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In the context of the phenomenon sfochastic resonancéSR), we study the correlation function, the
signal-to-noise ratigSNR), and the ratio of output over input SNR, i.e., thain, which is associated to the
nonlinear response of a bistable system driven by time-periodic forces and white Gaussian noise. These
quantifiers for SR are evaluated using the techniques of linear response th&rybeyond the usually
employed two-mode approximation scheme. We analytically demonstrate within such an extended LRT de-
scription that the gain can indeemt exceed unity. We implement an efficient algorithm, based on work by
Greenside and Helfandetailed in the Appendijxto integrate the driven Langevin equation over a wide range
of parameter values. The predictions of LRT are carefully tested against the results obtained from numerical
solutions of the corresponding Langevin equation over a wide range of parameter values. We further present an
accurate procedure to evaluate the distinct contributions of the coherent and incoherent parts of the correlation
function to the SNR and the gain. As a main result we show for subthreshold driving that both the correlation
function and the SNR can deviate substantially from the predictions of LRT and yet the gain can be either
larger or smaller than unity. In particular, we find that the gain can exceed unity in the strongly nonlinear
regime which is characterized by weak noise and very slow multifrequsmothresholdnput signals with a
small duty cycle. This latter result is in agreement with recent analog simulation results byeGaiglICNF
2001, edited by G. BosmariWorld Scientific, Singapore, 2002pp. 545-548; Fluct. Noise Leff, L181
(2001].
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[. INTRODUCTION of the incoherent part taken also at the driving frequency. By
definition, R, is thus a dimensional quantity.

Over the past 20 years or so, a large amount of work has The SNR of an input signaR;,,, containing the sum of
been devoted to the study of the dynamics of noisy nonlineathe external driving and the Gaussian white noise, can easily
systems driven by external periodic forces. One of the maitbe evaluated. A convenient dimensionless parameter, the gain
reasons for this interest is related to the phenomenon of st@, defined by the ratio oR,; over R;,, can then be intro-
chastic resonancéSR) [1-5], namely, the possibility of us- duced. For the case that the Langevin dynamics is linear in
ing the concerted action of noise and nonlinearity to augmendriven by additive white Gaussian noise, the output SNR is
selectively, for some parameter values, the output of the norexactly the same as that of the input; that is, the gain assumes
linear system with respect to what it would be for a linearprecisely the value unity. In a general nonlinear case, neither
system dynamics. the output SNR nor the gain can be evaluated exactly by

The two common quantifiers for stochastic resonance argnalytical means. As a consequence, their evaluation neces-
the spectral amplification measur2,6,7] and the signal-to- sarily requires approximate procedures.
noise ratio(SNR) [2,8]. They are defined in terms of the |t was pointed out previously that the gain of a noisy
Fourier components of the correlation function associated t@onlinear dynamical system subject to subthreshold signals
the stochastic variables(t). Due to the periodicity of the cannot exceed 19,10]. This feature has been rationalized
driving force, the stochastic proces@) is explicitly nonsta-  using the ideas of linear response thedrRT), thought to
tionary. Thus, the two-time functio(x(t+ 7)x(t)) depends be valid for weak driving amplitudes and not too small noise
on botht and 7. For very large values df this quantity is  strengths. It should be pointed out, however, that the validity
periodic int with the period of the external driving. Thus, its of LRT critically depends also on the value of the frequency,
cycle average over one periodtofields a function of just: as has convincingly been demonstrated in recent works
the correlation functionC(7). The analysis of its structure [11,12].
reveals thatC(7) is the sum of two term§2]: One term is In the context of LRT theory it has been pointed out in
periodic in 7 with the same period as the driving force and it Ref. [9] that a corollary of LRT is that “for small amplitude
is called the coherent pai€.,(7). The other term, the in- signals, the signal-to-noise ratio at the output of a system
coherent par€;,.,n(7), decays to zero for—. The SNR driven by a stationary Gaussian noise does not exceed that at
of the output process(t), denoted byR,;, is defined as the the input, even if the system displays SR.” Moreover, in Ref.
ratio of the amplitude of the Fourier mode of the coheren{10], the authors state that for “small signal in a Gaussian
part at the driving frequency, and the power spectral densityoise background, it is a theorem that the SNR at the output

1063-651X/2003/6(B)/03610910)/$20.00 67 036109-1 ©2003 The American Physical Society



