain critical strength of anisotropyy€&1/3), as the
strength of anisotropy diminishes.

Figure 7 shows the temporal behavior of some character-
istic sizes: the growth of the peak locationfef(y;t), yq(t),

entire scaling form, instead, it is considered that thethat of the mean domain size averaged over all domains,

exponential-type scaling form with the characteristic sizey(t), and that of the partially averaged sizes over the un-

y(t) for f(y,1;t) transiently appears for the large size regiontwisted _domainsy+(t), and the twisted domaingk_(t) , are
and gradually collapses away from the side of the small siz&espectively plotted against time. These clearly indicate the
region. The intuitive explanation for that is as follows. Let uslogarithmic time dependence CInt, where the coefficient

consider the arrangements @f for three consecutive do-
mains to be able to create a positi@edomain after the

C for each qua_ntity_is classified by two gharacteristic num-
bers asyy(t),y(t),y_(t)~0.93Int ﬂwd y+(t):1.92Int.

collapse of the middle domain. Then, such arrangements argere is a notable difference betwegn(t) andy_(t), be-

found to be (1,1,1) and<1,1,—1), where Q;,Q,,Q3)
denotes the arrangement of twistness for three conseculti
domains. Similarly, let ¥;,y.,Y>) be the configuration of
the domain sizes just before collapse. When eithey,06r

y» is sufficiently large, the resultant domain may bring no

memory or correlation effect relevant @ since the dynam-

ics of larger domains is governed by the annihilation proces

ing expressed ag,(t):yd(t) and y, (t)=2.0y4(t). The

ve

former relation ory _(t) implies that the growth of the mean
size for the twisted domains is governed by the motion of the
peak location off <(y,—1;t). The latter relation can be in-
tuitively explained as follows. Revisiting the above-

gentioned argument for the creation of the untwisted do-

(2.3), which breaks the dynamical memory or correlation™ains,Q=1, in the small size region, the three consecutive

effect. On the other hand, when bothandy, are small, the
annihilation event ¢ 1,1,—1)—1 can accumulate the corre-
lation effect among domain sizes f¢y,1;t), and the event

domains with their arrangement of twistness 1,1,—1)
dominate the creation of untwisted domains rather than that
with (1,1,1) in the late stage. Hence, we can roughly esti-

(1,1,1)-1 elevates the correlation effect toward the largerMate the resultant size of domains wi=1 as ~y,(t)
size region. This is because the dynamics corresponding & Yt Ya(t) ~2yq(t). Again this implies that the domain

the DSDFf<(y,—1;t) condenses the clusters in which all

size statistics are governed by the dynamics of twisted do-

domains have same twistness and are equally sized arouf¢?!nS:

the characteristic sizg4(t), and the form off <(y,—1;t) is
not a scaling form but the solitionlike fornh(y—y4(t)),

IV. MASTER EQUATION

whose width is almost constant. As a consequence, the In this section, we formulate the master equation for the

exponential-type scaling form fog(y;t), which is settled

DSDF. In Sec. IV A, we introduce tha-body distribution

through a large number of annihilation events in early stagefunction, and apply some simplifications for further develop-
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ment, where some of those procedures are the same as used o n

in the studies by NK10,11. In Sec. IV B, we calculate the ~ (---)= lim >, 2 No d{y}Toé( > y,—L) _
probability for the realization of a specified twistness ar- NoyL%’{Q}i‘O Ye =1

rangement fon-consecutive domains. In Sec. IV C, we de- 4.3
rive a reduced master equation for single domain size distri-

bution function. The detailed analysis of the single domainwith the constrainfNo/L being constant. For simplicity, we

size distribution function will be done in Sec. V. use the notations,
A. n-body distribution function E EE E . z , (4.9
n Q1 Q Qn
Let us consider the temporal evolution of the assembly of {Qh P
domains described by EgR.5) and(2.3) under the periodic " " " "
boundary conditiony; , yy=Y; and QHN(O:Q&, and the J d{y}?zf dY1J dyz...f dy,, (4.5
initial condition {y1.y2, oyt ={yh° and Ye Ye Ye Yo
{Q1,Q5, ... ,QNO}E{Q}TO. As shown in Sec. Il, for a given where EQk denotes the summation ov€y,==*+1. On the

initial condition, the system has the conserved quantity, theotation in Eq.(4.2), when we need to emphasize specific
total winding numbeW, defined by Eq(2.6). Hence, the variablds), we represent tha-body PDF as
final distribution function at= is written as

fa(y1,Q15 -+ - Yk, Qx;i - - - 3Yn,Qnit)

S(y—L/|IWI)ég for |W|=0
(y=L/WD %o - or Wi = ({y. QY Ly QY. QI i), (4.6)

Fy, Qi) =1 5(y—L)bq, ; for |W|=0,
@.1) The n- and (h—1)-body functions satisfy the relation
wherelL is the system size. This expression indicates depen- > | dyafay. QM0 =01 ({y. Q1 H0, (A7)
dence on the initial configuration through the quanttyin {Qn} Jye

the present study, we are concerned with the long term bes,q the normalization condition is
havior of the DSDF without dependence on the initial con-

figuration and system size, and assume that the temporal o N N
evolution of the DSDF is parametrized with only a single- 2; d{y}1fa({y,Q1;t) =1.
length scale being independent of the initial conditions. As {Qg} 7Ye

well as the dynamical scaling behavior of thédNwall sys-

tem, the solitonlike translational motioh(y —y4(t)), can be : . e .
characterized with the single sizg(t). Pointing to both asgtgm; ;C:tye%w" be practically satisfied in a sufficiently

scaling and solitonlike behavior, hereafter, we use the term : S ;
single-length scale behaviowhich means that both DSDF is ;T)iigqezs?ﬁrtﬁg??mn for thebody distribution function
show similarities of domain size distribution through the
change of single-length scale. Let us assume that such 9 noy
single-length scale behavior is achieved by taking the aver- Efn({y,Q}Q;t)z - E a—Jﬁ({y,Q}rl‘;t)
age over the possible initial configurations for laMgandL k=1 Yk
systems, also followed by taking the limit—c and Ny n
—oo with the constrainiN,/L be_ing constan_t. In this limit +2 Kﬁ({y,Q}Q;t). (4.9
the DSDF does not reach the final stédel) since(L/|W|) k=1
—o[O(Np)], and let us assume convergence to an uniqu
DSDF in this limit without proof.

