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Aging at criticality in model- C dynamics
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We study the off-equilibrium two-point critical response and correlation functions for the relaxational dy-
namics with a coupling to a conserved densityodelC) of the O(N) vector model. They are determined in
an e=4-—d expansion for vanishing momentum. We briefly discuss their scaling behaviors and the associated
scaling forms are determined up to first orderdn The corresponding fluctuation-dissipation ratio has a
nontrivial large time limit in the aging regime and, up to one-loop order, it is the same as that of theAnodel
for the physically relevant casd=1. The comparison with predictions of local scale invariance is also
discussed.
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. INTRODUCTION order-parameter correlation function  C,(t,s)
=(@x(t) @o(s))-

Nonequilibrium dynamics of statistical systems is cur- |If the system does not reach the equilibrium, the response
rently under intensive theoretical investigation, and new dy-and correlation functions will depend both sithe “age” of
namical behaviors have been recently discovered in modekhe system, also called “waiting timg¢’and on the observa-
of disordered systems. One of the most striking of them idion timet. To characterize the distance from equilibrium of
aging i.e., a persistence of the system in a nonequilibriuman aging system, evolving at a fixed temperatiltethe
state even after a macroscopic time has elapsed since tfigctuation-dissipation ratio(FDR) is usually introduced
latest perturbation acting on it. As a consequence, there is &3l
“memory loss” of the thermal history of the system and its
response to an external field, for example, will depend on it. _TR(LS)

. . . X ( 19) .
This fact is commonly observed in glassy systdmg]. It X 3sCx(t,8)
has been pointed ofi8], however, that this kind of behavior o
may be also observed in critical nondisordered models. IYVhent and the waiting times are both greater tharz, the
these cases the presence of slow-relaxing modes could kefjnamics is homogeneous in time and time-reversal invari-
the system in a nonequilibrium state even asymptotically fo@nt SO that the fluctuation-dissipation theorem can be applied,
large times. Consider, indeed, a system in a generic configl€2ding toX,(t,s)=1. This is no longer true in the aging
ration and, at tima&=0, bring it in contact with a thermal reglme[3].. I.t h"?ls been argued that the long-time limit of the
bath at a given temperatuile The resulting relaxation pro- FDR at criticality
cess is characterized by a transient behavior with off-
equilibrium evolution, fort<rg, and a stationary equilib-
rium evolution fort> 75, whererg is the relaxation time. In
the former the behavior of the system is expected to depenig a noveluniversalquantity of nonequilibrium critical dy-
on initial conditions, while in the latter time homogeneity namics[7-9]. Correlation and response functions have been
and time reversal symmetfat least in the absence of exter- exactly computed for a random walk, a free Gaussian field,
nal field9 are recovered and such a dependence is lost; fluand a two-dimensional XY model at zero temperature and
tuations are thus described in terms of “equilibrium” dynam- the valueX”=1/2 has been foun@3]. In the case of the
ics. d-dimensional spherical mod¢8], one-dimensional Ising-

In the following we focus on ferromagnetic systems Glauber chaif10,7] and two- and three-dimensional Ising
quenched at their critical temperatufg [4] for t=0 (inter-  model, investigated by Monte Carlo simulatidig§, X* has
esting behaviors are observed also in the case of noninstamalues ranging between 0 agd
taneous quench, i.e., for time-dependent thermal E&ihA Field-theoretical methods have been proven a powerful
convenient way of describing dynamics is to study two-timetool for the computation afiniversalquantities(such as criti-
response and correlation functions. The former is usually desal exponentsin critical phenomendfor an updated review
fined asR,(t,s) = &(¢,(t))/ 5h(s), whereg is the magnetic see Ref[11]). In this framework the problem of critical re-
order parametet is a small external field applied at time laxation from a macroscopically prepared initial state has
s>0 in the pointx=0, and(-) stands for the mean over the been analyzed since some years, and a new universal expo-
stochastic dynamics. The latter, instead, is defined as theent associated with it has been introduced as a consequence

of an additional time-surface renormalizatigt].
We would take advantage of these previous works to com-
*Email address: calabres@df.unipi.it pute the critical FDR and the associatediversal scaling
"Email address: andrea.gambassi@sns.it functions for mesoscopic models of dynamics, overcoming

