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Conformal invariance and the Ising model on a spheroid
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We formulate conformal mappings between an infinite plane and a spheroid, and one between a semi-infinite
plane and a half spheroid. Special cases of the spheroid include the surface of an infinitely long cylinder, of a
sphere, and of a flat disc. These mappings are applied to the critical Ising model. For the case of the sphere and
the flat disc, we derive analytical expressions for the second and the fourth moments of the magnetization
density, and thus for the Binder cumulant. Next, we investigate Ising models on spheroids and half spheroids
by means of a continuous cluster Monte Carlo method for simulations in curved geometries. Fixed and free
boundary conditions are imposed for half spheroids. The Monte Carlo data are analyzed by finite-size scaling.
Critical values of the Binder cumulants and other ratios on the sphere and on the flat disc agree precisely with
the exact calculations mentioned above. At criticality, we also sample two- and one-point correlation functions
on spheroids on half spheroids, respectively. The magnetic and temperature scaling dimensions, as determined
from the Monte Carlo data and the theory of conformal invariance, are in good agreement with exact results.
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I. INTRODUCTION multipoint correlations under conformal mappings, the sec-
ond and the fourth moments of the magnetization density

In two dimensions, the consequences of conformal invarion the sphere and on the flat disc can be expressed in terms
ance for critical systems have been studied extensivelyof integrals. Since a direct analytic calculation of most of
These studies have produced a large amount of results fohese integrals is not feasible, we evaluated them by means
both bulk and surface critical phenomefia-4]. One of the  of Monte Carlo integration. As a result, we obtain the uni-
reasons is that the conformal group in two dimensions is anersal quantityQ ={o?)%/{c%), and ratiosr ,={o?)s/{?)4
infinite-parameter group, so that the restrictions imposed byndr,=(o*)s/(a*)4, where the subscriptsandd represent
conformal invariance are strong. As a result, the forms of théhe sphere and the flat disc, respectively.
bulk and surface correlation functions, and thus the critical The nonzero net curvature of a spheroid poses a problem
exponents are limited by conformal invariance. Underfor numerical applications of conformal invariance. The dif-
Cardy’'s mapping between an infinite plane and the surface dfculty is that a system defined on the spheroid seems to defy
a cylinder{5], the algebraic decay of correlations in the planeany acceptable discretization. Even if the net curvature of a
is transformed into an exponential decay along the cylindergiven geometry is zero, numerical simulations may be com-
By utilizing the Schwarz-Christoffel formula, Burkhardt and plicated due to the presence of curved boundaries. An ex-
Eisenriegler conformally mapped the infinite plane onto aample is a system inside a circle. Badieal. and Re and
rectangular geometf\2]. Furthermore, Cardy and Burkhardt Straley have approximated this geometry for the Ising model.
investigated the semi-infinite plane and the parallel-plate geA circle is drawn on a square lattice and then free or fixed
ometry with uniform or mixed boundary conditiond,6].  boundary conditions are imposed by removing or freezing
The universal properties of a system inside a circle with freg¢he spins outside the circle, respectiviedy7]. The effectivity
or fixed boundary conditions have been studied both exactlpf this approximation is, however, somewhat limited because
and numericallyf2,3,7). of irregular finite-size behavior, as shown later.

However, as far as we know, no applications of conformal Recently, a continuous cluster Monte Carlo algorithm has
mappings onto curved geometries have been reported in twleecome available for the anisotropic limit of the lattice Ising
dimensions. In this paper, we use a conformal mapping of amodel[8,9]. One of the interesting properties of this model is
infinite plane onto a spheroid. By rotating an ellipse abouthat one of its dimensions is continuous, which enables one
the minor or the major axis, one obtains an oblate or a proto apply the continuous cluster method to curved geometries
late spheroid, respectively. Special cases include the surfasgich as a spheroid. Using a Wolff-like version of this algo-
of an infinitely long cylinder, of a sphere, and of a flat disc. rithm [9], we investigate the Ising model on several sphe-
The latter case is reached when the polar diameter of theoids, including a sphere, a flat disc, and a prolate spheroid.
spheroid approaches zero, so that one obtains the interiors bfear the critical point, we sampled the moments of the mag-
two circles connected at their perimeters. Thus, this transforetization density and the quanti§. The Monte Carlo data
mation includes Cardy’s mapping as a special case. We alsgere analyzed by means of finite-size scaling. For the sphere
perform a different conformal mapping from a semi-infinite and the flat disc, the numerical results for the ra@s, and
plane onto a half spheroid. r, are in excellent agreement with the aforementioned exact