The probability density functioPDPF for the state vari-
ables{y}] and{Q}] is defined as

Although these relationships are not held for the firlg

%ere, the term]ﬁ({y,Q}’l1 ;t) represents thkth component of
the probability density flux in the space ofconsecutive
variables(y,Q}}, whose trajectory in the phase space is gen-
erated by Eq.(2.5. The termKX({y,Q}};t) concerns the

f(y1,Qr: Vi ,0n:t) annihilation proces$2.3), and means the production rate of
MILLy e dneens the n-consecutive domains through the annihilation of the
=f,({y,Q}];t) kth domain. Those expressions are given as
i Iy, Qs
={ I s0=yu)0, o), (42
k=1 kk o
= E d{yo.Yn+1}
where the definition range of (i=1, ... n) is restricted to Qo:Qn+1 Ve
Yi=Yc, and(---) indicates the average over the possible XU (Yi-1,Qk-1:Yk Qx:Yk+1,Qk+1)
initial configurations with equal weight, which is formally el
written as Xfoi2ly, Qo 7s), (4.9
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Ki({y, Q130 Ki({y, Q1)
== 2 | dy' .y} o,y +YetyY Vi) ~2e Yefy(yo,1t) 2 | diy .y}, 0100
Q/er Ye Q’Q" Ye
Xu(y'.Q"ye1y".Q") X8y +yety" —y fi{y.Q}f 1y Q")
X2y, QH 1Y Q Y Ly QY. QbR 151), X foke (Y Q"HY. Q1) (4.15
(4.10
Collecting these results, we get the starting E§8) with
where Egs. (4.9 and(4.15 for the analysis of the DSDF.
v(Yi—1,Qi—1;Yi Qi Yi+1,Qix1) B. Realization probability for a specified twistness arrangement
—Qi, e Vi+1+Q,_ e ¥i-1—2Qe Y (4.1) This section deals with the realization probability for a

specified twistness arrangemdi@}; at timet. The master
equation for the realization probabilitf;,({Q}];t) is ob-

. . tained by integrating variabldy, ... ,y,} on both sides of
the n-body function are given as the master Eq(4.8) with Egs. (4.9) and (4.15

fo({y, QM Liye, — 1i{y, Q}r. ;D) =0,

and f;fcd{x,y}Efifcdxf;fcdy. The boundary conditions for

J
Efn({Q}T;T)
fo({y, QY 1y, iy, QI 151 #0, (4.12

== 2 feaQH D {Qhkeai D g
fa({y.Q}f 0. Qui{y. QIR 11D =0, i

n
for any kth domain (i k=n). The first condition is due to +k21 Z” 8o, f{QH1.Q%7)
the repulsive nature of the motion of neighboring domain Qe
walls withQ= —1, Eq.(2.4), and the second reflects that the Xk 1(Q" {Q ks 157), (4.16

probability density flux for untwisted domains does not van-
ish at the boundary =y, due to the presence of the annihi-
lation process.

We can reduce Eq4.10 by two approximations into a _
more simplified fcc)(rm. () Y The  annihilation speed dr=2€""ef(yc1). (4.17
—-v(y',Q":ye1y",Q") is always positive fory’,y">vy.,
and its main part is dominated by the terra2¢, the speed For the casen=1, Eq.(4.16 gives
of solely collapsing domain. Hence, this allows us the sim-

plification 0,f1(1;m)=—1+f41;n)+ (- 1;7),

where the time variableis changed intor by using

! ’ " 4 -y (418
v(y",Q"yeLy",Q")~ —2e7e. (4.13 0f(—1:m)=2f, (1) Fy(—1:7),

(ii) The correlation effect among three consecutive domain, .. o ormalization conditiorf y(1:7)+ f,(—1:7)=1.

SIZeS, §ic—1,Ye Yicr1), Just before an annihilation event in oo "y 0" oo o the symmetric initial conditidq(Q;;0)

which the middle of three domains collapses, does not sig-_ 1/2, which was used for the present numerical a'nalysis

nificantly remain after the event. This allows the following ! . ’
Eq. (4.18 has the solution

approximation:

F(y Q5 1Yo QY. Qs 13D f(Oum= S .19
~f(Ye LT 1 (Y, QK0 (Y. QI 13D 80,1, ere

(4.14 This result indicates that the number of negatiy@esitive
Q domains monotonically increasddecreases and also
for the kth collapsing domain (£k=<n). This assumption that(Q)=—tanh().
regards the motion of the domains just before reaching the The solution for a general case can be obtained by re-
cutoff size as almost independent of the influence of the adeursive procedure presented in Appendix A. For the symmet-
jacent domains. Based on these approximations,(£40  ric initial condition f,({Q}1;0)=1/2", the generahth prob-
becomes ability function is found to be

036112-8
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exp( — 721 Q
f({Q1:7) = — . (4.20
> exp( - Qi)
{Qhn i=1

This proof is shown in Appendix A. This result is theimes
product of the single realization probability. The numerical
check of the resul(4.19 is shown in the following section.

C. Single domain size distribution function

The single domain size distribution functidp(y,Q;t) is
given by integrating the variabldy}5 and{Q}} in Eq. (4.8
with Egs. (4.9 and(4.19), i.e.,

Jd J
%fl(y,Q,t):_WJl(ny,t)"_Kl(ny,t), (42])

where

o]

Iy, Q= > Jd{y’,y”}v(y’,Q’;y,Q:y”,Q")
Q'.Q" JYYc
X fa(y',Q";y,Q;y",Q";t),

—2Qe Yf1(y,Q;t)

123> ;dy’Q'e—y’fz(y’,Q’;y,Q;t>, (4.22
Q' c

Ki(y,Q;t)=2e Yef 1 (yo,1it) >, , dfy".y"}Sq.qqr
Q!’QH c
X6y +ye.t+y'—y)

Xf(y", Q") f(y", Q" ). (4.23

By using this equation, the evolution of the mean domain

size,?(t)=2Qf;°cdyyf1(y,Q;t), is estimated as

y(t)=4e Yef (o, 1;)y () +2y(Qe )1 (ye, Lit)

~4e Yef (y.,1:)y(t), (4.249

where the second term in the first line is neglected since

e Ye>|(Qe )| for?_(t)»_yc. Egs.(4.17 and(4.29) relater
and y(t) as r=3In[y(t)/y(0)]. In term of y(t), Eq. (4.19
reads

_¥0
y(t)+y(0)
y(1)

y(t)+y(0)

Q=1

f1(Qiy(t)= (4.29

Figure 8 shows a comparison between the numerical result

for the realization probability for the twistness of a single

PHYSICAL REVIEW E67, 036112 (2003
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FIG. 8. Comparison between the numerical result for the real-
ization probability for the twistness of a single domain and an ana-
lytical one, Eq.(4.25. Horizontal and vertical axes, respectively,
indicate the average domain size arfgQ;y(t)). Filled (Q
—1) and empty Q=1) circles correspond to the numerical re-
sults. Solid Q= —1) and brokenQ=1) lines represent E¢4.25
with y(0)=4.0.

domain and the analytical result E@t.25 with y(0)=4.0,
which is fixed over the present numerical calculations. When

V(O) was treated as a fitting parameter, the best fitting value

for ?(0) by nonlinear curve fitting, was about 4.7. From
these results, we can confirm that both results are in good
agreement.