CASADO-PASCUALEet al. PHYSICAL REVIEW E 67, 036109 (2003

of a nonlinear device must be less than or equal to the SNRom the numerical solution after averaging over the noise
at the input.” On the other hand, studies nondynamical realizations. The incoherent part is obtained from the differ-
systemg13—16, on dynamical systems driven by large am- ence Ci,con(7) =C(7) —Ccon(7). As the definition of the
plitude sinusoidal force$17], and on dynamical systems SNR involves the amplitude of the Fourier modeQy,(7)
driven by pulsedmultifrequency periodic forces with sub- and the spectral density &;,con(7) just at the driving fre-
threshold amplitudegl8,19, have reported gains larger than quency, the evaluation @R, requires just two numerical
unity. Clearly, for this to occur, the stochastic system musguadratures; that is, there is no need to construct the full
operate in a regime where LRT does not apply. It is therefor&pectrum.
of interest to delineate carefully the limit of applicability of ~ The paper is organized as follows. In the following sec-
the LRT description of the correlation function, the SNR, andtion, we introduce the model and provide definitions of the
the gain of a nonlinear noisy driven system. quantities of interest. In Sec. lll, the main points of the LRT
In this paper, we have tackled this challenge by carryingdescription of the correlation functions are detailed. We also
out a detailed numerical evaluation of the correlation funcPresent in this section a different and straightforward proof
tion C(7) and its components (7) andCincon(7), of the  Of the fact thaG(-RN<1, based on the spectral properties of
SNR and the gain of a bistable noisy system which is driverthe Fokker-Planck operator, and its adjoint, in the absence of
by time-periodic forces. The numerical predictions have beefriving. In Sec. 1V, we present the numerical procedure used
compared with those provided by the LRT approximationto obtain the correlation function, the SNR, and the gain
that accounts for the full spectrum of all relaxation modes. from the numerical solution of the Langevin equation. The
As it is well known, LRT requires the knowledge of the Very efficient algorithm used in this work is summarized in
system susceptibility, or alternatively, of the correlation func-the Appendix. The numerical results are compared with the
tion of the noisy system in the absence of drivirt) predictions of LRT for a variety of parameters and two dis-
[2,11,12,20—2 None of these quantities are known exactly tinct types of driving forces: a monochromatic force and a
for nonlinear systems. For sufficiently small values of theperiodic sequence of pulses. Finally, we present conclusions
noise strength, suitable analytical approximationsktg@)  for the main findings of our work.
can been usef,11,12,20,21 On the other hand, for large
values of the noise intensity, we have evaluakdd) from [l. CORRELATION FUNCTION, SIGNAL-TO-NOISE
the numerical solution of the Fokker-Planck equation using RATIO, AND GAIN
an adaptation of the split operator technique of Fegigl.
[23], as it has been detailed in R¢R4]. In this paper, we
also present a detailed proof of the statement that withi

LRT, the gainG(*RN<1, by use of the full spectral ap- UUAS . :
proach; this proof differs from alternative attempts in Refs " extern.al .pel’l(.)dIC 5|gnﬁ!(t) .W'th periodT. In the Langg-
vin description, its dynamics is generated by the equation

[9,10] which use additional restrictions such as a linear re-
sponse theory for the fluctuations themselves.
The “typical” procedure to evaluate the SNR involves the

Fourier analysis of a very long record of the stochastic tra- L :
jectory, x(t). Using the fast Fourier transforiFT) of the The corresponding linear Fokker-Planck equatiBRB for

record, the corresponding periodogram is constructed. Thertge probability densit(x,t) reads

are several drawbacks with this procedure. There are subtle- P .

ties inherent to the interpretation and evaluation of the peri- —P(x,t)=L(t)P(x,t), (2
odogram (see for instance the critical comments in Ref. Jt

[25]). There are also major problems associated with the fa%here

that the power spectrum contaidgeaks at the driving fre-

guency and its higher harmonics arising from the coherent R 9 P

part of the correlation function. The contribution of the inco- L(t)= x U'(x)—F(t)+D ik (3)
herent part at those frequencies is embedded in those peaks,

a}nd it is not a simple task to estimate.the separate contribL,h the expressions abovB, (x) represents the derivative of
tion to the peaks of the coherent and incoherent parts of thfhe potentialU(x). The periodicity of the external driving

periodogram. The evaluat|on_ of_the SNR gain requwes_qzm allows its Fourier series expansion in the harmonics of
good knowledge of both contributions, and any small error Nhe fundamental frequend = 27/T, i.e

the estimation of the incoherent contribution yields unrea-

Let us consider a system characterized by a single degree
ﬁ)f freedom X, subject to the action of a zero average Gauss-
ian white noise with(&(t) £(s))=2D S(t—s) and driven by

X(t)=—U'[x() ]+ F (1) + &t). 1)

sonable values for the gain. Indeed, in our opinion, a much o

better estimate would be obtained if the periodic part of the F(t)= 2>, [f,cognQt)+g,sin(nQt)], (4)
output signal were subtracted from the data before perform- n=1

ing its FFT.