1.9

X*=lim lim X,—o(t,s) (1.2
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most of the analytical difficulties encountered in the exact Dynamical correlation functions, generated by the Lange-
solutions of models with aging dynamics. In Ref$3,14  vin equationg2.1) and(2.2) and averaged over the noisgs
this problem has been addressed for the dissipative dynamiesd £, may be obtained by means of the field-theoretical
(model A of Ref. [15]) of the O(N) ferromagnetic model, action[24,23

whereas the purely dissipative dynamics of the diluted Ising

model has been analyzed in REE6]. Here we consider the ~ o~ _J f 0|~ ~O0H[¢,e] ~ -
O(N) model dynamically coupled to a conserved density Se.p.e8]= | dt | dX @t Qo S eQe
(model C of Ref. [15]). Physical realizations of this model SHlo.5]

i i i ~ ~ el ~
are, e.g., intermetallic alloygl7], adsorbed layers on solid +ode—p QEV2 ¢ +ep V%,

substrate$18] and supercooled liquifl19]. Also the deter- Se

ministic microcanonical* model[20,21] is believed to be 2.6
in the modelC universality class since the order parameter is '
coupled to the conserved enerd2].

The paper is organized as follows. In Sec. Il mo@elks
intrpduced a_md its scaling fprm_s are discussed._ln Sec. Il W%qs. (2.6 and (2.3 the interaction vertices, given by
derive the first order contribution in an expansion to the ~ 3n . B ~
response and correlation functions for all valuess@fndt (2gope~/3!, as in the case of moddl, —Qyepe and
and we derive the FDR up to the same order. Finally in SectQy ¢°VZ&/2.

IV we discuss our results stressing their relevance for the In Refs.[12,2] this formalism was extended to deal with

issue(of applicability) of local scale invariance. relaxation of the system from a macroscopically prepared
initial state. To take into account the effect of such initial

condition on the dynamics described by ERJ.6), one has
Il. MODEL C also to average over the possible initial configurations of
Let us consider the relaxational dynamics of anboth the order-parametepo(x)=¢(x,t=0) and the con-
N-component fieldp(x,t) coupled to a noncritical conserved served density(X) = &(x,t=0) with a probability distribu-
density(x,t). This system may be described by means oftion e~ ol¢o-<l given by[25]
the following coupled stochastic Langevin equatiomodel

where p(x,t) andz(x,t) are the response fields associated
with ¢(x,t) ande(x,t), respectively. It is easy to read from

r
C of Ref. [15) Hol ¢a.eol= [ @ 2Leo( -0 T
_ 57—{[@18] 1
dp(x,t)= QWJFS(XI), 2.1 n Z_CO[SO(X)_U(X)]Z _ 2.7
OH[ ¢,e] This specifies an initial state(x) for ¢(x,t) andv(x) for
— 2
de(x,1)=Q0pV Se(x,t) ), (2.2) e(x,t) with correlations proportional togl andcg,, respec-

tively. Response and correlation functions may be obtained,
where’H[ ¢,¢] is the Landau-Ginzburg Hamiltonian for the following standard method24,23, by a perturbative expan-

fields ¢ ande with a coupling term between them sion of the functional weighg ™~ (Sl¢-¢#:e]*Hol¢o.o) - An jni-
tial condition with long-range correlations may lead to a dif-
1 1 1 1 ferent universality class, as, e.g., shown for the
H[(p,s]=f ddx §(V<p)2+ Ero<p2+ 4—|g0<p4+ 582 d-dimensional spherical model with nonconservative dynam-
’ ics [26].
1 The propagator$Gaussian two-point correlation and re-

+ 5708<P2 : (2.3 sponse functionsof the resulting theory arg25]
(¢i(0,5)¢;(—a,))0=6;R(t,5) =& B(t—9)G(t—s),

where) and p are the kinetic coefficientg,gxT—T., gq 2.9

and vy, the bare coupling constantg(x,t) and{(x,t) zero-
mean stochastic Gaussian noises with

Si
(€i(0,5) (= a,1))o=&;CY(t,5) = —— {G(II—SI)
(EGDE(X ) =2Q s(x—x")8(t—t")8;, (2.4 q°+ro