V. ANALYSIS OF DSDF FOR SINGLE DOMAIN

First, we carry out the a mean field analysis of the DSDF
based on the dynamical scaling hypothesis. However, this
approach will fail with an inconsistency with the hypothesis.
As a result, this gives a proof for the absence of a scaling-
type distribution in the Bloch wall regime, and indicates the
necessity for incorporating the correlation effect between do-
main sizes. Next, we develop the analysis by incorporating
the correlation between neighboring domain sizes, and show
the qualitative solution for the solitonlike translational
motion.

A. Mean field analysis

By using the factorization approximation, in which the
joint PDF for two consecutive domains being replaced with

f2(y1,Q1:Y2,Q2:)=F1(y1,Q1;)f1(y2,Q2:1), (5.1

and applying it into the drift tern4.22) in Eq. (4.21), we get

J 14
Sy, Qi= —W[Z,u(t)—ZQe‘y]f(y,Q;t)

y(t
+Z(—)K(V,Q;t),

(5.2)
y(t)
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where f(y,Q;t)=f,(y,Q;t) and u(t)=(Qe Y). From
Eqg. (4.29, (Q)<0 holds, thenu(t) is negative except the
early stage. The terd(y,Q;t) in Eq. (5.2 is the rewrite of
Eq. (4.23 by using Eqg. (4.29, ie., Ki(y,Q;t)
=[y(®)/y(t) IK(y,Q;t).

Let us first consider the Eq5.2) without the reaction

&fo )= 07V )0 't 5.3
(9t (lea )_ (9y (yqu ) (y!Qa ) ( . )

We have here defined the mean field force
V(y,Q;t)=—2e o —2Qe Y, (5.9

where u(t) in Eq. (5.2) is replaced with—e Yo by intro-
ducing the size/p(t) corresponding to the vanishing point of
the mean field force foR=—1, i.e.,V(yp(t),—1;t)=0. It

is expected thayp(t) is close toyy(t) [yq(t) is defined in
Sec. .

Oy 0:1) 1+B(t)e Y A0
y,Q;t)=

1-B(t)e Y A®

with y.(t) = In[€e+B(t)]-A(t).

Here, the technical details of E(.7) are as follows. The
expressions foA(t) andB(t) are obtained by supposing the
relation A(t) = o[ yp(t) —yp(0)] with a constanta>0, so
that it leads to the lix behavior foryp(t), i.e.,

yp(t)=In (5.9

Et + eYD(O)
a L

A(t)= a(yp(t)—yp(0))=aln

2
1+ ;e‘yD(O)t}, (5.9

aeyD(O)

B()= 1+ a

2 1+ a
1+ —eyD(O)t) —1}
o

aeyD(O)

— s [e(1+a)/aA(t)_ 1]

(5.10

The step-function factors fa@= =1 in Eq. (5.7) represent
the definition ranges of for the functionf®(y,+1;t), those

fO(n(y,1;1),1,0)0(y —y.)

fO(n(y,—

PHYSICAL REVIEW E 67, 036112 (2003

The solution for a given initial distributiorf®(y,Q;0)
can be obtained by solving the equation of motion
y=V(y,Q;t). Lety(#,Q;t) be its solution trajectory at time
t with the initial conditiony(7,Q;0)= 7, then let us assume
the form ofy(%,Q;t) as

y(7,Q;t)=In[e”—QB(t)] - A(t), (5.9
where A(t) and B(t) must satisfy the equation#(t)
=2e YoM and B(t)=2e " with the initial conditions
A(0)=B(0)=0. The inverse of the solutio(b.5), i.e., the
trajectory starting witty att=0 and ending withy after the
time t, becomes

7(y,Qit) =In[QB(t) + &/ AV]. (5.6

By using Eq.(5.6), the solution of Eq(5.3) is written in the
form

(Q=1)
(5.7
1;t),—1;0)6(y —y.(1)) (Q=-1),
[
IN[B(t) +eYetAM] (Q=1) -
ly. @=-1. &

Therefore, from Eq(5.5), the regions fory are limited toy
=y, (Q=1) andy=y(t) (Q=—1) as shown in Eq(5.7).
For large yp(t), Yyc(t) is estimated asy.(t)~yp(t)
+In[a/(1+ )] from Egs.(5.9) and (5.10.

In Eqg. (5.7) the solution forQ=1 takes the asymptotic
form

fO(y+A(1),1;0) for y>y.(t)
e/ YeWfO(InB(1),1;0) for y<y.(t),
(5.12

for the situationy.(t)>y.. The prefactor exhibits a step-
function-like form, which exponentially decays toward the
regiony<y(t) with its decay width of order one, and(t)

is regarded as an effective cutoff size. The asymptotic form
(5.12 indicates that the probability mass for untwisted do-
main sizes flows out of the effective regign-y (t). Simi-
larly, the solution forQ=—1 takes the formf°(y-+A(t),
—1;0) for y>y.(t) and B(t)e Yef%(y.,—1;0) aty

Oy, 1;t)=

are determined by the following argument. The ranges of the=y(t), where B(t)~t1"%. These forms indicate that the

variablesy and » are restricted to/, =Y. . In addition to
these, from Eq. (5.6, 7#(y,Q;t)=maqIn[QB(t)
+e<"A0] y.] must be also satisfied, where rigy] means
the maximum of the sdfx,y}. This yields

probability mass for the twisted domain sizes flows into the
sizey=y.(t) and accumulates. The present analysis follows
the treatment in Ref.10] for the Neel wall situation. How-

ever, the behavior shown here is quite different from that of
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the Neel wall situation, in which the expression correspond-

ing to fO(y+A(t),1;0) of the present case was lik€(y

—A(t),1;0). The difference here is owing to the negative

sign of w(t) in Eq. (5.2), and it is also critical for the long
term behavior of the DSDF between both systems.

Now, taking the reaction terid(y,Q;t) into account, we
assume the form of the solution for E%.2) as

an(y,Q;t)

f(y,Q;t)= 2y

G(n(y,Qi1),Qit)  (5.13

with a function G, which is a generalization of Ed5.7).
Substituting this into Eq(5.2), we obtain

9 Y1) ay(7.Qi0)
ﬁG(U,Q,t)———T

K(y(7,Q;t),Q;t),
S0 y(7,Q;1),Q

(5.19

where 7 is changed to be an independent variable with th
map (5.5 :7—y, andK(y(7,Q;t),Q;t) becomes

1 3 o

Eg J‘ﬂcQ,(t)dn f‘)yCQQ,(I)dn 5(Y(7] !Q !t)+yc
+y(7",QQ" ) —y(7,Q;t))
XG(7',Q";1)G(7",QQ";t), (5.15

where the lower cutoff of the integral is denotedzgyt). In
the present treatmentng(t)z 7(y:,Q;t) [the definition
range of# is shown in Eq(5.11)]. However, that value has