We apply these mappings to the critical Ising model.calculations, which will be presented in detail in Sec. Ill. At
From the known bulk two- and four-point correlation func- criticality, the two-point magnetic correlations were sampled.
tions in the plane, and the assumption of covariance of théloreover, the Ising model on half spheroids was studied,
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including that on a half sphere and inside a circle. Both fixed z

and free boundary conditions were used. The density profiles A

of the magnetization and of the energy, i.e., one-point corre- ~l~

lations, were sampled. From the Monte Carlo data and the

theory of conformal invariance, we determined the magnetic \w~

and temperature scaling dimensions with a satisfactory pre- b

cision.
The outline of this paper is as follows. In Sec. Il, we el

formulate the transformations of the infinite plane into the X

spheroid and the semi-infinite plane into the half spheroid.

For systems on a spheroid and on a half spheroid, the forms

of the two- and one-point correlation functions, respectively

are derived. In Sec. lll, we perform exact calculations of FIG. 1. Example of an ellipse with é=a/b=2. The corre-

moments of the magnetization density on the sphere and sponding oblate spheroid is obtained by the rotation of the ellipse

the flat disc. Section IV summarizes the Hamiltonian limit of about thez direction. The new coordinate specifies the distance

the Ising model and the continuous cluster method for curvedlong the ellipse from the north pole.

space. The numerical results are presented in Sec. V. Finally,

we give a short discussion in Sec. VI. and by the requirement that the points 0 andr=« are
mapped onto point®=m and 0, respectively. Transforma-
Il. CONFORMAL MAPPING tion (5) is conformal, because the line elements E4sand

(3) differ only by a position-dependent factor:
In three-dimensional Cartesian coordinatesy(z), a

spheroid can be defined by

ds?=ds’?[e29(9/a? sirf4]. (6)
x> y? 72 R .
S+ 4221 (ab>0) 1) Under a conformal mapping {-r’), a multipoint corre-
a’> a’> b? ' ' lation function covariantly transforms &%]
wherea andb are the equatorial and the polar radii, respec- . R ~ ~
tively. The parametric equations for the spheroid are there- (o1(ry)oa(ry)- - )r=b(ry)  *ib(ry) %2 ..
fore ) )
X(o(ryoa(ry) )i, (7)

x=asingsing;, y=asinfcosy, z=bcosd, (2)  \yhereo, is a scaling operatde.g., associated with the mag-
in which 0< #< 7 and O< ¢y<2. Thus, the line element of netization density or the energyﬁden$jty(i Is the corre-
the spheroid is sponding scaliflg dimension, aibdr) is the rescaling factor,
which readsb(r)?=ds?/ds’?.
In the infinite plane, the bulk two-point correlation func-

ds’®=dx®+ dy?+ dz*= (a’ cos 6+ b? sirt ) do? tion at criticality behaves gs.0]

+a?sir? 6 dyy?=dw?+ f(w) dy. ©)

Here, we have defined a new coordinateto specify the (o(r1)o(r2))piane=Blra—ra| =2, (8
distance along the ellipse from the 'north pole’ as a function ) )

of ¢ (see Fig. 1 The coordinatev is related to the parameter WhereB is a constant. Thus, according to E¢S)—(8), one
0 by W=fg\/a2 cov+b?sirfu dv, which is an elliptic in- obtains the correlation functiog,(6) of two points ©, )

tegral of the second kind, arfdw) =a? sir? 6. and (0,+ ) on a spheroid <)
In polar coordinatesr( ¢), the line element in an infinite

plane is g1(0)=B(2asing) =2, €)

ds?=dr2+r2 de?. (4) The evaluation of the mapping formuliq. (5)] is com-
plicated in general. However, for the special cases mentioned
A conformal transformation from the infinite plane into the above, it simplifies and yields more results.
spheroid is thus established by the equations (i) Surface of a cylinderAs the polar radiub—«, the
spheroid approaches the surface of an infinitely long cylin-
der. The substitutions of a new coordinateb6é and the