2

. (29

rot
(LD E))y=—2p Q V2S(x—x") 8(t—1"). (2.5 +( oq 1)G(t+8)
The coupling betweea(x,t) and¢(x,t) does not change the \where
static properties of the latter as it can be seen by computing
the effective Hamiltonian for ther field (see Ref.[23]). G(t):e—ﬂ(qzﬂo)t, (2.10
Moreover e-field static correlation functions are related to
p>-field correlation functions. and[25]
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5 t' t s t' t s t' t
(R1) (C1a) (Cu)
FIG. 1. Feynman diagrams
'/ \‘ '/ \. ( \' contributing to the one-loop order-
parameter responsgR;), (R»),
! " ! / " " / ! A 4
s LN - Ut ¢ 5 EN_ Lt ¢ s EN_ Lt ¢ (R3)] and correlation function
Ciap)s (Caap)s (Caap), (Ca)l-
R. C C [( 1a,b. a,b. ] a,b. 4,
(Rz) (Cza) (Cas) Response functions are drawn as
lines with arrows going from the
, o~ s <0 early time to the later one,
\ \ /
4 o ° . whereas correlators bear no arrow

5 t Ut” t s ' " t s t”Ut' t lines. Solid(dashedl lines refer to

the order-parametes (to the con-
(Rs) (Csa) (Css) served density).

(Ca)

(3(q,9)e(—q,1))o= ngq(t,s): 9(t—s)G,(t—s), —n—.z)/z [27], and 6 is the_ initial-slip exponent of response
(2.12) function[12,25. The functionF(v) andFg(v) are univer-
sal provided one fixes the nonuniversal normalization con-

(e(q,8)e(—q,t))g=C? 4(1S) stantAg andAc to haveF;(0)=1.
' In Ref.[13] the following quantity, related to the FDR,
=G,(|t—s])+(co—1)G,(t+59), was introduced in momentum space
S = .
with 4 ascq(tas)
Gs(t):efpﬂ(qzﬂo)t. (2.13 It has been argued that the zero-momentum limit
As in the case of modeA and modelB, it has been shown Xg—o= lim lim X;_(t,s), (2.17

S—wt—oo

that 7-51 is irrelevant(in the renormalization group sensso

_1_
that we setry "=0 [12,25. is equal to the same limit of the FDR..2) for x=0, i.e.,

2(‘(’;:0: X* to all orders[13]. This fact allows an easier per-
A. Scaling forms turbative computatioin momentum spageof the new uni-
When a ferromagnetic system is quenched from a disorversal quantityX™. Combining scaling forms and previous
dered initial state to its critical point, the correlation length definitions, we find
grows ast?, wherez is the dynamical critical exponents

[15] andt the time elapsed since the quench. So in momen- A (t.8)= lim lim TcR=o(tiS)  Ar .
tum space, applying standard scaling arguments, the univer- At 9sCx=o(t,8)  Ac(1—6)
sal two-time 6,t) response and correlation functions depend (2.18
only on the two productg®t andg®s, whereq is the exter-
nal momentum. In recent works the notion of local scale invariance has been
In particular general renormalization group argument sugintroduced as an extension of anisotropic or dynamical scal-
gest the scaling formigl 2,25 ing (see Ref[28] and references thergilAssuming the co-
variance of the response function under a suitable subgroup
OR,_o(t,5)=Ag(t—5)3(t/s)Fr(s/t),  (2.14  of the constructed group of local scale transformations, it has
been argued thd28]
Co—o(t,S) =Acs(t—s)%(t/s)’F(s/t), (2.15
Ry(t,8)=Ry—o(t,s) (| x|/(t—3)"), (2.19

whereR,(t,s) andC(t,s) are the Fourier transforngvith
respect tox) of R.(t,s) and C,(t,s), respectivelya=(2  where[29]
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Ry_oft s)=AR(t—s)a'(t/s)9 (2.20 ing, all diagrams for vanishing external momentum. Then for
IR ' B,.(t,5), Bac(t,s), andB,(t,s) we have
and®(u) is a function whose explicit and convergent series
expansion is knowr28]. Fourier transforming Eq(2.19 d%q
and settingq=0 one could obtain the strong prediction BZC(t,S)=f ng(t,s)CS’q(t,s)
Fr(s/t)=1. For the correlation function and its derivative (27)
no analogous result exists. = 0(t—9)[47Q(1+ )]~V (t—s)" 2