PHYSICAL REVIEW E67, 036112 (2003

Y QU QU — ey 1-Q'B(e” 7 +Qe )

+QB(B+er Yo)e 7 7). (5.19

The term AY in Eq. (5.18 is negligible for 7’7"

> n(Y.,1;t), butit can be relevant around the lower cutoff of
the integral. ForQ=—-1 and Q'=1, at the cutoffsy’
=7(y.L;t) and "= 5(y.,— 1;t)=y., the factor(5.19 is
estimated as

B(B+e* Ye)e Ve
B+ehtYe

7yc_

Vel 1— +Be
B+eftYe

~O'

for large t. Similarly, for Q=1 andQ’'=1, at the cutoff
7', 7"=n(y.1;t) the factor(5.19 vanishes, and foQ=1
andQ’= -1, at the cutoffy’, "=y, the factor(5.19 di-
verges for large. Now, we are concerned with the problem
whether the functionG(#,Q;t) is written in a dynamical

scaling form ony with a length scale parameter or not. In

order to examine that, we discuss E§.14) or Eq. (5.17
under the assumption that E&.14) has the scaling range in
which G(#,Q;t) obeys the dynamical scaling behavior as
written in the formG(#,Q;t)~g[ 5/ 7°(t),Q;t]/ 7°(t) with

a scaling lengthy®(t). For this point of view, the contribu-
tion from the factor(5.19 presented above already breaks
the scaling behavior since the terms in E§.19 are not
written in scaling form. For this situation, in order to extract
the scaling region, we introduce an effective cutoff as written
in 7Q(t)<A(t) [<7°(t)] so that the factor5.19 can be
regarded to have an order of unity. By replacing the cutoff,

. N . . Q
been obtained free of the annihilation process and correlatiol < put G(7,Q;t) as G(7,Q;t)=G’'(7,Q;t) 8(n— 7s(1)),

effects, thus it may differ from values in more advanced

treatments.
With the Laplace transformation

é(p,Q;t)=fQ(t)dne‘p”G(n,Q;t), (5.16
e
Eq. (5.14) is rewritten as
e )+ Q) e PG (1 :
ﬁG(anyt)—’_nc(t)e ¢ G(ﬂc(t),Q,t)
1y(t) 2 J'oo [
=__7 , dﬂ’f ) d77”
2yt)y g J2wm A0
xe P QUG (5, QG (7,QQ" ),
(5.17
where
Y(7'.Q"7".QQ"it)

=7[y(n", Q") +y.+y(7",QQ";1),Q;t]
=7+ 7"-A)+AY(7",Q";%",QQ";1),
(5.18

and AY as AY~0. The remaining contribution from the
term(5.19 can be considered to be of a comparable order to
the correlation effect neglected in the factorization approxi-
mation for the drift term(4.22), i.e., expanding Eq5.18 as

e PY(7'.Q":7".QQ ) — g=pl7' + 7"~ A1) +Y]

X[1+Cyp+Cyp?+---], (520

with the expansion coefficient§€,=Cy(7',Q’; 7",QQ’;t)
(k=1,2,...), wherey. in the prefactor is negligible for
A(t). The terms higher than theth order can be regarded
as concerning correlation effects relevant to the nonscaling
region 7(y.,Q;t) <7< 7(t).

Discarding the terms obviously breaking the dynamical
scaling form, Eq(5.17 becomes

%G(D,Q;tH 72(De PIEOG(,2(1),Q;)

1y

2y 2 BPQnG(P.QQY.

Q!
(5.21
Since, forp=0, Eg. (5.21) must be consistent with Eq.

(4.18, in which the time scales andt are connected via
Egs.(4.17) and(4.24), we have
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] This progresses the factorization approximation with the
G(73(1),Q;t) = Y| 1 Sen 1= ! 5 function G,(y1,Q1;Y2,Q2;t) (=G,). The explicit form of
oo iy 2qit) ¥t 2nkn G, is given in Appendix C by omitting variables, there we

(5.22 introduce the identities extracting the correlation effect from
the joint PDF for two variables based on the characteristic
where the prefactor in the second expression is assumed fonction theory. Corresponding to EGC11) in Appendix C,

quickly saturate to 1. With the scale transformations, G, is written as
B P
c ro e 1oy ’ ’
nep=s, dr=——, G(p,Qit)=g(7p,Q; "), Go=7 f d{y1.Y2}Ca(Y1—Y1,Q1:Y2~¥2,Qzi1)
27 Y19Y2Jy,
(5.23 , _ , _
Xf(prl:t)f(yZ,QZ,t)n (527)
Eq. (5.2]) is rewritten as
whereC,(Y1,Q1;Y,,Q,;t)(=C,) corresponds to EqC12)
d~ d~ _ in Appendix C. And according to EGC15) in Appendix C
J— . — . S ’
~9(s.Qi1)+25-0(s,Qi) +e s C, satisfies the sum rule
=e”> 9(s,Q";7)9(s,QQ’;7), (5.24 f Cd{Y1. Y2} (Y1, Qe Y2, Q0 it)
Q’ 0
where the paramete is defined with the limitA/ 7t — 8 =(Y1Y2)q,.0, (Y1)0,.0,(Y2)q,.Q,
(>0), or nt~alByp(t), for larget.
To examine whether Eq5.24) has a scaling solution, let =Dgq, .q,(1), (5.28

us see the behavior of the moment hierarchical equations

defined for the coefficients of the expansi@(s,Q;7)  where(:--)q, o, denotes the integral

=3r_oMJs", where MR=(—1)[ 7/ 75(t)]"o/n! con-

cerns thenth moment of scaled domain sizg 72(t). MJ ®

=Mg(7) is the normalization factor already obtained as <"'>Q1~QzE fﬁxd{yl'y2}f2(y1’Q1;y2’Q2;t)('")'

M0Q=f(Q;T) at Eq.(4.19. The equations for the first mo- (5.29

ment M(f are obtained for thes'-order expansion of Eq.

(5.24). The calculation oM is shown in Appendix B. From namely, the quantitq o,(t) is the covariance that char-

the result in Appendix B, itis found th 2~ (1+B) /2 for  acterizes the correlation between neighboring domains those

large 7. Therefore, the first moment, i.e., the mean of scaledwistness is specified b§Q1,Q,}.

domain size So far, Eq(5.26) and the associated equations are nothing
but the rewriting of the original two-body PDF, for further

(5.2 development, other independent information f@r is

' needed. In the present analysis, we assume that the function

Ca(Y1,Q1;Y,,Q,;:t) quickly decays for largeY; ,(>0),

diverges to— o because oB>0. The restriction3>0 origi-  which satisfies the sum rulé.28, and meets the form of

nates from the direction of the mean field foreéy,1;t) Eqg. (C13. Then, as an extreme case of such a function, we

always being negative. This result is inconsistent with theapply

dynamical scaling assumption, which requiteg ni(t)>Q to

be constant, hence, we can conclude that the long term be-  C,=Dgq, o, (1)3(Y1—€) (Y, €)0(Y1)0(Y>),

havior of the DSDF cannot be described as a scaling-type (5.30

distribution.

