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Giant clusters in random ad hocnetworks
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The present paper introducad hoccommunication networks as examples of large scale real networks that
can be prospected by statistical means. A description of giant cluster formation based on a single parameter of
node neighbor numbers is given along with the discussion of some asymptotic aspects of giant cluster sizes.
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[. INTRODUCTION the destination hop by hop, through intermediate nodes. If
the density of users in the area is high compared to their
Nowadays, natural and designed networks are in the focugansmission ranges, it is highly possible that more than one
of research on different scientific disciplines. Using comput-2lternative route exists between two users. This last feature
ers the amount of available empirical data on real world netcan be exploited in the case if the shortest route is over-
Works has been increased during the past feW years_ E)loaded or brOken, or if the System allows Spllttlng the infor-
amples of real networks include the World Wide Wek2], mation flow into separate parallel flows. Moreover, the users
the Internet[3—7], collaboration networks of movie actors are free to move randomly and organize themselves arbi-
and scientist§8—10], power gridg 11,12, and the metabolic trarily; thus, the network’s topology may change rapidly and
network of living organism§13—16. unpredictably. Such a network may operate in a stand-alone
Random graphs are natural candidates for the descriptiof@shion, or may be connected to the Internet. _
of the topology of such large systems of similar units. In ~ Giant clusters inad hocnetworks are made interesting
Refs.[17-19 the authors have developed a model—whichbecause a communication network provides a meaningful
assumes each pair of the graph’s vertices to be connect&grvice only if it integrates as many users as possible within
with equal and independent probabilities—that treats a netthe covered areée.g., 99% may be considered a good cov-
work as an assembly @&quivalent units erage. In this paper we introduce a fractal model that dupli-
This model, introduced by the mathematicians Brdad ~ cates the giant component formation in e hocnetworks
Renyi, has been much investigated in the mathematical litin an area inlaid with obstacles, partially screening radio
erature[zo'z:u_ However, the increasing avaiiab”ity of |arge transmission. Our main result is that in such networks the
maps of real-life networks has indicated that the latter strucgiant component size can be described by a single
tures are fundamentally correlated systems, and in many r@arameter—the average number of neighbors a node has.
spects their topologies deviate from the uncorrelated randorhhe rest of this paper is structured as follows. Section Il
graph model. gives a detailed description of our randad hocnetwork
Two classes of modeiS, Commoniy called gmall-world model. In Secs. Il a.nd IV we deIVe intO the topology diﬁer'
graphs[11,12,22 and thescale-free networkf23,24], have ~ ences between random graphs and graphs built using our
been deveioped to Capture the Ciustering and the power |aW0de|. -SeCtion V shows the numerical simulation results
degree distribution present in real netwoflés3,8—13,23— supporting these analyses.
29].
Here we preserdd hoc network§30] as examples of real II. THE RANDOM  AD HOC NETWORK MODEL
structures tha.t can be inV-eSti-ga.ted Similarly to the abOVe net- A Wireiessad hocnetwork Consists Of a number of radio
works.Ad hocnetworks arise in the next generations of com-gevices, also referred to as “nodes” in the following. Every
munication systems and thereby we try to summarize the
principal characteristics of such systems. In thé hoc
scheme users communicate by means of short range radio
devices, which means that every device can connect to those
devices that are positioned no farther than a finite maximum
geometrical range. We call this range the given device'’s
transmission rangend the exact value of this range may
depend on the transmitter’s power and various other physical
parameters. See Fig. 1 for an exampleaof hoc network
topology. Neighbor nodes talk the way ordinary radios, such

