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Aging at criticality in model- C dynamics

P. Calabrese* and A. Gambassi†

Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
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We study the off-equilibrium two-point critical response and correlation functions for the relaxational dy-
namics with a coupling to a conserved density~modelC) of the O(N) vector model. They are determined in
ane542d expansion for vanishing momentum. We briefly discuss their scaling behaviors and the associated
scaling forms are determined up to first order ine. The corresponding fluctuation-dissipation ratio has a
nontrivial large time limit in the aging regime and, up to one-loop order, it is the same as that of the modelA
for the physically relevant caseN51. The comparison with predictions of local scale invariance is also
discussed.
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I. INTRODUCTION

Nonequilibrium dynamics of statistical systems is cu
rently under intensive theoretical investigation, and new
namical behaviors have been recently discovered in mo
of disordered systems. One of the most striking of them
aging, i.e., a persistence of the system in a nonequilibri
state even after a macroscopic time has elapsed since
latest perturbation acting on it. As a consequence, there i
‘‘memory loss’’ of the thermal history of the system and
response to an external field, for example, will depend on
This fact is commonly observed in glassy systems@1,2#. It
has been pointed out@3#, however, that this kind of behavio
may be also observed in critical nondisordered models
these cases the presence of slow-relaxing modes could
the system in a nonequilibrium state even asymptotically
large times. Consider, indeed, a system in a generic confi
ration and, at timet50, bring it in contact with a therma
bath at a given temperatureT. The resulting relaxation pro
cess is characterized by a transient behavior with
equilibrium evolution, fort,tR , and a stationary equilib
rium evolution fort.tR , wheretR is the relaxation time. In
the former the behavior of the system is expected to dep
on initial conditions, while in the latter time homogenei
and time reversal symmetry~at least in the absence of exte
nal fields! are recovered and such a dependence is lost; fl
tuations are thus described in terms of ‘‘equilibrium’’ dynam
ics.

In the following we focus on ferromagnetic system
quenched at their critical temperatureTc @4# for t50 ~inter-
esting behaviors are observed also in the case of nonins
taneous quench, i.e., for time-dependent thermal bath@5#!. A
convenient way of describing dynamics is to study two-tim
response and correlation functions. The former is usually
fined asRx(t,s)5d^wx(t)&/dh(s), wherew is the magnetic
order parameter,h is a small external field applied at tim
s.0 in the pointx50, and^•& stands for the mean over th
stochastic dynamics. The latter, instead, is defined as
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order-parameter correlation function Cx(t,s)
5^wx(t)w0(s)&.

If the system does not reach the equilibrium, the respo
and correlation functions will depend both ons ~the ‘‘age’’ of
the system, also called ‘‘waiting time’’! and on the observa
tion time t. To characterize the distance from equilibrium
an aging system, evolving at a fixed temperatureT, the
fluctuation-dissipation ratio~FDR! is usually introduced
@6,3#,

Xx~ t,s!5
T Rx~ t,s!

]sCx~ t,s!
. ~1.1!

When t and the waiting times are both greater thantR , the
dynamics is homogeneous in time and time-reversal inv
ant so that the fluctuation-dissipation theorem can be app
leading toXx(t,s)51. This is no longer true in the agin
regime@3#. It has been argued that the long-time limit of th
FDR at criticality

X`5 lim
s→`

lim
t→`

Xx50~ t,s! ~1.2!

is a noveluniversalquantity of nonequilibrium critical dy-
namics@7–9#. Correlation and response functions have be
exactly computed for a random walk, a free Gaussian fie
and a two-dimensional XY model at zero temperature a
the valueX`51/2 has been found@3#. In the case of the
d-dimensional spherical model@8#, one-dimensional Ising-
Glauber chain@10,7# and two- and three-dimensional Isin
model, investigated by Monte Carlo simulations@8#, X` has
values ranging between 0 and1

2 .
Field-theoretical methods have been proven a powe

tool for the computation ofuniversalquantities~such as criti-
cal exponents! in critical phenomena~for an updated review
see Ref.@11#!. In this framework the problem of critical re
laxation from a macroscopically prepared initial state h
been analyzed since some years, and a new universal e
nent associated with it has been introduced as a consequ
of an additional time-surface renormalization@12#.