1+
(9l m(1))g=—MP~— 5T

wheree is a small positive number, for which we will take
B. Correlation effect the limit e— +0. Although there are other choices G5,

The argument in the preceding section suggests that tHe'9-
correlation effect omitted in the factorization approximation

is crucial for the description of the DSDF. Based on this fact, Do, .q,(1) b D
the following treatment makes the joint PDF for two con- Co= Do.Dg 170,727, 0(Y1) 6(Y ), (5.3D)
secutive domains expand as o2
fo(y1,Q1:Y2,Q0:t) =f(y1,Q1:)f(Y,,Q5:t) with finite widths, Do, and Dq,, though we will not use
) ) them here.C, given by Eq.(5.30 is the most simplified
TGa(y1,Q13y2.Q231). treatment taking the correlation into account.
(5.26 Substituting Eq(5.30 to Eq. (5.27), we obtain
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04 T T T T . to the positive side, we ignore it; that is considered to be the
second effect propagated from the original correlation among
= negativeQ pairs of domains. This observation leads to

T 0 (Q=1)

volt)= f:dy'D_l,_1<t>e-y’f(y',—1;t> (Q=-1).
‘ (5.36

Substituting Egs(5.33 and(5.36) into Eq.(4.21), we get

Jd Jd
— iy, L;t)=— —V(y,L;t)f1(y,1;t) + Ky (y,1;1),
FIG. 9. Temporal change of the correlation coefficieRts,, at (v.19 ay (¥, Oy, 1Y 1y, 1)

Ri-1, andR_; ;. The vertical and horizontal axes indicate the (5.37
value ofRQl,Q2 and the mean domain sizgt), respectively. The
correspondence between eacI"Ra‘l,Q2 and kind of symbol is in- 9 N J 9 N
dicated within the figure. Ef (y,—1it)=— 7y V(y,—1;t) —v_q(t) 7y fH(y,—1;t)
92 +Ky(y, = 1t). (5.38
Gz—DQ1,Q2(t)W9(Y1—Yc—€)0(Y2_Yc—6) N | |
In a similar sense to the expressi@®.5 in Sec. Ill, we
X f(y1,Q1)f(y2,Q2). (5.32  anticipate the DSDF to be written in the form

Then th ili ity flugd.22 i I ith
en the probability density flug.22 is replaced wit F1(y,Q:t)= F=(y.Q:1) + g(y:t) + (interference terms

J
Jl(y,Q;t)=V(y,Q;t)f(y,Q;t)—VQ(t)@f(y,Q;t), where f<(y,Q;t) andg(y;t) corresponds to the DSDF for
(5.33  the small and large size region, and the interference terms
consist of various combinations of them.

where As shown in the numerical simulation, the single-length
scale behavior is described as a solitonlike motion. Now, that
- F ra=Y fiul O - behavior corresponds to the term ©f(y,—1;t), namel
t)y=— dy'Do o ()Q'e Y f(y',Q";t). P Y, =4, Y,
7Q(t % fyc Y'Pao(tQ (vy".Q5Y) f<(y,—1;t) has a sharp peak around the size
(5.39 =yq4(t) [~yp(t)], which corresponds to the average size of

) . ) the clusters that consist of domain sizes dispersed in a nar-
At the appropriate step in the calculation to £§.33, we oy range around that size. Hence the dynamics of the DSDF
have taken the limit— +0. will be reduced to the dynamics limited in the narrow range,
If the coefficient(5.34) does not take a well defined value, gnd we focus our attention to the behaviorfof(y, — 1;t).
our approximation will be meaningless, or if it takes negativetne dispersion of domain sizes can be regarded as the result
value, it may indicate the need of more higher order mo-yf the annihilation of domains, i.e., the role of the annihila-
ments. Figure 9 shows the temporal change of the correlatiog, is nothing but to prevents all domain sizes from being

coefficient condensed into one domain sigg(t) together with driving
the domain size growth. We can expect that the DSDF for
R B <y1YZ>Q1,Q2_<y1>Q1,Q2<y2>Q1,Q2 DQl,Qz(t) Q=1 is slaved td =(y,— 1;t) around the regiog~y4(t) as
Q1.Q,~ - ' discussed in Sec. Ill.
v V(8YDa,.0,{0¥2)a,.q, (¥ a, .0,

From the numerical results, we postuldfg¢y,—1:t) can
(5.35  be written as

where 6y 2=y, (Y120q,q,- IN the figure the quantity .

R_;_; exhibits a well defined behavior, i.e., it smoothly Fly, =L =H(Ohy—yo(t);1), (5.39
changes and saturates to a constant value within the range

0.10-0.12. However, the data points ®y; andR; _; ex-  with a quasistationary function, where the coefficienit (t)

hibit a scatter behavior, the vibration around the zero axiscan be regarded as the order parameter reflecting the broken
The main cause of the scatter behavior is considered to besymmetry of chirality(Q)# 0. Figure %a) shows thatH(t)

finite size effect because of the monotonic decreasing of thgrows fromH(0)=0 and saturates to a constant value, and
number of domains. From these results we can regard theuggests thaH(t) can be expressed in terms 6f—1;t)
quantityR_, _; as positive, and in effect piR; ; andR; _; —f(1;t)=—(Q).

to zero. Although the mean &, ; shows a tendency to shift Substituting Eq(5.39 into Eq.(5.38, we get
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Ht :
] b(s)= (2( Do 1- 1(t(5))J zZe " h(z';9),

yp(t(s))
(5.44

from Egs.(5.42 and(5.36). The factorH(t) and the integral
value of the last factor, respectively, saturate to certain con-
stant values with an order unity for largg(t). In the
present approach, @ _; _;(t) can not be explicitly ex-
. pressed with known quantities, we then estimate the time
dependency oD _; _;(t) numerically as in the following
paragraph.