— ~—0(60) — ) .
r=e %% and ¢=4¢, radiusR=a of the cylinder lead to

0
with g(o):f V(bla)*+ cot dv, ® ds'?=du?+ R2dy? (—w<u<w,0<y=2m), (10)
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and the mapping formulgeq. (5)] simplifies to

r=e YR and ¢=4¢. (12)
Thus, Cardy’s mapping is restorgsl. The critical two-point
correlation functions along the cylinder are then

(o(uy, ) o(uy, )= BR2Xg~Xlup—ual/R
X (1—e lu-uwliRy=2X (19

So the correlations decay exponentially fag—u,|>0.

(ii) Surface of a spherédOne obtains a sphere when the
polar and the equatorial radii are equal, ilesa=R. The
line element Eq(3) reduces to s ?>=R? (d#?+ sirfedy?),
and the mapping formula becomes

r=2Rcot(0/2) and ¢=4. (13 FIG. 2. lllustration of the conformal mapping of an infinite

_ . N plane on the surface of a sphere.
A geometric picture of this mapping involves the placement

of a sphere with radiuR on top of an infinite plan¢Fig. 2.  which, interestingly, has the same form as E).

Th . f inf in the ol h h ; _ (iii) Surface of a flat discln the limit b— 0 of an oblate
he mapping of a point in the plane on the sphere is de ﬁpheroid, a flat-disc geometry is reached. The coordinate

. - - and the element3), respectively, reduce to
necting the north pole and the point Here, the vector e) P y

stands for the pointr(¢) in Eq. (13). According to Eqs(7),

. 12 2 w22 _
(8), and (13), one has the pair correlation function on the w=asing and &'"=dw'+wdy” (w<R=a),

sphere as (16)
and the mapping formula becomes
— —2X9—=X[1 _ o H
(0(01,¢1)0(0;,12))=BR 727 "[1—sind sin 6, WR O=r<1
X coq 1 — i) — cOSH; c0Sh,] X, "=1rw =1 17

(14 This mapping can be generalized to any number of dimen-

sions.

Under the mapping Eq17), one finds two formulas for
g(wy,W,) =(a(w;)(W,)), of which the applicability de-
pends on whether or not the two poimtsandr, lie in the
(o(R)o(Ry))=B|R;— Ry| "2, (15  same face of the flat disc:

If one introducesR to represent the vector from the center of
the sphere to the point(#), Eq. (14) reduces to

BLW]+W5—2W; W, COS i1 — )]~ (Wy,W,: same facp

I (18
B[ (WW,)?+R?—2w;w, cog ¢~ #2) 1 (w;,W,: opposite faces

Q(VTllthlz):

where we have introduced to represent the vector from the Plane complex numberg=x+iy, so the formulaz’=(z
center of the disc to the pointy ). —i)/(z+1) maps the semi-infinite planiéx R™ onto the in-
The derivativedr/dw in the Eq.(17) is discontinuous at terior of a unit circle(Fig. 3) [1]. This conformal mapping
the edgev=R. One may thus expect that finite-size correc-yields the profile of a scaling operator inside a unit circle as
tions arise for the critical behavior near the edge.
Next, we describe the conformal transformation between <cr(r’)>=(1—r’2)‘zx. (19)
a semi-infinite plane and a half spheroid. The latter object is
defined by Eq(1) but with z<0. The mapping can conve- This result can be generalized to any number of dimensions
niently be described in two steps. First, one parametrizes thie,2]. Second, the interior of the unit circle is conformally
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mapped on the half spheroid under the transformation Eq.
(5). In the limit b— o0, a semi-infinite cylindefEqg. (10) but
with u=0] is reached, on which the profile of a scaling
operator behaves as

(or(u)) xR~ X UXIR(1 — guXI2R) X, (20

Forb=a=R a half spheroid reduces to a half sphere, and __;
one has

(a(8))*(Rcosh) %, (22)

Ill. EXACT CALCULATION

Since the transformations between the plane and the spe
cial cases of the spheroj&gs.(11), (13), and(17)] are rela-
tively simple, it is possible to derive the expressions(iof)
and(o*) from the exact solution of the Ising model in the
infinite plang[10]. For the case of an infinitely long cylinder,
Burkhardt has evaluated these expressions by means ¢
Monte Carlo integratio11]. The result is consistent with
that obtained from direct simulations of systems on the cyl-
inder [11]. Here, we follow analogous procedures for the
surface of a sphere and of a flat disc.