We would take advantage of these previous works to co
pute the critical FDR and the associateduniversal scaling
functions for mesoscopic models of dynamics, overcom
©2003 The American Physical Society11-1
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most of the analytical difficulties encountered in the ex
solutions of models with aging dynamics. In Refs.@13,14#
this problem has been addressed for the dissipative dyna
~model A of Ref. @15#! of the O(N) ferromagnetic model,
whereas the purely dissipative dynamics of the diluted Is
model has been analyzed in Ref.@16#. Here we consider the
O(N) model dynamically coupled to a conserved dens
~model C of Ref. @15#!. Physical realizations of this mode
are, e.g., intermetallic alloys@17#, adsorbed layers on soli
substrates@18# and supercooled liquid@19#. Also the deter-
ministic microcanonicalw4 model @20,21# is believed to be
in the modelC universality class since the order paramete
coupled to the conserved energy@22#.

The paper is organized as follows. In Sec. II modelC is
introduced and its scaling forms are discussed. In Sec. III
derive the first order contribution in ane expansion to the
response and correlation functions for all values ofs and t
and we derive the FDR up to the same order. Finally in S
IV we discuss our results stressing their relevance for
issue~of applicability! of local scale invariance.

II. MODEL C

Let us consider the relaxational dynamics of
N-component fieldw(x,t) coupled to a noncritical conserve
density«(x,t). This system may be described by means
the following coupled stochastic Langevin equations~model
C of Ref. @15#!

] tw~x,t !52V
dH@w,«#

dw~x,t !
1j~x,t !, ~2.1!

] t«~x,t !5Vr¹2
dH@w,«#

d«~x,t !
1z~x,t !, ~2.2!

whereH@w,«# is the Landau-Ginzburg Hamiltonian for th
fields w and« with a coupling term between them

H@w,«#5E ddxF1

2
~¹w!21

1

2
r 0w21

1

4!
g0w41

1

2
«2

1
1

2
g0«w2G , ~2.3!

whereV and r are the kinetic coefficients,r 0}T2Tc , g0
andg0 the bare coupling constants,j(x,t) andz(x,t) zero-
mean stochastic Gaussian noises with

^j i~x,t !j j~x8,t8!&52V d~x2x8!d~ t2t8!d i j , ~2.4!

^z~x,t !z~x8,t8!&522r V ¹2d~x2x8!d~ t2t8!. ~2.5!

The coupling between«(x,t) andw(x,t) does not change th
static properties of the latter as it can be seen by compu
the effective Hamiltonian for thew field ~see Ref.@23#!.
Moreover «-field static correlation functions are related
w2-field correlation functions.
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Dynamical correlation functions, generated by the Lan
vin equations~2.1! and~2.2! and averaged over the noisesj
and z, may be obtained by means of the field-theoreti
action @24,23#

S@w,w̃,«,«̃ #5E dtE ddxF w̃] tw1Vw̃
dH@w,«#

dw
2w̃Vw̃

1 «̃] t«2r V«̃¹2
dH@w,«#

d«
1 «̃r V ¹2«̃ G ,

~2.6!

where w̃(x,t) and «̃(x,t) are the response fields associat
with w(x,t) and«(x,t), respectively. It is easy to read from
Eqs. ~2.6! and ~2.3! the interaction vertices, given b
2Vg0w̃w3/3!, as in the case of modelA, 2Vg«w̃w and
rVg w2¹2«̃/2.

In Refs.@12,25# this formalism was extended to deal wit
relaxation of the system from a macroscopically prepa
initial state. To take into account the effect of such init
condition on the dynamics described by Eq.~2.6!, one has
also to average over the possible initial configurations
both the order-parameterw0(x)5w(x,t50) and the con-
served density«0(x)5«(x,t50) with a probability distribu-
tion e2H0[w0 ,«0] given by @25#

H0@w0,«o#5E ddxFt0

2
@w0~x!2u~x!#2

1
1

2c0
@«0~x!2v~x!#2G . ~2.7!

This specifies an initial stateu(x) for w(x,t) and v(x) for
«(x,t) with correlations proportional tot0

21 andc0, respec-
tively. Response and correlation functions may be obtain
following standard methods@24,23#, by a perturbative expan
sion of the functional weighte2(S[w,w̃,«,«̃] 1H0[w0 ,«0]) . An ini-
tial condition with long-range correlations may lead to a d
ferent universality class, as, e.g., shown for t
d-dimensional spherical model with nonconservative dyna
ics @26#.

