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Magnetic field chaos in the Sherrington-Kirkpatrick model
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We study the Sherrington-Kirkpatrick model, both above and below the de Almeida-Thouless line, by using
a modified version of the Parallel Tempering algorithm in which the system is allowed to move between
different values of the magnetic field The behavior of the probability distribution of the overlap between two
replicas at different values of the magnetic fibllandh, gives clear evidence for the presence of magnetic
field chaos already for moderate system sizes, in contrast to the case of temperature chaos, which is not visible
on system sizes that can currently be thermalized.
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[. INTRODUCTION by looking (in the SG phaseat the distributionPy, , ()

itself, a quantity whose interpretation is simpler than the mo-
The Sherrington-KirkpatricKSK) model was introduced ments.

quite a long time agql] as a mean-field model for spin ~ More in detail, in terms of the probability distribution of
glasses. Its proposed analytical solut[@h displays intrigu-  the overlap between two replicas at different values of the
ing features such as an infinite number of pure states in thexternal parameteh, and h;=hy+ sh, chaos has a very
glassy phase, described by an order parameter, which is tlidean signature. Taking for simplicity the cakg=0, for
nontrivial probability distribution of the overlap between two small volumesPq s,(q) has two peaks, and is very similar to
states,P(q). After more than 20 yr this solution is still the Pgo(g) on the same volume. As the volume grows, a peak
subject of works aiming at establishing it in full mathemati- develops around the minimal value of the overtgp=0, in
cal rigor [3,4], whereas long standing open issues concersuch a way that for very large volumPg o(q) ~ 5(q). In the
the study of the corrections to the mean-field approximatiorfémperature chaos case, this chaotic peak is hardly visible
below the upper critical dimensidis] and the very applica- with current computers and algorithms. Our aim is to deter-

bility of the mean-field picture to short range realistic spinMine if and how this “chaos peak” scenario takes place in
glasseg6]. the case oh chaos, which is believed to be much stronger

An interesting question concerns the way in which theth@nT chaos. o _
To this aim, we perform numerical simulations of the SK

states reorganize themselves when the system is subjected to - :
a small perturbatiodp of an external parameter, in particu- ums?r?elaa;r&j%ggc\’/e?;?nago%z eIIDnadratI)IZIIO% rt:eeﬁ%nzi_by
lar, the temperatur& or the magnetic fieldh. There is the 9 P

intriguing possibility ofp chaos, namely, the statesmand gorithm [2(.)'2]1 in which the_system 's allowed to move
. T 2 . between differenh values at fixed temperature.

p+Jp are as different as possible in the thermodynamic

limit.

The possible presence of temperature chaos in the SK and Il. MODEL AND OBSERVABLES
related models is an old subject of investigatipis10| that
recently received a lot of attention both analytically and nu
merically [11-16. From a very recent analytical computa-
tion [17] it turns out to be present, but to be of the ninth
order in perturbation theory, a very weak effect, extremely Ho= 2 J.ooi—h 2 o 1)
difficult to be numerically observed on the system sizes one VG T TS
is currently able to thermalize.

The aim of this paper is to investigate the appearance Qyheres;= =1 are Ising spins, the sum runs over all pairs of
chaos with increasing system sizesquestion that cannot be spins, andJj; are quenched identically distributed indepen-

addressed by the existing analytical techniques that are I'ent random variables with mean val le=0 and variance
stricted to the asymptoti®l—oo regime, in a case where 1N. We takeJ: = + N~ 12 !
. ij=% .

chaos is strong, namely, the case of magnetic field chaos.

The presence of magnetic field chaos was predicted alreaq%erla P(q) one usually considers two independent replicas
20 years ag918] (see als¢7,10]). From the numerical point (o)) a%d(?z-i} evolvingycontemporaneousl;) and indeppen-

of view, it was observed in a previous wdr] from a study
of the behavior of the second moment of the probabilitygqe;égé;‘é tf?;;ame temperature and at the same value of the

distribution of the overlarPho,hl(q) between replicas dt,
=0 andh;# 0. This pioneering paper can, however, be criti-

cized, since many data points are on the wrong side of the de o=
Almeida-Thoules$AT) line [19]. We will revisit the problem

The Sherrington-Kirkpatrick spin glass mod@2,23 is
“described by the Hamiltonian

In order to measure the probability distribution of the

N
Zl aiTi, (2

Zl+~
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P(q)=P;(q)=(s(q— Q)), (3

where the thermal average) corresponds to the average over the Monte Carlo time in the simulation, whejestar{ds for
the average over thi; realizations. This is the order parameter in the glassy phase, which in the thermodynamic limit behaves
as