In the continuum limit, the second and fourth moments of £, 3 |ustration of the conformal mapping from a semi-
the magnetization densityo?) and (o*) can be given in i finite plane on a single disc.
terms of the two- and four-spin correlation functions, respec-
tively:

(i) Surface of a spheré'he substitution of the pair corre-

- o lati h .(14)] leads t
<‘72>:P2J 45,S,q(f1.7,), and ation on a sphergEq. (14)] leads to

<o“>=p“f dSy- - - dS49(r1.12.03.04), (22) 2n [
<02>:p24wR2f0 d¢2JO d6,R?sin 6,9(0,0;60,,,)

wherep is the areal density of the spins, an§; depresents
the number of spins in an infinitesimal area. For a sphere,
and & can be written as 1/(#R?) and R?sin6d6;dy; ,
respectively. For a flat discp=1/(27R?) and &
=r.dr;dy; . R is the radius of the sphere or the flat disc. =BR #*272%/(1-X), (24)
g(ry,r») andg(ry,r,,rs,rs) are the two- and four-spin cor-
relation functions.

The two-point correlation function is known exacflgq.  for the Ising model, X=2-y,=1/8 so that (o)
(8)]. An exact result is also available for the bulk four-spin = (2*/47)BR™2X~0.961 024 BR ?*.
correlation of the two-dimensional critical Ising model, Equations(22) and(23) and substitutions of the integra-
which is given in terms of pair correlations py2] tion variablesx;= 6, /7 andy;= ¢;/2m lead to

= BR‘ZXZ‘X‘1JO dé, sin 6,(1—cosé,) *

1([9(1,29(2,39(349(4,1)|?
9(112.314_ E[{ 9(1,3)g(2,4) +(2<_)3) <0_4>: BR_4X7732_2X_3
1/2 1
+(3‘—>4)] : (23 XJO dXdX30X4dy3dyaf (X2 X3,Y3:Xa,Ya) (25
Here, for simplicity, we have Writteng(Fl,Fz) and
g(ry,r»,r3,r,) asg(1,2) andg(1,2,3,4), respectively. The with f(X2:X3,Y3:X4,Y4) = SIN(mXo)SiN(X3) SIN(77Xy)
notation («<j) represents the expression between squareg(l,2,3,4), where the coordinates of these four points are
brackety ] with i andj interchanged. (0,0), (7x,,0), (7x3,27y3), and (wx4,27Y,4). This equa-
The universal amplitude rati@=(c?)%/(c*) is simply  tion was evaluated with a Monte Carlo procedure, which
related to the Binder cumulapt 3]. approximates the integral by
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N S where the integers<x,y<L label the lattice sitesK, and
<g4>:BR*4Xw32*2X*3N’12 f(x(z');xg),yg);xg),yg)), K, are .the coupling .strengths along tkeandy direction,

=1 26 respectively. The spins can assume the valogg=*1.
(26) The critical line of this model is given bj10]

wherex andy® are uniformly distributed random num-
bers in the interval (0,1). It yieldéo*y=BR™4%(1.198 78 sinh(2K,)sinh(2K,) =1. (30)
+0.00002), where the two decimal numbers are the average
and standard error obtained from 1000 determinations of th# the anisotropic limite—0, the couplings therefore are
integral. Each integral involves $®onte Carlo steps.

Thus, the value of the dimensionless quantity is obtained
asQ=0.77042:0.00001.