The propagators~Gaussian two-point correlation and re
sponse functions! of the resulting theory are@25#

^w̃ i~q,s!w j~2q,t !&05d i j Rq
0~ t,s!5d i j u~ t2s!G~ t2s!,

~2.8!

^w i~q,s!w j~2q,t !&05d i j Cq
0~ t,s!5

d i j

q21r 0
FG~ ut2su!

1S r 01q2

t0
21DG~ t1s!G , ~2.9!

where

G~ t !5e2V(q21r 0)t, ~2.10!

and @25#
1-2
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FIG. 1. Feynman diagrams
contributing to the one-loop order
parameter response@(R1), (R2),
(R3)] and correlation function
@(C1a,b), (C2a,b), (C3a,b), (C4)].
Response functions are drawn a
lines with arrows going from the
early time to the later one
whereas correlators bear no arro
lines. Solid~dashed! lines refer to
the order-parameterw ~to the con-
served density«).
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^«̃~q,s!«~2q,t !&05R«,q
0 ~ t,s!5u~ t2s!G«~ t2s!,

~2.11!

^«~q,s!«~2q,t !&05C«,q
0 ~ t,s!

5G«~ ut2su!1~c021!G«~ t1s!,

~2.12!

with

G«~ t !5e2rV(q21r 0)t. ~2.13!

As in the case of modelA and modelB, it has been shown
thatt0

21 is irrelevant~in the renormalization group sense! so
that we sett0

2150 @12,25#.

A. Scaling forms

When a ferromagnetic system is quenched from a dis
dered initial state to its critical point, the correlation leng
grows ast1/z, where z is the dynamical critical exponent
@15# and t the time elapsed since the quench. So in mom
tum space, applying standard scaling arguments, the un
sal two-time (s,t) response and correlation functions depe
only on the two productsqz t andqz s, whereq is the exter-
nal momentum.

In particular general renormalization group argument s
gest the scaling forms@12,25#

VRq50~ t,s!5AR~ t2s!a~ t/s!uFR~s/t !, ~2.14!

Cq50~ t,s!5ACs~ t2s!a~ t/s!uFC~s/t !, ~2.15!

whereRq(t,s) andCq(t,s) are the Fourier transforms~with
respect tox) of Rx(t,s) and Cx(t,s), respectively,a5(2
03611
r-

-
er-
d

-

2h2z)/z @27#, andu is the initial-slip exponent of respons
function@12,25#. The functionsFC(v) andFR(v) are univer-
sal provided one fixes the nonuniversal normalization c
stantAR andAC to haveFi(0)51.

In Ref. @13# the following quantity, related to the FDR
was introduced in momentum space

Xq~ t,s!5
VRq~ t,s!

]sCq~ t,s!
. ~2.16!

It has been argued that the zero-momentum limit

Xq50
` 5 lim

s→`

lim
t→`

Xq50~ t,s!, ~2.17!

is equal to the same limit of the FDR~1.2! for x50, i.e.,
Xq50

` 5X` to all orders@13#. This fact allows an easier per
turbative computation~in momentum space! of the new uni-
versal quantityX`. Combining scaling forms and previou
definitions, we find

Xq50
` ~ t,s!5 lim

s→`

lim
t→`

TcRx50~ t,s!

]sCx50~ t,s!
5

AR

AC~12u!
.

~2.18!

In recent works the notion of local scale invariance has b
introduced as an extension of anisotropic or dynamical s
ing ~see Ref.@28# and references therein!. Assuming the co-
variance of the response function under a suitable subgr
of the constructed group of local scale transformations, it
been argued that@28#

Rx~ t,s!5Rx50~ t,s!F~ uxu/~ t2s!1/z!, ~2.19!

where@29#
1-3
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Rx50~ t,s!5AR~ t2s!a8~ t/s!u, ~2.20!

andF(u) is a function whose explicit and convergent ser
expansion is known@28#. Fourier transforming Eq.~2.19!
and settingq50 one could obtain the strong predictio
FR(s/t)51. For the correlation function and its derivativ
no analogous result exists.

III. ONE-LOOP FDR

In this section we compute the nonequilibrium critic
two-point response and correlation functions for the modeC
up to one-loop order, for vanishing external momentum.
use here the method of renormalized field theory in the m
mal subtraction scheme. The breaking of time homogen
gives rise to some technical problems in the renormaliza
procedure in terms of one-particle irreducible correlat
functions@12# so our computation is done in terms of co
nected functions.