as CBs, do; however, communication between non- gG 1. Nodes and connections of an examgiehocnetwork.
neighboring users is also possible. The latter case is acConfhe transmission range is the same for all nodes—denoted by the
plished by sending the information from the source user tQjotted circle for two of the nodes. The shortest path betwees the
source and thd destination users touches three intermediate nodes,
and there is an alternative route of six hops, which has no common
*Electronic address: gab@cnl.elte.hu intermediate nodes with the first.
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node may be connected to one or more other nodes in hevhich quantity is obtained by counting. This quantity is of
vicinity; the actual set of connections depends on the disparticular importance because the network gets fully con-
tance of the nodes. In a static environment these connectiomected ifS diverges and for this end we are to investigate its
define the topology of the system; if the nodes are allowed teoelationship with other network parameters.
move then the topology may change; however, at any given In Ref. [31] the authors present the theory @ndom
point of time there is still a well-defined topology available. graphs[18] of arbitrary degree distribution. Among others,
To be precise we definerandom ad hoc networis a set an exact result for the giant component size is given, which
of uniformly distributed nodes on the arena of the unit Eu-we shall briefly cite here. Their theory is based on the gen-
clidean squarg¢0;1]x[0;1] with the connections between erating function formalism: given a unipartite undirected
the pairs of them. The connections are two way in the sensgraphG andp, being the probability that a vertex da has
that if nodeA can communicate to nod®, then nodeB is  degreek, the generating function for the vertex degree dis-
also able to communicate to node tribution is defined as
Two nodes are connected if the geometrical distance of
the two is less than a certain valug that is, the nodes can ”
communicate up to their “transmission range.” We represent Go(x)= Z PixX®
a realization of such a system using an undirected graph k=0

G(V.E), where the vertices and the edges denote the nOdeasnd if the distributionp, is correctly normalized then

and the two-way connections, respectively. Sometimes ?;0(1)=1 will hold. Also another function of importance is

graph resulting this way is referred to ageometric ra”d‘)m the one generating the distribution of degree of the vertices

graph (GRG) Note that there are no Ioop§ and no multiple pointed to by a randomly chosen edge. Following such an

?ggiﬁv:/r(?ﬁgld)ea; r;?gense?oﬁkl)%gmtﬁg?E%?}'ﬁiiﬁltotﬁzeﬁg’ignnd edge one arrives at a vertex with probability proportional to

sense 1o open a secogd corr’1munication chgnnel betwe%rﬁe degree of that vertex, thus the degree distribution is pro-

them P portional tokp,, and the normalized distribution is generated
Furthermore, all the length parameters in the system artéy

made dimensionless as follows. Length is measured as the

multiples of theunit radius ry, which is, in turn, defined by > pexk

k

the share of the whole area for each node: Go(x)

\/T Ek o, oD
lo:= mi (1)

Considering the distribution of the remaining edgies., all
whereA denotes the size of the arena ais the number of edges except the one we arrived) oifis distribution is the
nodes. The ratio of the transmission range and the unit radisgame as above, less by one powexofnaking it generated
is called thenormalized transmission rangand is denoted by

by

Go(X)
G = .
i 2 G

It was shown in Ref[31] that usingGy(x) andG,(x), and if

As mentioned in the Introduction, a communication net'there is a giant component in the graph then this compo-
work may deliver meaningful service only if the network is nent's size can be calculated as

connected, or at least has a vast subset that is connected. Our

Myi=—.
n r()

work is focused on examining the criteria for giant cluster S=1-Gy(u), (3)

formation and, in particular, in the networks with fractal con-

nectivity properties. _ whereu is the smallest non-negative real value satisfying
In the following we give a short overview of the networks

on random graphs and afterwards we turn to our model of u=G,(u). (4

fractal ad hocconnectivity.