IIl. ONE-LOOP FDR +(co—1)(t—ks) 92, (3.4

In this section we compute the nonequilibrium critical
two-point response and correlation functions for the matiel d%q
up to one-loop order, for vanishing external momentum. W@3C(LS)ZJ (2)8
use here the method of renormalized field theory in the mini-

9% R? 4(t,5)Co(t,5)

mal subtraction scheme. The breaking of time homogeneity =0(t—s)[47Q(1+p)] Y (t—s) 92
gives rise to some technical problems in the renormalization 42
procedure in terms of one-particle irreducible correlation —(t+xs) 7], 3.5
functions[12] so our computation is done in terms of con-
nected functions. diq
At one-loop order we have to evaluate, taking also intoB4C(t>s,s)=f dCS q(t,s)Cg(t,s)
account causalitj24], the ten Feynman diagrams depicted in (2m) '

Fig. 1, three for the response functi¢fR,), (R»), and
(R3)] and seven for the correlation oféC,, 1), (Coap), Ny
(Csap), and (G)]. =5 (2= DIQ(1+p) Y (t—9)' 792
In terms of them we have
—(t+ k)t 2 (co—D[(t— kst~

0 N+2 2.2 2.2
Rq(1,8)=Rq(t,8) = —£—0o(Ry) + Q7y(Rp) + pQ7y*(Rs) —(t+s)t 92, (3.6

2 2 A4
+0(90:907% 7%, 3D \where k=(1—p)/(1+p)<1 (given that, for modelC to
N2 make sensep>0). Expression(3.6) for B,(t,s) is valid
C.(t,s)=COt,s)— Ci )+ (Ci) T+ 0242 (C only for t>s, that fors>t is easily found, given the sym-
alt:9)=Cqlt:8) = 0ol (Cra) + (Cuv)] 71(Caa) metry propertyBgc(t,s)=Byc(s,t). Once critical bubbles
have been determined, it is easy to compute each diagram in
H(Cop)]+ P2 (Coa) + (Cap) 14 p02C) g 1. yio comp d
+0(02,907% 7). (3.2 Performing the required integrations and expanding in
powers ofe we find, for the bare response function,
In order to evaluate the FDR at criticality we set, in this
perturbative expansiomy=0 (massless theoyyWe also set 2
73120, since it is an irrelevant variabl@2], andQ)=1 to
lighten the notations. The first step in the calculation of the
diagrams is the evaluation of the critical “bubbleB’ (1), t 32
B,o(t',t"), Bag(t',t"), andBy(t’,t"), i.e., the one-particle XIn = ——2 In[Q(t—5)]
irreducible parts common to diagrams depicted on the first, s 1+p
second, third, and fourth line of Fig. 1, respectively. We
have, in generic dimensioa[13]

B e ol .. [- N+2 ., 1+p°—co
a=o(LS)= "~ ¢ 90724 70 2p(14p)

1 1-«

~ Yo —— | Y LRSI
70001 > N YoR(s/t;p)
—p

1-«
_[ 9% ey e e -
Blc(t)_fwcq(t:t) +0(€2,95,€90,7*, 7?00, €7°), (3.7
_ 1 (y*? where
T odi2—1 (477)92
r(di2—1) . N 1+ kv 1 1—Kv_ 1
=—NdTtl ", 3.3  Rvip) 1_pz'” 2 +1_p2'” 20 1+p’

whereNy=2/(47)¥?T"(d/2). Given we are interested in the
value of the FDR2.16 for g=0 we evaluate, in the follow- and for the correlation function
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N+ 2 0 stable fora<<0, casél),
12 y*=1 4-N
N(N+8)

4y30s 1 o -
Cq=0(t,S)—_ 1+p ;4—2 sy 1+9p

e+0(e?) stable fora>0, caséll),
(3.13

in the case(l), the dynamics of the conserved density de-
S couples from that of the order parameter and we get back to
~CoCa 1P model A (at least asymptotically At the leading order ire
expansion we have, for th@(N) model[11],