Figure 10 shows the temporal behavior of the quantity

0 10 20 _3‘0 40 50 60
¥
n =

FIG. 10. The temporal change of the covariax®, 4(t) (n DYy 1(D=(y1yY2)(-1,... ~qn
=2,...,10) isdefined by Eq(5.49. The vertical and horizontal — B o B o
axes, respectively, indicate the value Ely_l(t) and the mean <yl>{ Lo = <y2>{ Lo =
domain sizey(t). The correspondence between each nurmbend (5.49
the kind of symbol is indicated within the figure. for n=2,...,10, where(- - .>{71 ..... L is the average

taken over the ensembles pfconsecutive domains whose
twistness are alQ=—1, and in which the neighboring do-
mains numbered as 1 and 2 are located at the center of the
array. In particular, the cage=2 is identical toD _; _4(t).
It is found thatD"; _,(t) increases in the course of time
over alln, and its magnitude for largertakes smaller values
wherez=y—yp(t) and the new time variableis introduced  at the same time. Here, it is important thatrais large the
with the transformatios=2eYo(), The coefficients and the temporal behavior ob" 1-1(1) indicates a tendency to satu-
term AK;(z,—1;t)(=AK,) in Eq. (5.40 are defined as rate to a constant vaIL[aIthoughD2 1-1(t) does not clearly
reach a constant valué) 1(t) though clearly reachés
This agrees with an observation that the quarlify, _,(t)
' (5.41 for a largen extracts the correlation between neighboring
domain sizes inside of clusters in which domain sizes are
ordered with sizes aroundgy(y), while D", ;(t) for

J . — J -z J .
gh(z,s)——ﬁ [e —a(s)]—b(s)g h(z;s)

+AK1(21_1;t)|t=t(S)’ (54@

1 :
a(s)=1+ EeyD yp(t)

t=t(s)

b(s)= Ev_l(t)eyD(‘) (5.42 smallern is more influenced by the disordered domain sizes
2 t=t(s) outside of the clus.ters. From this observation, we assume
thatD _; _4(t) consists of two parts @ _; _4(t)=D-; _;
RYAG) + 6D _; _4(t) with the constant pard”, _,, the contribu-
AK;=— {H(t)h(z t)—Kq[z+yp(t),—1;t]}. tion from the ordered domain sizes, add _; _(t) dimin-
2H(1) ishing in the course of time, the contribution from the disor-

(543 dered ones. According to this decomposition, we also assume

h(y—yp(t);t) to be separable as
For a(s), b(s), andAK,, we estimate their time depen-

dency as follows. Foa(s), from the numerical resulf,(t) h(y—yp(t);)=h(y—yp(t))*+ sh(y—yp(t);t),
~Int [this also impliesyp(t)~Int], it can be regarded to be (5.49
a constant for a sufficiently large Next, from the require-
ment for h(z;s) being quasistationary, we should choose
H(t) so as to satisfﬂ;"cdyAKpO. By using Eqgs(4.23

where the shape of the former function is stationary and the
latter temporally diminishes. Similarly, from E¢5.44) and
R these assumptions, the coefficidi(s) is also decomposed
and (4.24), this makes H(t)~f(—1;t)f(1;t)y(t)/y(t), into a constanb® and another temporally diminishing part
thereby we findH(t) o[ f(—1;t)—f(1;t)] with Eq. (4.18 Sb(s) asb(s)=b”+ sb(s). Substituting the expansion for
[note thatH(t)«f(—1;t) for a sufficiently larget and b(s) and Eq.(5.46 into Eq. (5.40, and collecting only the
H(0)~0 is the desired initial condition fdd (t)]. The order  stationary terms, we get

estimation of Eq(5.43 gives AK,~e"o®f(1:t)y(t)/y(t). 3 3

This leads toAK;~y(t) "2 by means ofy(t)~e ¥>® and Seh(zs)=———l(e7*~a")—b"—Ih(z;s), (5.47)
f1(1;y(1)~y(t) ! [see Eq.(4.25]. Accordingly, hereafter,

we drop the termAK, from Eg. (5.40, since it becomes wherea” is the constant part ai(s) in the limit s—«. Itis

negligible in comparison with the other terms in the orderexpected that the remaining temporally varying terms are
unity. The remaining parameté(s) is written as comparable with the reaction terhK,. The form of Eg.
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U relation effect in the derivation of E¢5.33), since the more

Mt=2.4x10:o ] detailed shape of the DSDF is considered to be sensitive to
0.25 =210 1 ] higher order moments.
F <44 =6.7x10 7
0.201 Per=56x10"° |
= - 0.20g0%0 0 e | VI. DISCUSSION
—
' 0.15 In this section, we discuss the difference in the domain

growth behaviors between the &leand Bloch wall situa-
tions. Except for the detailed shape of the DSDF, the char-
acteristics of the DSDF in the Bloch wall situation lie in the
structure of the mean field foré&y,Q;t) as defined by Eqg.

_ (5.4). In the Nesl wall situation, from Eq(1.3), the mean

10 field force is obtained as

0.05

0.00—+

y=2e o) —2e Y=V, (y). (6.2)
FIG. 11. Typical shape of E45.48 (solid line) and the numeri-
cal data forf(y, — 1;t) whose peak position is shifted to the origin.  We can also define the potential functions from the force
The parameters in Eq(5.48 are chosen as 0.20€¢xp0.5Q  fields Eqgs(5.4) and(6.1) by integrating them on the variable

—0.18 expt-2)]. y, i.e.,

(5.47) is the Fokker-Planck equation with an exponentially Ug(y,Q;t)=2e ¥olly—2Qe™Y, (6.2
decaying potential. The stationary solution of E§.47) is

given by U (y;t)=—2e Yoy —2e7V, (6.3

for the Bloch Ug) and Nel (U,) wall situations, respec-
tively. The typical behaviors of these functions are shown in
Fig. 12. The potentialUg(y,—1;t) has a minimum aty
where C is a constant. More advanced treatment of Eq.=yp(t), andUg(y,1;t) has an attractive point at the cutoff
(5.47) is found in Ref.[21]. sizey=y., where domain sizes collapse. It is clear that this
Figure 11 shows a comparison between the numerical dattructure eventually brings the condensation of domain sizes
and the typical shape of Eq(5.48, 0.20exp—0.5 aroundy=yp(t). On the other hand, the potentidl (y;t)
—0.18 exp(-2)], whose parameters were obtained with ahas a repulsive point at=yp(t), where domain sizes for
nonlinear curve fitting to the data for=6.7x10'% The dif-  y<yp(t) diminish and collapse ay=y., and that fory
ference between both results is relatively large for the region>y(t) grows, whiley>yp(t) holds. In the analysis with
z>0. the scaling hypothesis in Sec. V A, at E§.25, we have
One reason why the difference arises is that there is norshown that the mean scaled domain size does not take any
stationary behavior in the numerical data, which has beefixed value but diverges toward a negative infinity. This be-
eliminated in the analytical result. Another cause may lie inhavior is implied from the form ofUg(y,Q;t) for vy
the truncation of higher order moments concerning the corsyp(t), i.e., Ug(y,Q;t)~2e YoMy, by which domain
sizes always flow out of the regiop=yp(t), which was
0.2 ; . . . . . assumed to be scaling region in the analysis of Sec. V A. For
\ -=U,(n.1i) the Neel wall situation, the DSDF obeys the scaling-type
3 distribution. While the dynamical scaling structure is devel-
oped by the annihilation process, the stability of the scaling
behavior is supported by the potential structuéy;t). This
is intuitively explained by using Eq6.1): the equation of
motion for the scaled domain sixe=y/yp(t), being written

h*(z)=Cexd —{a"z+exp—z)}/b™], (5.48

e
s
T

Value of potential (a.u.)
o
(=]

as
0.1F yo(t)
=- + e Yo —e oY) (6.4
FOMETIOs Lo 69
024 é 1'0 ' 1|5 has a stable fixed point depending on the fornygft) [it is
Y reasonable to bg/p(t)xe ¥oM]: this retains the scaling