(ii) Surface of a flat discThe critical pair correlations on
a flat disc are given by Eq18). The evaluations both of
(o) and(o) were done by means of Monte Carlo proce- 5 ¢ guantum transverse Ising chéir,15 with nearest-
dures because in this case the symmetry lower than that ofrff\eighbor couplings and an external figid
sphere. The calculation must allow for the fact that the form
of the pair correlation depends on whether or not the two
points are in the same fagEq. (18)]. Taking into account all , «
possible distributions of the four correlated points, one finds Hou=— 2 (oo 1Htoy), (32)

Ky=e€lt, exp—2K,)=¢, (31

wheret is a temperaturelike parameter whose critical point is
tc=1. It is known that in this limit the system is equivalent

R o with ¢ and ¢* Pauli matrices.
<g4>:p4f dry---dry dipy- - - diy Since our purpose is the application of conformal invari-
0 0 ance, we have to restore isotropy asymptotically for the sys-
tem withK,<K, . This can be done by increasing the num-
ber of spins in they direction by a factol, /L =sinh X,

) . . =1/2¢ [16]. Meanwhile, one rescales thedirection asy’
wheregy(1,2,3,4) defines correlations of four points on the=2y/e so that the system sizes along thandy direction

same faceg, applies lto three poin;s on one face and one on e equal againL§,= L,. As a result, they dimension be-
the other, and, applies to two points on one face and o comes continuous as—0, i.e., there is an infinite number of

on the other. From this calculation, we obtain _ . . : .
N S-2X N spins per physical length unit, and the lattice structure trans-
(o) =R “(1.04156"0.00001), (o")=R""(1.41273 forms into L lines of lengthL. The spins form ranges of

+0.00005), and thu®=0.767 91+ 0.000 03. T . . )
The ratios of moments of the magnetization density on the+/ signs, and the number of interfaces in the system is of

sphere and on the flat disc are thus given as orderL”,
P 9 For this anisotropic limit, a full description of the afore-

mentioned continuous Wolff-like algorithm has been given in
_/2 2N _ Ref. [9]. For the convenience of the reader, we summarize
r2=(07)s/(0")a=0922682) the essential points. During the formation of a cluster, a bond
a4 o between nearest-neighboring spins with the same sign is
andr,=(0")s/(c")¢=0.848 514), (28 “frozen” with a probability P=1—exp(2K) or “broken”
with 1—P. Sites connected by frozen bonds are included in
where the number between parentheses stands for the esfie same cluster. For the anisotropic limit, the probabity

Xr1rarara200(1,2,3,4+89:+69,], (27

mated error in the last decimal place. in the x andy direction will be of ordere and 1 ¢, respec-
tively. Thus, the strong-couping bonds will continue to con-
IV. MODEL AND ALGORITHM nect spins in the direction until a break occurs with a prob-

. ) . ] __ability of order e per bond. Therefore, after the rescaling
As mentioned before, simulations on a spheroid are diffigjscussed above, the connected spins along the lines in the
cult due to the incompatibility of regular lattices with curved girection form ranges of-/— signs with lengths of order 1,
geometries. Here, we tackle this problem by using theynq the breaks are just the aforementioned interfaces. More-
Hamiltonian limit of a two-dimensional lattice Ising model. over, the average distance of the bonds between adjacent
For such a system, an efficient continuous Wolff-like methodines is also of order 1. These weak-coupling bonds serve as
has been explained in detfd]. Here, we describe the appli- «pridges” between neighboring lines to connect ranges of
cation of this algorithm to simulations in curved geometries.tne same sign, and help to build clusters. Analogous to clus-
The Hamiltonian of an Ising model on laXL square ter methods for the discrete models, the aforementioned con-
lattice with periodic boundary conditions reads tinuous cluster algorithm flips one or more clusters during a
Monte Carlo step depending on whether it is Wolff-like or
Swendsen-Wang-like. The correctness and efficiency of this
HIKkgT=— ny [KyOyyTxs 1yt Kyoyoeys1l, (29 g;g:]r;c[)g]has been demonstrated both in two and three dimen-
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FIG. 4. Decay of the difference,,(r) of the magnetic correla- ~ ~ +—————— — —=====% 1
tion functions in thex andy direction, shown as Id,, vs Inr. The

system size is 4040, FIG. 5. Example of “lattice structure” on a sphere, on which

L=5 circles represent continuous lines of spins in the strong-
coupling direction. The full and dash-dotted parts of the circles