~ N+2 _, 1+p°—cg

9022 T, p)

2
t Yo ~5
XIN-——— +
Ing ~ 1,01+ 7

In[1+p] 1 /1
—CoCa(p)— T1v, +C2(P)+; C, o 4—N ,
a—mﬁ-O(e ), (3.19
s s
tG\ e =Gl e thus the truly modelC dynamical fixed point is stable for
N<4+0O(e). In three dimensions, numerical calculations
+0(€2,95,€00, 7", 700 €77), (3.9  shows[11] that @ is negative already foN=2, so that the

model C dynamics may be realized only for the three-
) - - dimensional Ising modelN= 1) that has positiver [11] (the
where we assumeti>s and we introducedo=NgyJdo, Yo  two-dimensional Ising model has=0 and the values of

=Ng7o and the functions dynamical critical exponents for modél are still debated
[31).
1+0v 1— kv As far asp is concerned we have three possible stable
Ci(v;p)= 57— In[1+v]— ——— In[1-«v], fixed points determined by equilibrium dynamif30] (a)
2v(1+p) 2v(1+p)« p*=w, stable for N>Ny(e)=4—[15/4+3/2In(4/3)]e

(810  +0(e?); (b) p*=2/N—1+0(e), stable for N<2
+CelIn(e)] and for N,<N<N;, where N,(e)=4—[7/2

In[1- «] 1 +31n(4/3)]e+0O(€?); and (c) p*=0, which governs the
Cy(p)=— - , (3.1 critical behavior in the complement of the two regions, but it
(1-p? (A=plp is a peculiar limit[23].

Finally, regarding the out-of-equilibrium dynamics, it has
The first one is defined for 1<v<1/k andp#1 (we are Peen shown that, whenever-0, the fixed point value foc

interested only in the cage=0). We note that contributions 1S ¢* =0 [25]. _ _
to Eq. (3.9 coming from(; are regular in the limip—1. We focus our attention on the only relevant stable fixed

The previous expressions f&;_, andC,-, have simple point of the model, i.e(Ib), for which
poles ine, so renormalization of the bare parameters is re-

quired. We use the minimal subtraction scheme in order to ~*:i6+o €2). 3.1
| il subre 0 =Nrg €O (319
render renormalized quantities finite fer-0. At one-loop (N+8)
it i ffici f he followi liza- _ . ,
g(r)crjgr[golszei,.u icient to perform the following renormaliza Taking into account scaling form&.14) and(2.15, we find
T the well-known critical exponents for mod€l[ 23,25 (some
o of these results have been corrected at two-loop order in Ref.
o7 M, [32))
~ ~. N+2 _ 1+p*?
- - 45 1 e 0=0* —— — y** —————+0(€?)
Q7720 with z:1——1+7p ~ 079,97, oz 2p* (1+p%)
(3.12 N?—8N+10 5
e+0(€%),

~ 2(N-2)(N+8)
to render two-point functions finite, sinc=1+0(g?) as
known from static§23]. 2—n-z2 Pl ) 4—N )

Let us briefly recall the scenario of fixed points for out- =T i +0(e)=— MG“LO(E ),
of-equilibrium modelC [30,23,23. The fixed-point values (3.16
for the couplinggy and y are determined only by the statics. ’
We haveg* =g5 +6y>*, wheregi =6e/(N+8)+0O(€?) is  and the scaling function§ and F are easily identified in
the fixed-point value of the coupling constant for model Eqgs.(3.7) and(3.9) with ¢* =0,

[23].

The value ofy at the infrared stable fixed point depends Fr(v)=1+ 7 R(v;p*)—R(0;p*)]+0(€?),

on the sign of the specific-heat exponent 3.17
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B 1 Taking into account the fixed point values of couplings we
Fo(v)=1+79%* 1 *In(l—v)+Cl(v;p*) find
L1 4—N N(N—1)
—Ci(—v;p*) | +O(€%). (3.18 Ya-0=2 )| Y NNTe) | G- 2-N)

N?(2—N)

In particular substituting fixed point values, we obtain the IN[N(2—N)]
1)2

scaling form(we remember that€v<1 andN<2+O(e) 4(N—
so that no worries about the sign in the argument of the
second logarithm arige

+0(€?).