According to these equations we are now able to obtain a
I1l. CONNECTIVITY IN RANDOM NETWORKS closed form expression fdd in our GRGs. For more refer-

o ) . ence on the derivation of the results cited above please see
After distributing and connecting the nodes as describedecs 1A 11C. and 11D of Ref[31].

previously, the largest connected componentGotan be Let us now use the actual degree distribution of adr
determined. Le be this components’ size fraction: hoc networks: it is easily seen that the probability distribu-
) tion of the number of nodes contained in any disc with radius
St:(nodes in the largest compongnt r, is the Poisson distribution with expectation vaife It
N ' means that
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IV. THE FRACTAL AD HOC NEIGHBORSHIP

B3
=
X
&

1oy S SR i ALGORITHM
" ] o o © (0]
08 o o © i The results of the preceding section apply for scenarios
+ x o o . where the arena is “flat,” that is, the only limit to build a
o A & B4 connection between two nodes is their geometrical distance.
06| y o A & 1 In the present section we introduce the idea of generalized
n 4 = A obstacles that can screen nodes from each other even if they
o4l X A B | are positioned within the transmission range. This change
’ e v VvV v produces graphs with extended spatial structure, which is
% o v gf e >+< why we call the algorithm fractal.
0.2 [¥ o g=20 0O - The obstacles are adopted by changing the algorithm for
> S ° @ o v 7 ooh 2 edge generation. Now two nodes within the transmission
. A . . B=35 v range will be connected with a probability, which is given as
0.0 10 100 1000 10000 100000 the function of their _geometrical distance. F_c_)r every two
N nodesu,v eV, let p(dist(u,v)) be the probability that an

edgee,, € E connecting them is set up.

To choose the actual form qf(r), consider the follow-
ing. First, the possibility of connections will drop with in-
creasing geometrical distances, which mafés) to be in
2K inverse proportion ta. Second, for the description of the

= ﬂefrﬁ (5) obstacles one may think of a hilly landscape. On the one
k! hand, a node may be covered from the view of nearby nodes
by an adjacent hill; the falloffthe measure of “hilliness)'is
is the probability that a vertex will havk—1 neighbors  controlled by the value of paramet@rhills get more dense
(=1 is because the node itself does not count for a neighwith increasing. On the other hand, at any point on the
bor). The generating functions are arena there can be directions at which the communication
from the given point is not screened for a larger-than-average

FIG. 2. Giant component sizes for various valuesNoénd 38
(a=0.2 for all cases Note howS(N) reaches 1 fop<2, yet for
B>2,S(N) tends to a value strictly<1.

Loy (r3)k 2 distance(e.g., sitting in linked valleys or residing on hill-
Go(x)=e"">, xK=e(x~1ry tons- thi , : -
“, K op9; this makes long range connections still possible, even
though connections are mostly short range. Finally, the sin-
and gularity caused by the dterm is shifted to the left to make
p(r) finite for all r=0, and a normalization parameter is
r2Gy(X) introduced,a, which enables to regulate the amplitude of
Gy(x)= “—ZEGO(X), p(0). As aresult,p(r) takes the form
r
" a
which speciality of the Poisson distribution makes P(N=7—"""5 v
1]
u=1-5, "o
) ) with feasible parameter values>0 andB>0.
a solution of Eq(4), whence Eq(3) turns into Performing computer simulations of networks connected
) according to Eq.(7), one obtains different results, &%
S=1—e Sh, changes. In Fig. 2 we compared the resulting giant cluster