In this work, we propose such an alternative procedureWith the Fourier coefficients;, andg,, given by
The Langevin equation is numerically integrated for a large o 1
number of noise realizations. The time evolution of the cor- _Z
. ! ; . fn dt F(t)cognt),
relation function and its coherent part are directly evaluated TJo
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2 (T .
gn=?f dt F(t)sin(nQt). (5) C(n)= JO dw C(w)cofwT). (9)
0
Here, we are assuming that the cycle average of the externy1e value of the output SNR is then obtained from
driving over its period equals zero. . Q+e
The two-time correlation functiokix(t+ 7)x(t)).. in the I|m+ 0. dwC(w)
- o 0
limit t—oo is given by Roui= _ (10)
Cincoh(Q)
(x(t+ T)x(t)>m=f dx’ x P.(x’,t) Note that this definition of the SNR differs by a factor 2,

stemming from the same contribution @t= — (), from the
" definitions used in earlier work®,7]. The periodicity of the
X f dx xPyi(x,t+7]x",t), (6)  coherent part gives rise ®peaks in the spectrum. Thus, the
- only contribution to the numerator in E(L0) stems from the
coherent part of the correlation function. The evaluation of
where P (x,t) is the time-periodic, asymptotic long time the SNR requires the knowledge of the Fourier components
solution of the FPE and the quanti (x,t+ 7[x’,t) de-  of Con(7) and Cineon(7) at the fundamental frequency of
notes the two-time conditional probability density that thethe driving force. Thus, rather than the entire Fourier spec-
stochastic variable will have a value neaait timet+ 7 if its trum, just two well defined numerical quadratures are
value at timet was exactlyx’. It can been showf2,7] that, = needed. Namely,
in the limit t—o, the two-time correlation functiofx(t
+ 7)x(t)).. becomes a periodic function ofwith the period R :% (11)
of the external driving. Then, we define the one-time corre- our
lation functionC( ) as the average of the two-time correla-

tion function over a period of the external driving, i.e., where

2 (T
1(T Qu:?f dTCcoh(T)COSQT) (12
C(T)Z?fo dt(x(t+ 7)X(1))s . 7) 0

and

The correlation functiorC(7) can be written exactly as the 2 o

sum of two contributions: a coherent p&t,n(7), which is Q|=;j d7 Cincon(7)COL 7). (13
periodic in 7 with period T, and an incoherent part which ©

decays to O for large. The coherent pai€.qn(7) is given  The signal-to-noise ratio for an input signg(t) + £(t) is
by [2,7] given by

1 m(f3+g)
Coo)= 7| X DYx0), (@) Ring=—3p5 (14)

The so-called gain is defined as the ratio of the SNR of the
where (x(t)).. is the average value evaluated with the output over the SNR of the input; namely,
asymptotic form of the probability densify..(x,t).

It is possible to carry out a formal analysis©f7) and its _ Rout
; . G= . (15
coherent and incoherent components by making use of the Rinp
spectral analysis of the Floquet operator associated with the
Fokker-Planck dynamics. But an explicit evaluation of the lll. LINEAR RESPONSE THEORY BEYOND
correlation function is generally impossible; thus, one has to THE TWO-MODE APPROXIMATION

rely on numerical results obtained from integrating either the . .
Langevin or the FPE, or by use of approximate analytical The I|_near response _theory p_rovu_nles a ge”e“”?' procedure
descriptions to describe the correlation function in an approximate way.
According to McNamara and Wiesenfeld], the output The ba§|c quantity of LRT 1S the system response fungtlon,
SNR is defined in terms of the Fourier transform of the coJ((t)' It is related to the equilibrium time correlation function

herent and incoherent parts©{ 7). As the correlation func- of thle systt_am Ic;] th_e a.bsenhce of external driviKQt), via
tion is even in time and we evaluate its time dependence fof€ fluctuation-dissipation theorefRDT) [2,7,20,23 i.e.,

=0, it is convenient to use its Fourier cosine transform, 0, t<0

defined as R

K07} Ly o (16)

~ 2 (=
C(w)Z—J d7rC(7)coqdwT), o . . . ) i
mJo The equilibrium time correlation functiok(t) is defined as
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o o tude. Then, within the spirit of perturbation theory, the lead-
K(UZJ dx’ X'P(eq)(x')f dx xP9(x,tx"), (17 ing term in the expansion of the incoherent part corresponds
o o to the correlation function of the system in the absence of
where P€9(x) is the equilibrium distribution of the non- driving force, i.e.C{t&R(r) =K (7).
driven system, Taking into account tha€C-R"(7) is periodic in 7, it
follows from Eqgs.(9) and(26) that
Ped(x)=Ne Y/D, (18)

C(LRT)

coh

2 (M{-RD)24 (NC-RD)2]

I\)II—‘

and P(l?{(x,t|x’) is the conditional probability density to
find, in the absence of driving, the variable ngat timet, if
it was initially at exactlyx’. Here we are assuming that the X[8(NQ—w)+ (NQ+w)]. (27)
potentialU(x) is even inx, so that(x)eq=