Although the long-distance behavior of such an anlso'represen(arbitrarily chosenranges of spins with different signs.

tropic system is the same in tlk@ndy direction, corrections
may exist at short distances. We investigate this problem in a

L1 o . i
system with sizé& =40. We sampled the differenci,(r) of Hk_(d_ 2)77“" \]ﬁv'th k= 1"2:2.L. L (Fig. ?‘) ﬁnd the cor;e
the magnetic correlation functions over distancas the x ~ SPONJING CIrCUMIETENCE &=L Sin b, which accounts for
andy direction the S° curvature. Since the probability of a weak-couping

bond is definegber unit of lengthand the adjacent circles on
a sphere have different radii, the distribution of these weak-
1 coupling bonds still requires a length scale. It was chosen as

dm(r)=y > f V(0w yTx+ry~ OxyOxy+r), (33 the average length scale of both circles. Self-interactions via
g weak bonds over the pole#=0 or 7 could, in principle,
occur at the circles witkk=1 andL, respectively. But these
interactions may be set to zero because the circles=dl
and have a zero length. By means of the continuous Wolff-
like algorithm, we simulated the above model on a sphere.
The magnetic correlation of diametrically opposite points
was sampled,

whereV=2%, [dy=L XL is the area of the square. A plot of
d., as a function of is shown in Fig. 4. The fact that the line
becomes approximately straight at the right-hand side indi
cates that the leading correction behavesYasFrom Fig. 4,
we estimate the associated expongpt —2.25, so we sim-
ply assume thaty,=—2X,+y;, where y;=—2 is the
correction-to-scaling exponent in the two-dimensional Ising
model, andX,,=1/8 is the magnetic scaling dimension. Tak-
ing into account the periodic boundary conditions, we fitted
the Monte Carlo data according to the least-squares criterion
on the basis of

1 (=
0o(0)= = | "o (0,000 m). @9

An example for systems without self-interactions &t 0
dpm=r"Zn{a, [rYi+(L—r)Yi]+ay[rY1+(L—r)¥1]}, and 7 is shown in Fig. 6. As the number of the circles
(34 increases, the polé=0 is approached, and the spacing of
adjacent circles decreases. The lines are quite straight, which
whereay, a, are unknown parameters, and the term withindicates that the spherical symmetry is restored asymptoti-
y;=—3 is another significant correction. We obtain  cally. We have also investigated the system with self-
=0.0228(6) anda,=0.0273). interactions over the poles. Significant deviations from isot-
Since the model is now continuous in thelirection, one  ropy occur in this case.
can investigate it in curved geometries such as a spheroid. As On a microscopic scale, the lattice structure on a sphere is
an example, we consider the case of a spl$8reThe struc-  the same as that on a flat plane. However, for fihitepart
ture of the anisotropic model in the flat geometry defined byfrom microscopic deviations from the uniformity, the dis-
Egs. (29) and (31) consists ofL lines of lengthL. Each of cretization ind may lead to a global effect on the coupling
these lines can be understood as a ci@lebecause of the strength. According to the trapezium rule, we expect that this
periodic boundary condition. As a result, one can represerdeviation vanishes ds 2. Under renormalization this effect
the “lattice structure” on a spher€? by L uniformly distrib-  leads to corrections proportional kgt~ 2, wherey,=1 is the
uted circles with varying radiu€Fig. 5), such that there are temperature renormalization exponent. Thus, this effect van-
strong couplings along the circles while weak couplings ocdishes wherL—«, and the critical point on a sphere is iden-
cur between adjacent circles. The location ofkktecircle is  tical to that on the flat plane. Moreover, since the exponent of
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FIG. 6. The magnetic correlation functiogg(#) on spheres vs
6. The Monte Carlo data are shown for system sizes8 (O),
L=12(d), L=16(A), andL=20(¢). The lines show the cor-
responding fits. The anglé is given in radians.

FIG. 8. Decay of the magnetic correlation function(6),
shown as Irg,(6) vs In sind. The number of circles on the sphere is
L=96. The line shows the corresponding fit.

V. NUMERICAL RESULTS
the irrelevant fieldy;= — 2, it is expected that the term with
LY:~2 dominates over the corrections of ordef, as will be
confirmed later.