sizes for differeniB values. At lower parameter valu8§N)
and after rearranging, the relation of the size of the giankaturates t&5=1; all nodes become elements of the giant
component and the transmission range finally becomes  cluster above a certain finite node number. Bat2.5 and
above,S still converges to a finite value; however, the limit
2_ log(1-9) now is strictly less than 1. It means that networks with such
m=——g (6) .
parameter values will not become fully connected even at
large node numbers. Moreover, the proportion of the largest
Applying this relation, one is able to calculate the minimumconnected subgraphs drops wghworse than linearly. In the
transmission range needed to achieve a given connectivityest of this section we try to interpret this dual behavior of
ratio in random networks of large node numbers, as illusS(B).
trated in Fig. 3(see also Sec. MV It is easy to imagine that the more connections the nodes
It will be noted here that while Eq6) holds for random have in average, the larger the giant cluster grows. More
networks and—as is shown in Sec. V—for fractal hoc  accurately we state that tlerage vertex degreéC) deter-
networks, ther,—S relationship is different for the finite mines the cardinality of the largest connected subgrah in
rangead hoccase; however, the latter is to be discussed in &learly, if (C)=0, then every connected component con-
separate paper. tains a single node, and in thé—co limit S becomes 0.
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7 - ' ' - >§ Furthermore, knowing that
6k T T T T |>9/ { i )
I Sl ; lim =g
sL | o | (140"
i e |
ALt xﬁ-ﬁ ] ¥ | inthe g limit, Eq. (10) becomes
s | [ | F _
st ¥ o p{ﬁy - (Cy=a2mprj=2a.
2r N _x_,,_xﬁ"j’/ 1 (2) B=1 or B=2. Equation(9) diverges logarithmically
U A f=56 + in r, thusC does not have an expectation value.
1 F'kxx * random graphs, Eq. (14) -~ 1 (3) B<2 andB#1. Here(C) will diverge asN—o;
0 . . . p=186 X however, unlike the previous case we try to determine the
0 02 0.4 0.6 0.8 1 (C(N)) relation. First let us rewrite Eq9) as
S —
N . a2mproB | 1(1—B)—roP
FIG. 3. Simulations ofad hoc networks by using the fractal (C)= (1-8)(2-B) BT (11
neighborship algorithm with parameter values bg@hk 2 and 8 (1 _)
>2 yield the same giant cluster size vs average vertex degree as roB 2A

random graphs do. Inset displays same plots witbg(1—-S)/S as

the abscissa. Concerning the dependence if- - - Jo we can assume that
there is a maximal transmission rangg,, such that for

Also, if (C) diverges or even if only a single node is con- transmission ranges>r ., the contribution of the integrand

nected to all the others, the graph obviously gets fully conin Eq. (8) is negligible. In this way[ - - - ] part of Eq.(11)

nected. Based on these considerations we are to exd@jne can be estimated as

in detail.

Vertex degree irG can be calculated by fixing a single [ ly=— roB N F'mad1—B) 12
node and totaling théC,) expectation value of the number 2 ro\At Fmax| P L
of neighbors that reside exactly at the distan@avay from 1+ [ 1+ roB

the fixed one. Assuming that the density of nodes is constant
(N/A), (C,) can be expressed by multiplying the averageNow if r,—0 (which happens to be the case at sufficiently

number of nodes at distanceand the probability(7): large node numbeysthe first term in Eq(12) vanishes and
o o +1 becomes negligible in the denominator of the second
(Cp)= TNp(r), term. After substituting this second term and simplifying the

expression, Eq(9) finally becomes

Now if ;= N/A, the average vertex degree is

a2mp [roB\°
| max

<C>: rma

<c>:f <c,>dr:f p(r)2mprdr, (8) 2-B
A A

The N dependence ofC) can be derived from here by sub-
where?l represents the physical boundaries of the arena. Agtjtuting definition(1), p=N/A, and the fact that? <A, By

there are no nodes outside this region, the integral will be Qhese means the above expression yields
outsidel.

In general, solving Eq(8) yields (C)yoxNL A2, (13)
1-B
<C>=a27-rplri'8 [r 1+—) To summarize, if3>2, then a finite neighbor count is
B fof expected, and thus such networks are not going to be fully
rofB r \2-8 connected(see again Fig. )2 On the other hand, iB<2,
- -8 ( 1+ m . (9  then(C) diverges exponentially with increasing node num-
0 A bers, which in theory leads to fully connected networks at

large N, and this means that the more nodes are in the sys-

However, the expectation value (€) is dependent on the tem, the larger the fraction of connected nodes is to become.

value of 8. Accordingly, our discussion is separated into
several cases.