Within LRT, the long time average valu(e<(t)>(LRU is  Thus, it follows from the definition of the SNR, E@10),

given by that, within LRT, we have
o (LRT)
<x(t)>£oLR”=f d7x(7)F(t—7). (19 R (28)
0 Q+RP
Insertion of the Fourier expansion E¢) into Eq.(19) leads  \yhere
to
1
o (LRT):_ M(LRT) 2+ N(LRT) 2
(X)ERD= S [MERDeogn0t) + NERDsinnQt) ], Qu =gl M DT
n=1
0 T A VR U NC
where the coefficientM (-RD andN(-R" are given by
. . and
= gt N o o 0
21 ~ 2D
QHRI=R(0)= 5! (30

In these formulas, we have introduced the quantjti¢sand Gt

() ; ~
Xy' defined as with K(€)) being the Fourier cosine transform K{t), de-

fined according to Eq(9). In arriving at Eqs(28)—(30) we
x\= f dr x(r)cognQ7), (22 have also used Eq&21)—(23) and(25).
Taking into account Eq9(14), (15 and (28)—(30), one

. readily finds that the gain within LRT is given by

(i)— J q i
X 7 x(7)sin(nQ 7). (23

"o srn_Ran " _ QO+ 0d)?)
The use of the FDT in the above expressions allows us to Rinp X(1')
write immediately

(31

This is a general expression f6&¢-R " valid for any shape of

5 o ) the periodic driving signal.
(X%)eq— N2 fo dt K(t)sin(n€2t) The last expression will allow us to show tf@at-R " can,
Xﬁr): 5 , (24) indeed, not exceed unity. Although this assertion has been

discussed previously in Reff9,10], we next will present a
detailed and hopefully very clear proof for this prominent
=" gt k(1) cognort 25)  assertion.

f (tycog ) @9 As shown in the Appendix of Ref2], see also in Refs.

[11,12, the susceptibilityy(t) can be expressed as
It then follows from Eq.(8) that within LRT, the coherent

part of the correlation function is given by ” d

x(t)=—= 2 e *(0lx|p)(p| -0}, (32

© p:]_ X

CURD(7)= MERDY2 4 (NERDY 2 cognQ 7).

Ceon (1= n§=:l L(Ma 50"+ (N ™) Jeognddr) where |p)=,(x), (p|=4}(x) and\, are the eigenfunc-
(26 tions and eigenvalues of the FP operafgrassociated to the

As discussed in Ref$2,7,20, LRT amounts to keeping the undriven dynamics and its adjointy, i.e.,

leading term in the perturbation treatment of the dynamics of . ot .
the stochastic procesgt) in powers of the driving ampli- Lothp(X)==Npihp(X),  Lothp(X) == Npip(X). (33
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Using the above representation of the susceptibility in Eqgs.

(22) and (23) with n=1, we find

oo

A 9
M=—> —L—(0lx —|0
x=-2 Zr [xIp)(pl= 10)
oA
_pzl .

P
2
\+Q

d
(Ox[p)(pl-10)|, (34

©

| Q ?
W=—> ———(0 —10
W=-2 o [xIp)(pl- [0)

©

Q
=2 2,02
p=1 )\p+Q

J
<0|><|p><p|5|0>‘- (35)
Here, we have used the inequality

d
(OlxIp)(pl =~ 10)=0, (36)
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1/2

- 0loIpHpIAI0)

(x{")?=

p=1 Np+ 02
2
9 1/2
X (0lx[p)(p| -~ [0)
2 d
= Q70IX|p)(pl =~ [0)] = P
= 0|x —|0)|.
& O >\

(39

Taking into account that(0|x|0)=0, the complete-
ness relation yields  =7_4[(0|x|g)(q|a/x|0)|
=—3,_0(0|x|g)(q|a/9x|0) = —(0|xa/9x|0)=1. Thus, by
adding Eq.(38) to Eq.(39), one obtains

P
® <0|X|P><P|a—xlo>‘ R

M2+ (x{)2< —. (40
D2+ 2= 2 Y q - 40

which can be proved as follows. Multiplying the first equa- Finally, inserting Eq.(40) into (31), we obtain the seminal
tion in Eq.(33) by x and carrying out an integration by parts, inequality thatG-RD<1.

one obtains
~n0hp)= | dxxZovy0
__ J:dx U’ (0 o0 #1(%)

o[ axutol - i
=0 [ dey0=-vo(0 = Dol - [0)
37

where we have taken into account thiai{x) = P€%(x) and
Po(X) = o(X) (X), s thatysg(x)=1. Therefore(0|x|p)
x(p|alax|0)=—\,((0|x|p))?/D=<0. Using in Egs.(34)
and(35) the Cauchy-Schwarz inequality, we find

1/2

d
» i Np| (Ox[P)(PI--10)
(X1 )?=

p=1 Np+ Q2

1/2
X

(0lxlp)(pl =[0)

. N2(0IxIp)(pl=[0)
p oX

- d
sp; Zr7y q; ‘(0|X|Q><Q|5—X|0>"

(39

Put differently, the gain of a nonlinear system operating in
a regime where LRT provides a valid description cannot
reach values greater than 1. This result is validdoy pe-
riodic external driving. Notice that this finding does not pre-
clude the possibility of obtaining values for the SNR gain
larger than unity when the conditions are such that the use of
LRT is not sensible.