At one-loop order we have to evaluate, taking also in
account causality@24#, the ten Feynman diagrams depicted
Fig. 1, three for the response function@(R1), (R2), and
(R3)] and seven for the correlation one@(C1a,b), (C2a,b),
(C3a,b), and (C4)].

In terms of them we have

Rq~ t,s!5Rq
0~ t,s!2

N12

6
g0~R1!1V2g2~R2!1rV2g2~R3!

1O~g0
2 ,g0g2,g4!, ~3.1!

Cq~ t,s!5Cq
0~ t,s!2

N12

6
g0@~C1a!1~C1b!#1V2g2@~C2a!

1~C2b!#1rV2g2@~C3a!1~C3b!#1rV2g2~C4!

1O~g0
2 ,g0g2,g4!. ~3.2!

In order to evaluate the FDR at criticality we set, in th
perturbative expansion,r 050 ~massless theory!. We also set
t0

2150, since it is an irrelevant variable@12#, andV51 to
lighten the notations. The first step in the calculation of
diagrams is the evaluation of the critical ‘‘bubbles’’B1c(t),
B2c(t8,t9), B3c(t8,t9), andB4c(t8,t9), i.e., the one-particle
irreducible parts common to diagrams depicted on the fi
second, third, and fourth line of Fig. 1, respectively. W
have, in generic dimensiond @13#

B1c~ t !5E ddq

~2p!d Cq
0~ t,t !

52
1

d/221

~2t !12d/2

~4p!d/2

52Nd

G~d/221!

2d/2
t12d/2, ~3.3!

whereNd52/(4p)d/2G(d/2). Given we are interested in th
value of the FDR~2.16! for q50 we evaluate, in the follow-
03611
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ing, all diagrams for vanishing external momentum. Then
B2c(t,s), B3c(t,s), andB4c(t,s) we have

B2c~ t,s!5E ddq

~2p!d
Rq

0~ t,s!C«,q
0 ~ t,s!

5u~ t2s!@4pV~11r!#2d/2@~ t2s!2d/2

1~c021!~ t2k s!2d/2#, ~3.4!

B3c~ t,s!5E ddq

~2p!d
q2 R«,q

0 ~ t,s!Cq
0~ t,s!

5u~ t2s!@4pV~11r!#2d/2@~ t2s!2d/2

2~ t1k s!2d/2#, ~3.5!

B4c~ t.s,s!5E ddq

~2p!d
C«,q

0 ~ t,s!Cq
0~ t,s!

5
Nd

2
G~d/221!@V~11r!#12d/2$~ t2s!12d/2

2~ t1k s!12d/21~c021!@~ t2k s!12d/2

2~ t1s!12d/2#%, ~3.6!

where k5(12r)/(11r),1 ~given that, for modelC to
make sense,r.0). Expression~3.6! for B4c(t,s) is valid
only for t.s, that for s.t is easily found, given the sym
metry propertyB4c(t,s)5B4c(s,t). Once critical bubbles
have been determined, it is easy to compute each diagra
Fig. 1.

Performing the required integrations and expanding
powers ofe we find, for the bare response function,

Rq50~ t,s!52
2g̃0

2

11r

1

e
111F g̃0

N12

24
2g̃0

2 11r22c0

2r~11r! G
3 ln

t

s
2

g̃0
2

11r
ln@V~ t2s!#

2g̃0
2c0

1

12r2
ln

12kv
12k

1g̃0
2R~s/t;r!

1O~e2,g̃0
2 ,eg̃0 ,g̃4,g̃2g̃0 ,eg̃2!, ~3.7!

where

R~v;r!52
r

12r2
ln

11kv
2

1
1

12r2
ln

12kv
2r

2
1

11r
,

~3.8!

and for the correlation function
1-4
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Cq50~ t,s!52
4g̃0

2Vs

11r

1

e
12VsH 11g̃0

N12

12

1F g̃0

N12

24
2g̃0

2 11r22c0

2r~11r! G
3 ln

t

s
2

g̃0
2

11r
ln@Vt#1g̃0

2F2c0C1S s

t
;r D

2c0C2~r!2
ln@11r#

11r
1C2~r!1

1

r
C2S 1

r D
1C1S s

t
;r D2C1S 2

s

t
;r D G J

1O~e2,g̃0
2 ,eg̃0 ,g̃4,g̃2g̃0 ,eg̃2!, ~3.9!

where we assumedt.s and we introducedg̃05Ndg0 , g̃0
5Ndg0 and the functions

C1~v;r!5
11v

2v~11r!
ln@11v#2

12kv

2v~11r!k2
ln@12kv#,

~3.10!