5(q_qEA)l |h|>hAT(T)
P(q)= Xm (0~ )+ P(Q) + X 80— Gep), 0<[h|<har(T) (4)
3 [P(@)+P(—q)]+ 3 xu[3(d—qea) + 8(q+0ea)], h=0T<T,

whereh,1(T) is the critical value of the magnetic field sig- have been introduced in order to look for chaos in Ref,
naling the AT line, withhar(T)~(4/3)Y4T.—T)** for T where it was argued that they should scaléf @8h&) for
—T¢ (Tc=1 in this mode) [19]. In the glassy phase, the h;=0 and should approach zero fidk—, namely, there is
stable solution corresponds to a full replica symmetry breakmagnetic field chaos.
ing (FRSB, i.e., to a nontrivialP(q) with a continuous dis- The finite size corrections to the asymptotic behavior of
tribution P(q) between twos functions at valuesjz, and Pho,hl(q) were computed in Ref.10] by considering two
Om, respectively. Fom—T; , one finds thak,<q,=h?3  replicas, at different values of the magnetic field, constrained
(dea—Am) = (Xpm — Xm) <[ ha7(T) —h]. Note that ah=0 the
function P(q) is symmetric, reflecting the symmetry of the 30
system for{o;}—{— o}, and thes function in q,, disap-
pears. 25
The interesting quantity to study when looking for chaos
is the probability distribution of the overlap between two
replicas that evolve at different values of the magnetic field, __
hg andh;=hg+ 6h, definable as =

Phg b, (4)=(3(q— Qn/ n,))- 5

.

]
35
[
€

It is expected to become &function in the thermodynamic
limit, where, in the presence of chaos, states are as different
as possible and accordingly their mutual overlap approaches
the minimum possible value, i.eq,,(hg) (which is zero for

) o - (@)

hy=0). This happens certainly in thé— o limit as soon as
the condition b;—hy)2N>1 is verified[18]. 18 - -

In finite dimensions, one can define the overlap correla- 16 L d % Ea *~££
tion function Cy, . (|ri—r;|)=(ioj){7i7j), which decays 1 | ¥ ; .
exponentially with a correlation length that was evaludted 15 | = o .
d>8, i.e., above the upper critical dimension of the model + A
[7] to be &—on,*hi?® and & con=n,+en E O : .
xhy~Y8(sh) ~ 12, respectively. o’ 8 . 8

Dimensional ratios of momenta, such as 6l o %
Azn(h01hlaT) 4r ++§ *++

((@=(Dno+n1)*hosh1 gt : : : e
, -0.1 0.05 0 0.05 0.1
m

\/<(q_@h01h0)2n>h0vh0<(q_@hl,hl)2n>hl,hl ®

FIG. 1. In(a) we plot the disorder averaged probability distri-
(6) bution of the magnetizatioR(m) at 21 different centrah values of
the set(i.e., fromh=—0.25 toh=0.25) for the largest considered

—{a). 2n system sizedN=1024. In(b) we presentP;(m) at h=0 for a
((Ad={Dng.h)Dhg by . .
an(ho hy,T)= 7 two-peak sample foN=1024 again. In this last case the errors are
T N on ' roughly evaluated as the difference between the values measured in
((q <q>h0,h0) >ho'ho the second quarter and in the second half of the run.
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FIG. 2. The probability distribution of the overldp(q) between two replicas evolving &t=0.0,0.1,0.2, and 0.3, respectively, for the
considered system sizes.

to have a fixed overlag. The constraint causes a free-energyachieved by considering replicas of the system, each at a
excess for q#q, given by Af=f(q=q,+9)—f(q different temperature in a given d@if temperatures and by

=(n), With allowing exchanges of temperatures between nearest neigh-
bor replicas with the usual Monte Carlo probability.
21873 5q2h3"3 Here we consider a set of replicas at different values of
32 q , No=0 the magnetic field, both above and below the AT line, allow-
Af= EA ing exchange oh values between the nearest neighbor rep-
M hy#0,h=|hy—ho|<hg licas with the appropriate probability
V2 ' '
®) P({hy {0} ihz {0} — {hz {o"}ihy o))

Correspondingly, one ha®y, , (q)=exp(-NAf), ie., a _ 1;% AHt>0 ©
Gaussian with variancég®)op, o<(Nh?9)~* for hy=0, in e, AHg<<0,
agreement with the above scaling law. where