IV. NUMERICAL RESULTS

In this section, we will carry out the numerical evaluation
of the different magnitudes defined above. Our goal is to
compare the predictions of LRT with the results obtained
from the numerical solution of the Langevin equation, Eq.
(1). We will consider the dynamics in the bistable potential
U(x) = —x?/2+x*/4 driven by time-periodic forces.

The evaluation of the different magnitudes using LRT re-
quires the knowledge df(t) [cf. Egs.(21), (26), and(28)—
(31)]. For nonlinear problems, explicit expressions Kt)
are unknown, but useful approximations have been presented
in the literature. For the bistable potenti&)(x)=—x2/2
+x%4, Jung and Faggi [21] have used the two-mode ap-
proximation. It is based on the existence of a large difference
in the time scales associated to interwell and intrawell mo-
tions, and it is expected to be valid for small values of the
noise strengthD. With this model, one finds

K(r)=gie M7+ge 7, (41
where[2]
ng(l—gmexq—mm)], (42)
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anda=2. The weightgy; andg, can be obtained from the 6 ———————— — . . 3
moments of the equilibrium distribution in the absence of ; (@) o (b)
driving using the expressions 4 o | 12
_)\1<X2>eq <X2>eq_<x4>eq ¢ 2| | ¢ o 1
27— Nq— + _ ’ (43) i , o
1~ N—a & o o o i °o 5 o
0 & - - 0
91:<X2>eq_ 92. (44) 4 11
1
To leading order inD, we can replaceN; by M\ ] o9
=\2/mexd—1/(4D)], g;~1 and g,~D/a. This is the g ° o olgs
limit considered in Ref[26]. In the results reported below, & lo7
we have also considered valuesdfso large that the two- 106
mode approximation becomes inadequate. Therefore, thi L v , 0.5
correlation function in the absence of driving has been evalu- 0 020406038 1 0 05 1 1.5
ated numerically from the FPE in the absence of driving A2 A2
following the procedure discussed in REZ4].
The numerical evaluation of the correlation functior) FIG. 1. The dependence of several SR quantifiers vs the square

and its coherent and incoherent parts proceeds as follow8f the driving amplitudeA?, given by LRT (solid line) and by the
Stochastic trajectorieg(n(t) are generated by numerically numerical solution of the_ Langevin equatiggircles. In pan(_els(a)
integrating the Langevin equation for every realizatjoof and (b), yve plot, rg;pectlvely, the numerator and denominator ap-
the white noise&(t), starting from a given initial condition P€a'ing in the definition of output SNR, cf. Eqdl) and(28). The
Xo. The numerical solution is based on the algorithm develPehaviors of the output SNR and the gain are depicted, respectively,
oped by Greenside and Helfaf27,28. The essence of the in panels(c) and (d). The driving force is monochromatic with

lgorithm is brieflv sketched in th ,A ) ndix. After allowin frequency(Q)=0.1 and the white noise strength is kept constant at
aigo S Driefly sketche € Appe - ANErallowing o \ajued=0.2. In all panels, the vertical dashed line indicates the
for a relaxation transient stage, we start recording the t'mgquare of the value of the dynamical threshold amplitaggat the
evolution of each random trajectory for many different tra-

; ; X angular driving frequency). In panel(d), a dotted horizontal line
jectories. Then, we construct the two-tinteand ) correla- g grawn at the gain value of 1 as a guide to the eye.
tion function, i.e.,

N A, O=t<t,
(x(t+ T)X(t))oc:N > x0(t+ )x0(p), (45 T T
=1 F(t)y=9 —A 5 St<z i (47)
as well as the product of the averages 0, otherwise.
1 N 1 N )
(X(t+7))w<x(t)>w=(ﬁ ,Zl x0(t+7) 3 ,Zl X(J)(t)), In this case, we have

49 =N, gi= o [1-cod )], (49

whereN is the number of stochastic trajectories considered.

The correlation functior(7) and its coherent patcon(7) whereQ)=27/T is the fundamental frequency. This force is

are theq obtained using their definitions in E@ and (8_)’ characterized by its amplitude, its period, and its duty cycle,
performing the cycle average over one period.ofhe dif- which is defined as /T. Recently, Ginglet al. [18,19)

ference between the values©{7) andCeor(7) allows us to have carried out analog simulations of systems that are sub-

obtain the values f0€incon(7). It is then straightforward to jected to wideband Gaussian noise and driving forces of this

evaluate the Fourier Comp"”_er_“ Gton(7) and the Fouri_er second type. They report values for the gain that greatly
transform ofCiycon(7) at the driving frequency by numerical o, coads “unity, for driving amplitudes below its threshold
guadrature. With that information, the numerator and the de;

! value. If this is the case, then strong deviations from the LRT
nominator for the output SNRf. Eqs.(11)—(13)], as well as should be observed as well.
the gain[cf. Eq. (15)], are obtained.