FIG. 12. Typical behaviors of the mean field potentials, Property of the DSDF at the edge of the scaling region. This
Ug(y,Q;t) [Q=1 (—1) correspond to brokefdoubly dotted bro- ~ discussion is similar to the argument by Lifshitz, Slyozov,
ken) line] andU,(y;t) (solid line). The vertical and horizontal axes and Wagner{4,5] for the scaling solution for droplet size
indicate the values of the potentiglarbitrary uni) andy, respec- distribution in a binary mixture system, and also suggests
tively. For all these functiongyp(t) is set to be 6.0. that we can classify whether DSDFs obey scaling behavior
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or solitonlike behavior by a mean field for¢er potential
like used here in 1D domain coarsening systems.

PHYSICAL REVIEW E 67, 036112 (2003

numerical results obtained from E@2.5). Although the
growth law for the mean domain size possesses the same

Finally, let us discuss the self-consistency of the obtainedogarithmic growth law as obtained for the' ®lewall situa-

DSDF for solitonlike behavior. The characteristic siggt)

tion, the DSDF exhibits a quite different behavior from the

was defined by Qe Y)=—e Yo and this relation should Neel wall case. The DSDF can be characterized by solition-
be held with the DSDFf(y,Q;t). To know the average like translational motion, in which the peak position of the
(Qe™Yy needs information for the entire DSDF or all the DSDF grows logarithmically but its shape does not so
moments{yk>Q (k=1,2,...) forQ=+1. However, due to change.

approximation procedures, our restifz) does not have With the help of numerical results, we theoretically ana-
enough accuracy to calculate such higher order momentdyzed the DSDF in the Bloch case based on a kinetic equa-
hence, the above-mentioned relation is not useful. Instead, I&ion for domain sizes. The probability function for the real-
us consider the conditional second-order moment of domaiization of a specified twistness arrangement for
size as defined bysy2)_; _,, which is also approximated as n-consecutive domains was obtained, and it agreed well with

:dyﬂ—l;t)f(y,—1;t><y—<y>>2

= mdth(y—yp(t))(y—w))z- (6.5

Ye

Here, we use the saddle point approximationtt(z), i.e.,
the saddle point for Eq5.48 is given asz* = —Ina”, and
aroundz=z*

the numerically obtained result. The DSDF for a single do-
main was studied in two steps. First, assuming a scaling form
for the DSDF, we proved that it is not described as the
scaling-type distribution function. Next, incorporating the
correlation effect between neighboring domain sizes, we ob-
tained a qualitative Fokker-Planck equation and its solution
describing the solitonlike behavior.

Finally, we discussed the difference between thelN@ad
Bloch walls systems. This argument suggests that the struc-
ture of a mean field potential classifies the long term behav-
ior of the DSDF into two types. We also discussed the self-

consistent condition for the solitonlike behavior.

In the present study, we have not deal with the thermal
noise effect, which may be important for more practical ap-
plication. This remains for future study.

ax

h*(z)ch*(z*)expg — — 622, 6.6

(2)h™(z") P( b ) (6.6)
with 6z=z—z*. This leads to(y)_;_;=Yyp(t)+2z* and
(8y?)_1_1=(8z%_,_1=a*/b”. From the relationg5.35),
(5.36), (5.41), and(5.42), we havea™=1+ ey (t)/2 and
b*/(8y?) 1 1=R_;_,(e"? _,/2 for sufficiently larget
[a(s)=a”, b(s)=Db"]. In terms ofyp(t) andR_;_;, the
relation(y)_, _;=a”/b” reads
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yo(t)=(R_;_1(e %) _;—2)e Vol (6.7)

This proposes a qualitative self-consistent condition for the For the casa=2, the right hand side of E¢4.16) can be
solitonlike bahavior, Q?mely, the growth gh(t) requires  givided into one linear term proportional fa({Q}!;t) and
the conditionR_; _;(e”?)_1>2. Hence, it turns out that the the other terms, denoted b, ,(7), comprising of the

correlation coefficientR_; _; ml_Js_t be positive, and the |ower hierarchical probability functions‘,k({Q}'{;t) (k=n
DSDF forQ=—1 has to be sufficiently asymmetric for the _ 1 1), as

inversionz— —z. The former signifies that the solitonlike
behavior is inevitably connected to the nonvanishing corre-
lation coefficient, and that the latter can be read as the asym-
metry coming from the unidirectional motion of the soliton-

like behavior. whereD(r) =2[f,(~1:7)— f,(1;7)]=2 tanh¢), and

APPENDIX A

9, f({QH:7) = —D(DF({Q}: ) + {n-a(7), (AD)

VIl. SUMMARY

n
We discussed the dynamics of the domain size distribu-7._,(7)=— > fk_l({Q}'i_l;T)fn_k({Q}E+1;T)5Q N
tion in the 1D anisotropiX'Y-spin model, and provided an- k=1 K
other scenario of an ordering process. First, we showed the n—1
role of the repulsive interaction in the domain wall dynam- k=1 ~7.
ics. It turned out that the repulsive interaction between +|Z’z Q,EQ,, 5Q'<'Q'Q”fk({Q}l Q57
neighboring walls brings about the formation of clusters and
the condensation of domain sizes around one characteristic
size. While the role of the attractive one is to drive the coars-
ening process accompanied by the annihilation of domains.
Next, we discussed the dynamics of DSDF based on the

Xk 1(Q" {Qks1;7)

+i (=17 o ({Q13 D+ s ({Q 1)1
(A2)
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The detail of the calculation of EgA2) is shown in the last .
paragraph of this appendix. Furthermore, E41) can be 2 f1(Q"; M fn(Q1Q"{Q}2;7)
written in the integral form Q

QYD =W(n) F,({Q}1:0) +§ QY Q' Quin f1(Q"7)
+W(T)fTW(T')*lgn,l(T')dr', (A3) =2f1(1; 1) f({QI: )+ o~ Lin)[fa(— Q1.{Q}3:7)
0
+1a({QH 1~ Qnin]
whereW(7) =exd — [{D(7')d7 ]=1/cosh ¢)2. This is the re- _ SN f . n. 1.
cursion relation cor?nectingwth and (—1)th functions. 211 = (= L)) ({ Qs r) + Fa( = 1i7)
Hence, then-body probability function can be inductively X[foo1({Q}5: )+ fu ({Q1 1 1)1,

obtained with the relation EQA3) in order from the prob-
ability function fo_rn=1, which is given by Eq(4.19. The  where we have useﬁQlfn(Qll{Q}’z‘;T):fnil({Q}g;T) in
result after carrying out this procedure becomes R0 e |ast step. The first term is the first in the right hand side

for the symmetric initial conditiorf,({Q}7;0)=1/2". of Eq. (A1), and the second is the last in H&2). Hence, all
The proof is based on the mathematical induction methoderms in Eq.(A1) are confirmed.