Ill. PARALLEL TEMPERING IN MAGNETIC FIELD n

= L gdod— a

The PT or Multiple Markov Chain Method is a widely H‘Ot_azl K;J-SN Jijoio h”(a)lgiZgN of (10
used numerical algorithm particularly efficient for simulating
(some)_ systems with a corrugated fre_e_—eperg)_/ landscape. Thgnd therefore
basic idea is that the system at equilibrium, instead of being
trapped in a single low temperature valley is allowed to N N
move at higher temperatures where the Iandsc_:ape is trivial AH=— (hy—hy) E Uil_E Oiz)' (11)
and to return at lowT in a different valley. This can be i=1 i=1
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FIG. 3. The probability distribution of the overlchO,hl(q) between replicas evolving at different magnetic field values, \ugh
=0.0 andh;=0.1,0.15,0.2, and 0.3, respectively, for the considered system sizes.

In principle thish-PT method should be efficient for thermal- exp(—BmyshN), much  smaller than the usual
ization, like the usuall-PT method, since the landscape is EXp(—,B)(5hZN)]. This happens for sombl=1024 samples.
trivial above th(aT AT line. It iS, moreover, a.well-suiteq In order to avoid such a problem, we add a possible global
method for the kind of numerical study we are interested iNmovement, allowing a replica &t=0 to reverse the sign of
since one can easily measu?g_ n (q) by considering two g jts spins with probability 1/2.

or more independent sets of replicas. However, as we are Each run is divided into two equal parts and we check
going to discuss in detail, we find that its efficiency rapidly thermalization by comparing the data obtained in the second
decreases while simulating large system sizes. part with that of the second quarter, looking in particular at

We studied the cas@é= 64,256, and 1024, taking a set of e pehavior 0fPy 1,(4). We perform 50.008 50.000,

ETh“g xlejlia(')'yfs s;(atcr?ed t’;‘;%re‘f;'t‘a rge:'do ‘éa"ﬁef’eewg@% 100.000+ 100.000, and 300.086300.00Ch-PT steps foN
pomax N =64, 256, and 1024, respectively. In the=1024 case we

line occurs at the critical valuk,t(T=0.6)=0.382[24]. | : . ith f
We alternate one sweep of each replica with the usuafiso per ormed independent runs with temperature PT for 64

Metropolis algorithm and one sweep with the PT algorithm.disorder samples at=0 and h=0.3, obtaining indistin-
The probability of two replicas to exchange their mag-9uishable results foP(q). _ . .
netic fields is related to the overlap between the correspond- We simulated four sets of replicas evolving simulta-
ing histograms of the magnetizati®(m) that we check to neously and independentlj.e., 49<4=196 replicas Data
be large enouglfsee Fig. 1 even forN=1024. However, are averaged over 256 disorder configurations for each sys-
some single sampleB;(m) display two peaks at-m,#0  tem size, and statistical errors are evaluated from sample-to-
whenh=0 (see Fig. L As a result, the replicas can separatesample fluctuations by using the jackknife method. The pro-
into two distinct subsets, one evolving in the phase spacgram was multispin coded with 64 different sites of the
with positive and the other with negative magnetic field val-system in the same computer word and the whole simula-
ues[the probability of a replica that arrive &t=0 with m  tions took about 5500 CPU hou(is the largest part used for
=-my<0 to move at a positivesh value is of order N=1024), i.e., about one week when running over 32 pro-
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FIG. 4. On the top, the behavior &?(hy,h;) for h,=0.0 as a function oh, (left) and as a function of the scaling variablel\lf@“)
compared with the asymptotic behaviefl/(NhZ") for 1/(Nh§®)<1 (log-log plot on the right On the bottom, the behavior &, (0)

for hy=0.0 as a function o, (left) and as a function ol hf® compared with the asymptotic behaviok/Nh®" for Nh®3>1 (log-log plot
on the righj.

cessors on the COMPAQ SC2T7ihe program can be easily already for magnetic field differences of order 0.15, for
parallelized by running different samples over different pro-=1024. This means that the corresponding phase spaces are
cessorg very different and that an algorithm based on global move-
In the N=64 and 256 cases the algorithm works quitements between different values lotannot work well. Simi-
nicely, as can be seen from the number of tunnelingslarly, the efficiency of temperature PT should drop down for
namely, the number of times that each replica moves fromextremely large systems due to temperature chaos finally
one extremum of the s¢of h values to the other and back, coming out.
which is about\VV=15-20(in the second half of the rgnOn The bottom line is thal=1024 is the largest size we are
the other hand, already fdt= 1024, despite the 300.000 PT able to efficiently thermalize af=0.6 by using theh-PT
steps of the second part of the run, this number drop§'to algorithm, to be compared with the four times largér
=5-6 and in nearly one-fourth of the samples there is at=4096 that can be thermalized down To=0.4 with the