We shall analyze two different types of periodic driving
forces. First, let us consider the well known situation with a
monochromatic, single-frequency foreecos(2t), with am- In Fig. 1, we depict the results obtained for a monochro-
plitude strengthA and angular frequenc§ [2]. In this case, matic driving force with angular frequencf =0.1, noise
the formulas in Sec. lll simplify considerably becausg strengthD=0.2, and several values of the amplitude. In the
=A, while all the other Fourier components of the driving deterministic dynamics@{=0), an external periodic force
force vanish. The second case corresponds to a periodic foredth the indicated frequency induces sustained oscillations
with period T, with a sequence of pulses of length<T/2, between the minima of the potential féx=A,,=0.419.
namely, Note that this nonadiabatic frequency raises the threshold

A. Monochromatic driving
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value for superthreshold driving beyond its adiabatic lower 1.5 . . 1.5
limit of A2 = ,/4/27=0.3849. Thus, we will take this value
as the amplitude threshold value at the frequefiey0.1. In 1r
panel (a), we plot the numerator®Q, and QX" , of the &
output SNR given by Eqs12) and (29) vs A% The solid 05 ¢
straight line represents the LRT result, while the circles cor-
respond to the numerical results. The graph reveals that fo 0 e : : 0
amplitude strength®\<<0.1 the predictions of LRT match roT T T
well the numerical results, as can be expected. When the |

amplitude increases, the deviations of LRT from the precise _ |

numerical results are large. LRT predicts a much larger am- @ LI 10
plification of the output amplitude than the one obtained nu- |

mﬁg%ally. In panel(b), we plot the denominators), and | D
Q , of the output SNR given by Eg$13) (circles and 0 & = 0.8
(30) (solid line) vs A. In LRT, the denominator is indepen- 0 0204 02'6 0.8 1 0 0204 02'6 0.8 1

dent of A. Once again, the predictions of LRT match the A A

numerical results forA<<0.1. For larger values oA, the
influence of the driving amplitude on the relaxation of
Cincon(7) is very strong and the numerical results for the
denominator are much smaller than the ones obtained withi
LRT. Itis then clear that LRT will yield a valid description of
the signal-to-noise ratio for small driving amplitudes only as
d_ep|cted N pane«lc)._We notice that the values gﬂ“t pro- gains larger than 1 in the range of parameter values consid-
ylded by the numerics are larger than thos,.eRﬁ'LfJt - This  &red in these figures.

is so although linear response theory predicts larger spectral
amplifications, see in Ref.7], of the average output than
what really occurs. The modifications in the behavior of the
incoherent part of the correlation function with respect to its A particularly interesting situation arises in the analog
behavior in the absence of driving are more than enough tstudies of pulsed driving forces with a vesynall fundamen-
compensate for the behavior of the numerators. In pabel tal frequency: in Refs[18,19 Gingl et al. report gains that

we plot the gain vsA?. There exists an optimum value for significantly exceed the value 1 for a subthreshold, multifre-
the driver amplitude A~0.8) at which the gain becomes quency driving force of very large perio@i=27/0.0024
maximized. Nonetheless, the gain is always smaller thar=2618 and a small duty cycle of 10%. This large gain is
unity. LRT requires thaG(-RD<1. These strong deviations accompanied by a nonmonotonic behavior of the SNR with
of the predictions of LRT about the behavior of the two the noise strengtiD. Therefore, this situation must corre-
components of the correlation function with respect to thespond to a very sensible discrepancy of the actual behavior
numerical results tell us that LRT cannot be invoked to ex-with respect to the LRT predictions. We have carried out
plain the fact that the gain is smaller than 1 for the range ofletailed and careful numerics of the Langevin equation in
parameter values considered in this figure; that is, a gaithis extreme regime for such a driving force with a sub-
below 1 occurs here within the nonlinear regime.

(@) (b)

PRSP o M PRPERP

o]

FIG. 2. The same as in Fig. 1 but now fé@=0.1 and
D=0.6.