(3.23

For N=1, which is the physically relevant case into which

Frv)=1+ m,5[(|\|—2)|n(1+(|\|—1)1,) model C is nontrivial, the result is exactly the same as in
( I ) modelA, X;_,=1/2(1- €/12)+O(€?), i.e., the presence of
+NIn(L—(N—1)v)]+O(€?), (3.19 @ coupled conserved density does not affect the value of
X;":O, at least up to one-loop order.

and, for the physically relevant case Nf=1, In the e expansion for N>N;(e)=4-[15/4

+3/21In(4/3) e+ O(€?) a fixed point withp* == governs
v the critical behavior of the systems, but it probably disap-

Frv)=1- e€+0(62), (3.20 pears in three dimensions. In this limit we figcbnsidering

alwaysa>0 to ensurecy=0)

that displays a correction to the mean-field value already at Ni2 N
one-loop ordekat variance with modeh [13]). SXC ) =149 + 2% £ 0(2-l0o
We are now in the position to evaluate the FDR for model 2( a=0) 9n 728 T3 ( P
C. We first note that its Gaussian expression is the same as (3.249
that of modelA as far as¢ and ¢ are concerned and of _ _ _
modelB (with some straightforward changes due to noncriti-Once again, as it happens in all the models that have been
cal behavior of the conserved figltbr ¢ andz. In order to considered so far in the literature, the loop corrections lead to

evaluate thee-field FDR we compute the derivative with &1 FDR thatis less than the mean-field value 1/2.
respect te of the two-time correlation function and consider

its ratio with the response one: IV. CONCLUSIONS
1 N+ 2 1 1— s/t In this work we considered the off-equilibrium properties
—Xilo(t,S) - 1+§* - +;2* In +Cy(p*) of the N-vector model coupled to a conserved energy density
29 24 1+p* 1+p* (modelC) in the framework of the field theoreticalexpan-
o sion. We computed up to the first orderdrthe critical FDR
1 1 1+p S 4 as a function of the waiting time and of the observation
+—Cy| — |+ ————+Ci| —ip . ; L ;
p* 2l p* 20* (1+p*) t timet. In the long-time limit, for the physically relevant case

of one componentising model this ratio has the same value
. as in purely dissipative mode\. Higher-loop calculations

911 1P may clarify whether this is only a coincidence at one-loop or

it is a deeper property.
5 We also obtain th®(€) expression for the response and
+0(€%), (3.21 correlation function for vanishing external momentum. In
both the cases we found corrections to the mean-field forms.
Thus the result for the response function apparently dis-
grees with the prediction of local scale invariaitsee Ref.
28] for an exhaustive introductioni.e., Fr(v)=1. The
same disagreement was already noted at two-loop order in
the response function of mod&l[14]. In that case, however,

_c —S'*—RS % +S
1 tvp tip t

S *
+c91C1 _?,p

where 9, stands for the derivative with respect to the first
argument. Note that, at variance with the one-loop FDR 0
model A, this result depends osit.

In the limit t—o, s fixed, we find ans-independent ex-

pression, the presence of a very small prefactor in the correction
makes very hard the detection of this effect both in experi-
E(X“’ )y lo14gE N+2 52 2p* ments and in Monte Carlo simulations. In the present case,
o) 1= . a N
2 g 24 (14 p*)(1—p*)2 instead, forN=1, the correction in
(1+p*)* 1+p* v
XIn - +0(€?). (3.2 —1—e—+0O(e
pye" 20" (€. (322 Fr(v)=1-eg+0(?) 4.0
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should be large enough to be detectable. A Monte Carl@ne loop. In a forthcoming work we analyze the fgllde-
simulation of modelC could be helpful to clarify the nature pendence oR,(t,s) for a ¢° theory, showing that no prob-

of this disagreement. In Refl4] we stressed that some lem arises with the Fourier transform. The nature of such a

problems in the comparison between E4.1) and the pre-
dictions of local scale invariance E¢.19 could be con-
nected with the Fourier transformability B(t,s), conclud-

ing that some insight could be obtained by looking at the full
q dependence dR(t,s). This dependence was too cumber-
some to be carried out in the two-loop computation of model

A and it is still a difficult task for the model- dynamics at

disagreement should be probably found in the limits of ap-

plicability of local scale invariance.
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