C2~r!52
ln@12k#

~12r!2
2

1

~12r!r
. ~3.11!

The first one is defined for21,v,1/k and rÞ1 ~we are
interested only in the caser>0). We note that contributions
to Eq. ~3.9! coming fromCi are regular in the limitr→1.

The previous expressions forRq50 andCq50 have simple
poles ine, so renormalization of the bare parameters is
quired. We use the minimal subtraction scheme in orde
render renormalized quantities finite fore→0. At one-loop
order it is sufficient to perform the following renormaliza
tions @30,23#:

w̃°Z̃21/2w̃,

V°Z̃21/2V with Z̃512
4g̃2

11r

1

e
1O~ g̃4,g̃2g̃,g̃2!,

~3.12!

to render two-point functions finite, sinceZ511O(g̃2) as
known from statics@23#.

Let us briefly recall the scenario of fixed points for ou
of-equilibrium modelC @30,23,25#. The fixed-point values
for the couplingsg andg are determined only by the static
We haveg̃* 5g̃A* 16g̃2* , whereg̃A* 56e/(N18)1O(e2) is
the fixed-point value of the coupling constant for modelA
@23#.

The value ofg at the infrared stable fixed point depen
on the sign of the specific-heat exponenta,
03611
-
to

g̃2* 5H 0 stable fora,0, case~ I!,

42N

N~N18!
e1O~e2! stable fora.0, case~ II !,

~3.13!

in the case~I!, the dynamics of the conserved density d
couples from that of the order parameter and we get bac
modelA ~at least asymptotically!. At the leading order ine
expansion we have, for theO(N) model @11#,

a5
42N

2~N18!
e1O~e2!, ~3.14!

thus the truly modelC dynamical fixed point is stable fo
N,41O(e). In three dimensions, numerical calculatio
shows@11# that a is negative already forN52, so that the
model C dynamics may be realized only for the thre
dimensional Ising model (N51) that has positivea @11# ~the
two-dimensional Ising model hasa50 and the values of
dynamical critical exponents for modelC are still debated
@31#!.

As far asr is concerned we have three possible sta
fixed points determined by equilibrium dynamics@30# ~a!
r* 5`, stable for N.N1(e)542@15/413/2ln(4/3)#e
1O(e2); ~b! r* 52/N211O(e), stable for N,2
1Ceu ln(e)u and for N2,N,N1, where N2(e)542@7/2
13 ln(4/3)#e1O(e2); and ~c! r* 50, which governs the
critical behavior in the complement of the two regions, bu
is a peculiar limit@23#.

Finally, regarding the out-of-equilibrium dynamics, it ha
been shown that, whenevera.0, the fixed point value forc
is c* 50 @25#.

We focus our attention on the only relevant stable fix
point of the model, i.e.,~IIb!, for which

g̃* 5
24

N~N18!
e1O~e2!. ~3.15!

Taking into account scaling forms~2.14! and~2.15!, we find
the well-known critical exponents for modelC @23,25# ~some
of these results have been corrected at two-loop order in
@32#!

u5g̃*
N12

24
2g̃2*

11r* 2

2r* ~11r* !
1O~e2!

5
N228N110

2~N22!~N18!
e1O~e2!,

22h2z

z
52

g̃2*

11r*
1O~e2!52

42N

2~N18!
e1O~e2!,

~3.16!

and the scaling functionsFR andFC are easily identified in
Eqs.~3.7! and ~3.9! with c* 50,

FR~v !511g̃* 2@R~v;r* !2R~0;r* !#1O~e2!,
~3.17!
1-5
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FC~v !511g̃2* F 1

11r*
ln~12v !1C1~v;r* !

2C1~2v;r* !G1O~e2!. ~3.18!

In particular substituting fixed point values, we obtain t
scaling form~we remember that 0<v<1 andN,21O(e)
so that no worries about the sign in the argument of
second logarithm arise!

FR~v !511
42N

4~N18!~N21!
e@~N22!ln„11~N21!v…

1N ln„12~N21!v…#1O~e2!, ~3.19!

and, for the physically relevant case ofN51,

FR~v !512e
v
6

1O~e2!, ~3.20!

that displays a correction to the mean-field value alread
one-loop order~at variance with modelA @13#!.