Bictions of LRT as the amplitude of the driver is increased.
Nevertheless, perhaps the most relevant difference with re-
spect to the monochromatic case is that we againatdind

C. The case of strong nonlinearity

1

In Figs. 2 and 3 we analyze the same quantities as in Fig 3 -
1, but now for larger noise valueB,=0.6 andD=1.0, re-  (b) los
spectively. The most important difference with respect to the %o ’
plots in Fig. 1 is that for these larger values of the noise, theg® < o, 1 0.6
gain canexceedunity for values of the amplitude well above 1 | o
its threshold value. This superthreshold feature has been col ° o 104
roborated already in Refl7]; a gain above 1 seemingly 0 5 - s 1 0.2
does not occur for monochromatic subthreshold driving. 4 ' T T N T ' — 1.3
3 5 () ° [ (d) 112
B. Pulsed, multichromatic periodic driving E i o411
. Lo F o2 ° G o
Next, we proceed to consider the case of pulsed drivingee ! 0 1
forces. In Figs. 4 and 5, we compare the dependence of th 1 f @Iboo logo
output on the driving amplitude as given by the LRT ap- el . . . ) )
proximation with the numerical precise results. The system is 0 0 1 2 3 4 0 1 2 3 4 08
forced by a multifrequency driver with a peridd=2/0.1 A2 A2

=63 and a duty cycle of 10%. As in the case of a single-
frequency driving, the values of the different quantities ob- FIG. 3. The same as in Fig. 1 but now f&@=0.1 and
tained from the numerics deviate significantly from the pre-D=1.0.
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0.2 — 1.2 TABLE I. Numerically obtained values of several quantities for
1 (b) different numbers of noise realizations and their LRT results.
0.15 1 b 1141
g 01f _ o‘(?:bo 11 Trajectories Qu Q Rout G
0.05 | . i ° 5 o o109 Numerics 1000 0.78 0.33 2.32 12.16
. . . . l . . . . 5000 0.78 0.35 2.26 11.84
I — 08 10000 078 047 167 877
1 (e) i 1 50000 0.78 0.48 1.65 8.62
0.15 i 1 @ log LRT 0.00061 0.177 0.0034 0.018
= ' o]
g8 01 1O [7%0
o | 5 © i o 106
0.05 © 1 H © 5104 band Gaussian noise with a related strength roughly similar
0 N N I, ) to ours, yields an experimentally determined gain of ca. 19,

0 1 2 3 4 0o 1 2 3 4 cf. Fig. 4 in Ref.[19]. This value is again significantly larger
than 1 and compares favorably with our results in Table I.
Note, however, that the sampling size of ca. 1000 realiza-
FIG. 4. The same as in Fig. 1, for the case of a pulsed, drivingdjons used in Refs[18,19 has been chosen substantially
force with periodT=63, duty cycle 2./T=0.1, cf. Eq.(47),anda  smaller than the number of realizations needed to achieve
noise strengttD =0.6. good numerical convergence, cf. Table I; this in turn may

explain the overshoot of the experimentally determined gain
threshold amplitud&d=0.35 and a noise strengih=0.02.  yalue.

With the parameters considered, the problem becomes com-

putationally very demanding indeed: this is so because of the V. CONCLUSIONS

very large period of the driving force. Moreover, in order to

obtain reliable numerical results for the incoherent part of the Let us summarize the main results of this work.

correlation function a large number of stochastic trajectories (i) First, we have provided an analytical proof based on

needs to be generated. Our findings are summarized kRT beyond the commonly employed two-mode approxima-

Table I. tion that thegain of a noisy, periodically driven nonlinear
To obtain a reliable convergence of the corresponding SRystem which operates within the regime of validity of LRT

quantifiers, at least up to 50 000 random trajectories need teannot exceed unity. This result holds for arbitrary noise

be considered. A smaller sampling size can induce severgirengthD and is independent of the shape of the input sig-

errors, see in Table |. The main result is a numerically evalunal.

atedgain of 8.62; in clear contrast, the result predicted by (i) We have implemented a very efficient algorithm due

LRT is the very small value of 0.018; that is, LRT strikingly to Greenside and Helfan®7,2§ to numerically integrate

fails, cf. in Table | for the corresponding values of SNR andthe Langevin equation. From the numerical solution, we

its constituents. The SNR value of the analog simulation irhave evaluated the time evolution of the correlation function

Refs.[18,19 carried out with a pulsed input signal with the and its coherent and incoherent components.

same characteristics as the one considered here, and wide- (i) We have also put forward a procedure, alternative to

the usual one, to calculate the SNR. The numerator and de-

nominator of the SNR are calculated by use of only two

005 —— T T . — . . .
0.04 | (@ | (b) | og  Numerical quadratures.
) | w ° o o ) (iv) A detailed comparison between the predictions of
o 0.03 ° g [ LRT and the numerical results have been carried out. We
0.02 ! s - 107 have assessed regions of parameter values where LRT gives
001 || : o an erroneous description, yet the gain, nevertheless, is less
AR o than unity. On the other hand, there exist regions in param-
0 0.6 L o .
0.06 —~——— — 14 eter space where the gain indeed exceeds 1 if driven with a
: i {(d) superthreshold amplitude strength; this finding is in agree-
i(c) i 1 . . . . .
0.04 | o | : ment with prior results in Ref.17]. These regions are again
- ! o b 109  characterized by substantial deviations from LRT.
o 0.02 K 6 | 7 o o {08 Moreover, as previously established by use of analog
) | [ ° lo7 simulations by Gingkt al. [18,19 we also find the surpris-
; | ° ing result,valid for dynamical systemghat SNR gains larger
0 b 0.6 : : . .
0 05 1 15 2 0 05 1 15 2 than unity can indeed occur for subthreshold multichromatic
A2 A2 input signals: For this feature to occur one seemingly needs,