(1) B>2. In this case Eq(9) can be evaluated fo?( V. SIMULATION RESULTS
being the intervat e[0;) in the limit wherer ;—0: We carried out computer simulations to illustrate our find-
—5 5 5 ings, especially Eq910) and (13). During a simulation run
(C)= azmproB _ 2aB 10 e first pick the random coordinates for thenodes. Sec-
(1-8)(2—-B) (B—L1)(B—-2)° ond, the probabilityp is calculated according to E¢7), us-
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FIG. 5. Divergence of average vertex degrees whtHor B
FIG. 4. Average vertex degreesad hocgraphs for3>2. Data i .
verage vertex ceg grap s <d2. Crosses, data points far=0.1, 8= 1.56; the dashed line cor-

points were acquired using the indicated parameter sets. Dashe 1-pi2_ 11022 . . .
lines yield the appropriate analytical results, which shall hold in theresponds (N =N The inset displays the same plot with

N—c limit as by Eq.(10). both axes logarithmic.

ing the input parametera, B, andr. Then for every two (C(N))y=coN1~(1:562)4 ¢,

nodes a uniform random numbée[0;1] is generated and

compared t@: for casest<p an edge connecting those two

nodes is recorded. Finally, we count the component sizes anghe parameters turn out to bg=0.74 andc,=—1.38).

take the largest of these. The output of the simulation run iShe simulations agree with thd~#? divergence well, as

the average vertex degré€) and the largest components’ calculated in Sec. IV.

sizeS. Figures 4 and 5 now illustrate the differirfg behavior
As the first test we recorded the giant cluster size vs trangpresented in Fig. 2. Data sets f8=5.6, 4.2, and 3.5 do not

mission range relationship. Data points were obtained by reapproach full connectivity: with increasing they converge

peated runs, changing only the amplitude param@t®rEq.  to S=0.93, 0.84, and 0.33, respectively; on the contrary, the

(7) over an appropriate intervde.g.,ac[0.1;1.9 for the  g=1.56 case clearly reach&-1 for node numbers in the

B="5.6 casg The collected output data are shown in Fig. 3. magnitude of several thousands.

We also shall note the analogy with random graphs: using

Eq. (5), the average vertex degreg(8,,9 = =kp=r2 and,

therefore, Eq(6) can be expressed as VI. CONCLUSIONS
log(1—9S) In the present paper we have investigated the connected
(Crnd=——g (14 components that are produced in randachhocnetworks.

Based on the results, the number of nodes needed for a given
connectivity ratio can be estimated. Thus, our results may

Figure 3 illustrates well that in a network connected usingh. b h ful ¢ random fractdlh K
the fractal neighborship algorithm, the observaBle(C) Int about the usefuiness of random fraadlhocnetworks.
We modified the conventional connection function and

relationship matches the equivalent analytical result for ran- . X :
dom graphs for both relevant cagd$ and(2) in Sec. IV. made long range connections possible. This way the produc-

On the other hand, the behavior ¢€) turns out to be ing networks become extended in their spatial structure, as

sensible to the value @8, as expected. Let us start with the though_t the network is situatgd _in an area with obstacles
B>2 case. Figure 4 presents the simulation results for netzcreening some of the transmissions. We have found that a

works connected as by E@7), using different parameter single pqrameter—the average neighbor co(@)—can
sets. For example, according to Ed0), the average vertex characterize the proportion of the largest connected subnet-
degr.ee for thea=0,8,8=5 6 case is e>,<pected to be work. We have also seen that depending on the connection

function parameters, this proportion can be either bounded or

2% 0.8% 5.6 unbounded as the system sidés increased. For both cases
C)=——" """ -.303 C(N)) was derived analytically and confirmed by the simu-
(C) ,
4.6X3.6 lations.

which seems to fulfill in Fig. 4: increasing, the simulation
output converges to the analytical result.

Now let us turn to the &28<2 case. In Fig. 5 the data
obtained fora=0.1 andB8=1.56 are shown along with a The authors thank the Hungarian National Science Foun-
numeric function fit according to Eq13): dation (OTKA T37903 and T32437for support.
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