We are now in the position to evaluate the FDR for mo
C. We first note that its Gaussian expression is the sam
that of modelA as far asw and w̃ are concerned and o
modelB ~with some straightforward changes due to noncr
cal behavior of the conserved field! for « and «̃. In order to
evaluate thew-field FDR we compute the derivative wit
respect tos of the two-time correlation function and consid
its ratio with the response one:

1

2
X q50

21 ~ t,s!511g̃*
N12

24
1g̃2* H 1

11r*
ln

12s/t

11r*
1C2~r* !

1
1

r*
C2S 1

r*
D 1

11r* 2

2r* ~11r* !
1C1S s

t
;r* D

2C1S 2
s

t
;r* D2RS s

t
,r* D1

s

t F]1C1S s

t
,r* D

1]1C1S 2
s

t
,r* D G J 1O~e2!, ~3.21!

where ]1 stands for the derivative with respect to the fi
argument. Note that, at variance with the one-loop FDR
modelA, this result depends ons/t.

In the limit t→`, s fixed, we find ans-independent ex-
pression,

1

2
~X q50

` !21511g̃*
N12

24
1g̃2* F 2r*

~11r* !~12r* !2

3 ln
~11r* !2

4r*
2

11r*

2r*
G1O~e2!. ~3.22!
03611
e

at

l
as

-

t
f

Taking into account the fixed point values of couplings w
find

X q50
` 5

1

2 H 11
42N

N~N18!
eF N~N21!

~42N!~22N!

1
N2~22N!

4~N21!2
ln@N~22N!#G J 1O~e2!.

~3.23!

For N51, which is the physically relevant case into whic
model C is nontrivial, the result is exactly the same as
modelA, X q50

` 51/2(12e/12)1O(e2), i.e., the presence o
a coupled conserved density does not affect the value
X q50

` , at least up to one-loop order.
In the e expansion for N.N1(e)542@15/4

13/2 ln(4/3)#e1O(e2) a fixed point withr* 5` governs
the critical behavior of the systems, but it probably disa
pears in three dimensions. In this limit we find~considering
alwaysa.0 to ensurec050)

1

2
~X q50

` !21511g̃A*
N12

24
1

N

4
g̃2* 1O~2-loop!.

~3.24!

Once again, as it happens in all the models that have b
considered so far in the literature, the loop corrections lea
an FDR that is less than the mean-field value 1/2.

IV. CONCLUSIONS

In this work we considered the off-equilibrium propertie
of theN-vector model coupled to a conserved energy den
~modelC) in the framework of the field theoreticale expan-
sion. We computed up to the first order ine the critical FDR
as a function of the waiting times and of the observation
time t. In the long-time limit, for the physically relevant cas
of one component~Ising model! this ratio has the same valu
as in purely dissipative modelA. Higher-loop calculations
may clarify whether this is only a coincidence at one-loop
it is a deeper property.

We also obtain theO(e) expression for the response an
correlation function for vanishing external momentum.
both the cases we found corrections to the mean-field for
Thus the result for the response function apparently d
agrees with the prediction of local scale invariance~see Ref.
@28# for an exhaustive introduction!, i.e., FR(v)51. The
same disagreement was already noted at two-loop orde
the response function of modelA @14#. In that case, however
the presence of a very small prefactor in the correct
makes very hard the detection of this effect both in expe
ments and in Monte Carlo simulations. In the present ca
instead, forN51, the correction in

FR~v !512e
v
6

1O~e2! ~4.1!
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should be large enough to be detectable. A Monte Ca
simulation of modelC could be helpful to clarify the nature
of this disagreement. In Ref.@14# we stressed that som
problems in the comparison between Eq.~4.1! and the pre-
dictions of local scale invariance Eq.~2.19! could be con-
nected with the Fourier transformability ofRx(t,s), conclud-
ing that some insight could be obtained by looking at the
q dependence ofRq(t,s). This dependence was too cumbe
some to be carried out in the two-loop computation of mo
A and it is still a difficult task for the model-C dynamics at
d

.F

rin

n

. B

03611
lo

ll

l

one loop. In a forthcoming work we analyze the fullq de-
pendence ofRq(t,s) for a w3 theory, showing that no prob
lem arises with the Fourier transform. The nature of suc
disagreement should be probably found in the limits of a
plicability of local scale invariance.
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