however, weak noise and a slow periodic driving signal with

FIG. 5. The same as in Fig. 1 for a pulsed driving force with @ very small duty cycle. In this context, the necessity of a

period T=63, duty cycle 2,/T=0.1, cf. Eq.(47), and a noise sufficiently large number of sampling trajectories in order to
strengthD =1.0. obtain reliable, convergent results has also been stressed. It is
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in this very regime of small frequency driving and weak
noise where the LRT description indeed fails notdhly, 17
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APPENDIX: THE METHOD OF GREENSIDE
AND HELFAND

PHYSICAL REVIEW E 67, 036109 (2003

TABLE Il. Parameter values given by Greenside and Helfand
[28] for their 35452 algorithm.

A 0.0 A, 0.644468
As 0.194450 A, 0.161082
B 0.516719 Ba1 —0.397300
B> 0.427690 Ba —1.587731
Ba> 1.417263 Baz 1.170469
Noi 1.0 Noa 0.0

M1 0.0 N1 0.271608
- 0.516719 Ao 0.499720
- 0.030390 Nao —0.171658
Na1 1.0 Nao 0.0

The procedure proposed by Greenside and Helfand for By analogy with the Runge-Kutta procedures for deter-
numerically integrating stochastic differential equations hasninistic differential equations, Greenside and Helfand pro-

been discussed in detail by them in Rdfa7,2§. For the

pose arl-stage algorithm to write the solution of E@1) as

sake of completeness, we will briefly sketch in this appendix s
the main reasoning of their procedure. By analogy with de- Y.(h)=Y,(0)+h(A;gy,+ - - - +Ag,) +hY2E Y,

terministic Runge-Kutta algorithms, Greenside and Helfand
developed schemes to estimate the value of the stochastic

variable at timet+ h if its value at timet is known. This is

achieved by evaluating the right hand side of the Langevin

equation at selected points within each interval of lergth
so that all moments of(t+h) —x(t) are correct to ordenX.

As our Langevin equation contains an explicit time de-
pendent driving force, it is convenient to rewrite it as a two-

dimensional problem with variables;/](,yz):)7, wherey,
=x andy,=t. The Langevin equation, E¢l), is then writ-
ten in vector form as

dy . . .
G- CW+EW, (A1)
where G =(Gy1,G;)=(~U'(x) +F(t),1) and E(1)

=(£(1),0).
The formal solution of Eq(Al) yields

YoM =y.(0) + fohdsex<y*<s>)s+w&°)<h> (k=12
(A2)

with

h
wO(h)= f dsE (s). (A3)

0

The right hand side of EJA2) can be expanded as

9G(y(0))

Sy CuU(0)

- 1
V(N =Y, (0)+hG(y(0))+ 5h?X
M

s

+.--+S.(h). (A4)

(A5)
with
91.=G,({y,(0)+h2= 32y, 1,

92.=G.({y,(0)+hB2.91,+ hl/zE,lszzﬂ}),

91=G,({y(0)+hB191,+ - +hB_10/-1,
+hY2272y 1. (A6)

Here, (y,}) is the set k,t). TheY,, are Gaussian stochas-
tic variables with zero average, which are numerically gen-
erated by writing

m
YiK:JZl NijZj s (A7)
whereZ;, arem independent Gaussian random variables of
zero average and unit variance. The parameierss;; , and
\ij; appearing in EQYA5)—(A7) are independent of the com-
ponent indexx. They are obtained by expanding E45) to
the desired ordemX. This expansion gives rise to a determin-

istic and a stochastic pafﬁ,(. Equating the coefficients of
this expansion with those of the deterministic part in Eq.
(A4) leads to a set of equations for the paramefersg;; ,
and\;; . Further equations are obtained by equating the mo-
ments of(S]) with those of the stochastic part in the expan-
sion in Eq.(A4) (S).

A procedure correct to ordér® in the step sizd, involv-
ing | stages andh Gaussian independent variables, is termed
a kol smg algorithm. In this paper, we have integrated the
Langevin equation using apds2¢ algorithm with the values
for Aj, Bi;, and\;; given in Table Il taken from Re{.28].

The last termS,(h) represents the stochastic part. It is aWith this choice of parameters, the deterministic part is of

series inh¥? with the order of the terms determined in prob-
ability.

orderh?, as in the fourth-order Runge-Kutta procedure for
ordinary differential equations.
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