least one replica, which is unable to go frdip,, to hyi,  temperature PT algorithm at zero magnetic field.
and back, in the whole interval consideréd a few cases

most replicas never did)it

In the case of temperature PT, the correspondanger- IV. RESULTS AND DISCUSSION
age number of tunnelings are 3780, 1590, and 455, respec- o _
tively (in the runs of 400.000 steps starting from equilibrium A. On the finite size corrections to theP(q)
configurations, with a set of 38 temperatures betwégp, The functionP(q) is shown in Fig. 2 foh=0.0,0.1,0.2,

=1.325 andl,j,=0.4 ath=0.3 for N=64,256, and 1024). and 0.3. Ath=0.0 it agrees nicely with the expected behav-
Clearly the number of tunnelings decreases much faster witfyr, whereas it is strongly affected by the finite size effects
the system size in the-PT case. This is presumably linked for nonzero magnetic field. This is in qualitative agreement
to the early appearance of magnetic field chaos. As we willyith the theoretical finding25] that the finite size correc-
discuss in detail in the following sectioRy,  (q) starts to  tions of P(q) are one order of magnitude larger in the
approach & function, i.e., its thermodynamic limit behavior, <q, region than in thej>qg, region, namely,
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FIG. 5. The probability distribution of the overlmoyhl(q) between two replicas evolving at different magnetic field values, tith
=0.1 andh;=0.15,0.2,0.25, and 0.3, respectively, for the considered system sizes.

In(P(q)) [~ Am(dm—a)° B. On magnetic field chaos

N _)\EA(q_qEA)sv

with A ,<Aga. The behavior fog>qga was testedfor h
=0) in Refs.[26] and[27].

Here we find that for the considered sizB¢q) has a
visible tail in theq<O0 region forh as large as 0.3. More-
over, the peak that should correspond to the thermodynam
limt &(q—qy,) is not visible and the expected
exfd —NA(an—a)%] behavior is swamped by the reminis-
cence of theg= —qga peak, still clearly visible ah=0.1.
For the increasing magnetic fields the weight of theq,,

4<Qm

(12
g>0ga

In order to find evidences for magnetic field chaos we
analyze the behavior &, n (q). We first consider the case

h0=0.0[thenPoyh1(q) is still symmetric forg— —q] and let

h, take the values 0.1, 0.15, 0.2, and &8e Fig. 3. Already

for h;=0.15 we find clear evidences for a chaotic behavior
ivvhen looking at theN=1024 data. This is very different
ffom the situation one finds when looking for temperature
chaos[11], wherePr 1 (q~0) does not show a clear peak

corresponding to the thermodynamic lim#i(q) for (T,
—Ty) as large as 0.2 and size as largeNss 4096. 1t is
peak should increaséand the reminiscence of thg= re_ma_rkable f[hat the appearance of the magnetic field chaos
— Qg4 peak fade awaybut g, approachesig,, making dif- with increasing system sizes is a very sudden phenomenon:
ficult to distinguish between the two peaks. These kinds ofh@0s is elusive foN=256 and blatant foN=1024. ,
strong finite size effects in a magnetic field were already ©n the other hand, to get a nearly Gaussian behavior we
observed in finite dimensional spin glas§es,2d. Larger have to consider at leabt=1024 andh, values as large as

system sizes and/or lower temperatures would be needed fh3; but the variance is more than an order of magnitude
order to see the correct large volume behavior. larger than that predicted by E€B). Our data suggest that

On the other hand, we note that in our dgta, [defined e Support oo, shrinks to 0 asN grows, and the chaotic
as the location of the maximum &(q)] is practically inde- d~0 peak dominates more and more the distribution.

pendent of the field, as predicted by the Parisi thdorthe Moreover, we find thatA?"(ho,h;) and B*(ho,hy),
infinite volume limi). We obtaingg,=~0.53 for N=1024, which decrease with increasing sizes as sodmas0, are in

where a recent analytical computatioi®4] gives the agreement with the expected scaling IE®, i.e., T(NhS?).
asymptotic valuege ,=0.505 (independent of). We consider, in particular,
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(Ad={@n, n,)* - | | | N=64IT
B2(hy,h,, T)= —< 8 o) I L (13) oo ot N1024 s ]
<(q_<q>h0,h0)2>h0,h0 08 | : : =

which is plotted in scaling form in Fig. 4. In the limit f_; 07y : 5 a =
1/(Nh¥¥ <1 the scaling function approaches the asymptotic §, 06 f i E :
regimef (NhE3) = 1/(NhE?) in qualitative agreement with the & o5 | ¥ g
first-order perturbative resul{8). This shows that the R
asymptotic regime is indeed approached in our data, and that 04 E =
we can safely deduce that ljm..B%(0h;#0,T)=0. 03} )