The casen=1 [Eq. (4.19] accords with Eq(4.20. Suppos-
ing Eq. (4.20 is the form of the lower hierarchical probabil-

ity functions up to 6 — 1)th order, and substituting them into APPENDIX B
Eqg. (A2), we obtain The equations for the first mome? is
_ P : i l_1_oMYMi=Mm:L —oMiM:L
{n-1(1)= ——————| ~(n=2)sinh(7) - M1=1-2Mq (M;—My )+ B[1-2MM, 7],
(e™+e ) T

(B1)
—cosh 7) gl Qx

exp( —7-_21 Qi) . (A%

J . _ - _
M T=2Mg (M1=M; ) +2BMg Mg, (B2)

Substituting this and ,({Q}};0)=1/2" into Eq. (A3), then _ .

we find f,({Q}7:7) to be of the same form as E¢4.20. Taking the sum and difference from EqB1) and(B2), we

Therefore, it is proved that the for(d.20), which is obtained get

for the symmetric initial configuration, holds for a general P

numbern. _ _ ——[MI+M1=1+8, (B3)
The detail of the calculationf Eq. (A2): the first summa- aT

tion in the right hand side of Eq4.16) does not include the

n-body functions but consists of the lower hierarchical func- ¢ 1 1 P 1 P

tions, thus they are included if_;(7) as the first summa- 3,[M1=M; ]=148=4Mo (M1—M; ) —48M, M.

tion in Eq. (A2). The last summation in Eq4.16) can be (B4)

divided into then-body function and the others as

. These yield
gl QZQ” 5Qk,Q'Q"fk({Q}§7l,Q';T)fn—k+1(Q"a{Q}E+1§T) Mi_g_ Mfl:Mi(o)+M51(O)+(1+,3)T, (B5)
n-1 1 -1
:E 2 o, ororf ({Q}k_l,Q’;T) 1 _1:4[M1(0)_M1 (0)] 1
k=2 Q',Q" Q.Q'Q K 1 Ml Ml (1+627)2 (1+eZT)2

X ook 1(Q"{Qk 417
X

(1+,8)(7'+ %e‘”)
+ 2 8g,.0arfiQDf(Q Q)37
Q/’Q//

5 3
— 2t 2B (A-per), (B6)
+ E 5Qn,Q’Q”fn({Q}2_1’Q,;T)fl(Q”;T)'
Q'.Q" where we have used
The first summation is included ig,_1(7) as the second . 1 [14e2
summation in Eq.(A2), and the last two summations are J dr"'Myt=zIn|—— (B7)
furthermore expanded as 7! 2 |1+e?"
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in the calculation of the second equation. For largeEqgs. B..=A ,=C.(0.0 = — C

(B5) and (B6) behave asMi+M;'—(1+p8)7 and M1 11=A11=Co0.0=0yayo) = {ynlyz). - (C)

—My = (1+B)/4, respectively. B1.2=A1 2= —(Y1Y2) T (YIX(Y2) + 2(Y1Y2)(V2)
APPENDIX C = 2(y1)*(y2)- (C8)

The formula(5.26 and the related equations in Sec. V B The functionC»(q,,0,) extracts the correlation effect be-
are constructed from the characteristic function for two vari-tween two variables. Applying the inverse Laplace transfor-
ablesy; andy,, mation, which is defined as

? (q .q )= e dy1—dz2y2 1 o0 B
2042 =¢ ) f2(Y1,y2):(27T—i)2 7iwd{Q1,Q2}eqﬂ1+q2y2f2(Q1,Q2),

- fy dfy1.ya}e B2y, y), (CD 9

for Eg. (C1), to both sides of Eq(C2), we obtain the joint
where indexes fo@ variables are omitted for simplicity, and ppF fory, andy, as

the joint PDFf,(y4,Y,) is normalized so that its integral is

unity. Let us expand the characteristic functi; ,q,) as fa(y1,¥2)=f1(y)fa(y2) +Galy1y2),  (C10
(e~ Y1 %Y2) = (g~ 1) (@ 92Y2) where fl()_/i) (i_=1,2) is the single-variable PDF and
_ Gy(Y1,Y2) is defined by
+Ha(d1,02)(e” W)(e922). (C2) 92 (=

- Ga(y1.y )=—f d{y1.y2}C(y1=Y1.Y2=Y2)
The functionH,(q, ,q,) involves the correlation effect. With 20T ay,dy, Ye n PoowTE
the cumulant generating functions, which is defined by , ,
<e7Qiyi>Ee\IJ1(Qi) (| :l,2) and<e7q1Y17QZy2>Ee\I'2(Q1vQZ) for Xfl(yl)fl(yz)r (Cll)

one and two variables, the functid;fh(q1 ,0,) is rewritten as  with

Fy(qy,qp)=ev2(0 0 Vi@ -Ya@) 1 (C3) 1 (= _
S CYaYo)= s f _ d{ay,q,e™Y2%2Y2C(qy,qp).

Assuming the functionaV; and ¥, are analytic aroundj; o C17
=(Q,=0, together with the relations (C12
N 1yngmgn H;ere, fa(y1,Y2) must  satisfy  the _ condition
1+ S 41> (ym r21m>:| Jy dyafa(y1.y2)=fi(y1), and from Eq.(C10 this leads to
n=1m=o Mm!(n—m)! [5.dy2Ga(y1,y2) =0. From the integration of EqC11) on
(C4 one of the two variables, we can find that such a relation is

W4(d1) =W5(d1,0) and ¢1(q,)="¥,(0d,), the function held by the function form

¥,(01,92)=In

H2(01.92) is expanded as C(Y1,Y2)=C'(Y1,Y2)0(Y)O(Y,),  (C13
~ B i 107 _ i 19y’ by introducing a functiorC’(Y4,Y,). Supposing this form
Ha(0 az) =ex 22 i Anm | 1= 2 SrnrBam for C(Y4,Y,), via the Laplace transformation of E(£12),
we have
=0102C2(d1,0), (ChH ~ .
where C(d1,92)= fo d{Yy1,Yo e 1117 %Y2C(Y,,Y,).
gnem (C19
An’m:a > ~W2(d1,02) , (C6)  Puttingq;=0q,=0, this provides the useful sum rule
4194z

q,=00d,=0

C = — = [ (Y1, Y C(Y1,Ya).
and the coefficienB, ,, is determined from the combination C0.0={y1y2) = {yn(y2) Jo diYLY2}C(Y1.Y2)
of {Anm}. Afew particular cases dB, ,, are as follows: (C1H5
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