We conclude the analysis of tig=0 case by looking at 02 . . . . .
P, .n,(0) as a function ofy;. It increases when we consider 0.1 0156 02 025 03 035 04
increasing sizesgapart from the very smak values, where (@) hy
there are clearly strong finite size effecésd scales roughly i ' ' ' '
asT(Nh2?) (see Fig. 4 with T(Nh®3) approaching the ex- . oy o
pected behavior: /Nh® for Nh3>1. We also note that ' I S N5 LA
though we have plotted data only fb=<0.4, these scaling L a/(N('r\f=-1h°)24‘; s
laws appear satisfied also when we include data correspond- —~ ] ; X 0
ing to h, values on the other side of the AT line. = T h

Next we considerh,=0.1, h;=0.15,0.2,0.25, and 0.3 % LR
(see Fig. 5. The Pho,hl(q) is still expected to approach & wﬁj
function in the thermodynamic limit, now centered dp, *
[dm(h=0.1)=0.21 independent of from a recent analytical '
study[24]]. However, we have already noted that the peak in
gm is not evident in our data faithe usual P(q) and corre-

spondingly there is no clear evidence for chaotic behavior in 0.1 1 10 100 1000 10000 100000

Pp,+on,(0). Also for the largest size considered, i.&, (b) 1/(N(h-ho)®)
=1024, though a small second pealqi 0.05 is appearing, FIG. 6. The behavior oB?(hg,h;) for hy=0.1 as a function of

the dominant contribution is still coming from the reminis- b, and as a function of LN(h,—hy)*] compared with the
cence of the peak igg,, whose mean value and height are asymptotic behavior 1[N(h;—hg)*] (log-log plob.
slowly decreasing for increasiniy;. As a matter of fact,
when going to the other side of the AT line, i.8;=0.4, itis  |argest size one is able to efficiently thermalize with this
this peak that survives, becoming centered on a definitelynethod and we argue that this is related to the appearance of
lower q value (a)n;-0.1p,-06=0.18 for N=1024, smaller the magnetic field chaos at this scale.
thanq,,). The functionP(qg) shows strong finite size corrections for

It is clear that one should look at largh's to get evi- h>0, with a long tail in theq<0 region that slowly disap-
dences for the expected Gaussian shapexd—(q pears for increasing sizes, whereas the peak corresponding to
—qn¥2072,] (with 1/o2 = 2Nhg|h; —ho|) in the spin glass  the thermodynamic limi6(q—qy,) is not yet visible.
phase. Therefore, it is not surprising that a quantity such as Our main result is on the behavior B, (), which in
B2(hg,h;) doesnot scale as a function di(h;—hg). Inthe  the case ohy=0.0 shows evidence for chaos alreadyhat
case we are Considering d;fO: 0.1 a form BZN?(N(hl =0.15 when we consider the still relatively small sikle
—h)®) still roughly works, with a=4. Nevertheless, the =1024. This is in variance with the situation one finds when
data presented in Fig. 6 show that even For1024 and l0oking for temperature chadd1l], in agreement with the
(h1—ho)=0.3 we are very far from an asymptotic regime Very recent analytical findingl7] that the temperature chaos
F(x)o Lix. When looking at largen,, B2 definitely does not isa m.uch weaker gffect. The appearance of the third peak in
scale, for instance, already hg=0.2 we getB2(N=1024) g=0 is accompanied by a shrinking of the support of the

. . distribution.
>B2(N= 2h,<0.4. . . -
B*(N=256) in the whole interval 02h,<0.4 The expected scaling laWd] is well satisfied and, for

large NhS"®, P, _opn () approaches a Gaussian with vari-

anceo1/(N hf“), in qualitative agreement with the result of
We performed numerical simulations of the SK model in aa first-order perturbative computati¢hO].

magnetic field at the temperatuife=0.6 both in the glassy On the other hand, looking at the chaotic behavior for

phase and above the AT line. We used a modified version diy#0 we found ourselves to be still very far from the ex-

the PT algorithm in which the system is allowed to movepected asymptotic regime. This is to be related to the pres-

between a chosen set of magnetic field values, an algorithmnce of strong finite size effects observable alsoR{q)

well suited for our purpose. We found thilt=1024 is the itself.

V. CONCLUSIONS
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