As an alternative way for the distribution bfcircles on a circle.

sphere, the location of thkth circle can be given by, (i) Surface of a sphereFor systems on a sphere, we
=(k—1)7r/(L—1), so that in this case the cir_cumference °fsampled<02>, <04>, and Qg(t) near the critical point. In
the sphere is=2(L—1). It was found numerically that the 5qgtion, the two-point magnetic correlation functigi( 6)
spherical symmetry is less well restored in this case. ThaL (g y)o(7— 6,4)) was determined at criticality. The
may be due to the singularity of the zero radii of the circlesSystem sizes are taken as 15 values ranging fren8 to 96.

with k=1 andL. , , According to finite-size scaling, in the critical regioBg(t)
The same procedure can be applied to the disc geometryonaves as

The kth circle is simply located at,=(k—1) and its cir-
cumference is given by c,=2m(k—1), with Kk
=1,2,...L. For a general spheroid with constant ratio
=Db/a, the problem that the circles should be evenly distrib-
uted is solved in two steps. First, since the circumference of
the corresponding ellipse id.2 the value of the parametar
can be numerically calculated from the equation af('gdw

By means of the continuous Wolff-like algorithm, we per-
formed simulations of the Ising model on a sphere, on a flat
disc, on a spheroid wite=2, on a half sphere, and inside a

Qr(t)=Q+a;R¥(t—t,) +a,R¥i(t—tg)2+ - - - + b, RYe
+b,RYi+ -, (36)

wherea; ,a,,b;, andb, are unknown parameters, afq is
=afJdo\cogo+€ sinfg. Second, the location of thkth  the universal value for the infinite system at criticality. The
circle can be obtained by solving fdk in the equatiork  correction with exponeny.=y,—2=—1 is due to the dis-
—%=afgkd6\/co_s’6+3siF0.The corresponding circumfer- cretization of the sphere as explained above. An example is
ence isc,=2masing, (k=1,2,...L). shown in Fig. 7. The approximate linearity indicates that the
approach 0fQg(0) to Q. occurs aR™ 1. Formula(36) was
fitted to Monte Carlo data according to the least-squares cri-

0-77 . ' ' ' ' ' terion. The value of the temperature parameter is fixed at
0.768 | ey | =1. We obtainQ,=0.770433), which is consistent with
0.766 r “ 1 the exactly calculated value 0.77042(1) in Sec. Ill.
0.764 | RN 1 Similarly, the finite-size behavior dfo?) is
0.762 1 Ma
o 076t S
0.758 | (¥ =R~ Z[m,+a;R¥(t—t,)+a,R¥t(t—t)%+ - - -
8:322 _ ‘ ] +b,RVe+b,RY+ - - -] (37)
0.752 t .
075 and that of(o*) is

0 002 004 006 008 0.1 0.12 0.14

R (=R~ %[ m,+a;R¥(t—t.)+a,RPt(t—t)%+ - - -
FIG. 7. The dimensionless quanti@ at criticality vsR™ L. +bRYe+b,RYi+ - -], (38
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TABLE |. Fits of the correlation functiong,(#) on spheres.

I-min I-max emax Xh =l a a
8 96 1.40 0.12494) 0.7221%5) —0.026(2) —0.023(4)
as by b, c
—-0.0006(1)  —0.427(3) 0.212) —0.209(3)

The exponents-2X,, and —4X;, of R are obtained by the
substitution ofX,,=1/8. The fits yieldm,=0.619 88(3) and
m,=0.498 7%5).

According to Eq.(14), gi(6)=(L cosé)~%h, which is

confirmed numerically in Fig. 8. On the basis of finite-size

which agrees well with the exact calculatio®,
=0.767913). Thus, we also obtain the ratios,
=0.92263(13) anda,=0.84841(14), which are consistent
with Eg. (28).

At criticality, three types of two-point magnetic correla-

scaling and conformal invariance, the correlation functiontion functions were sampled. We denaig(r) as the one

01(6,L) is expected to behave as

g1(0,L)=L"2n{(cosh) ~2n* U ay+ay(Lm— L)Y
+ az(L7T_ L 0)yi + a3(|_ sin H)yc]

+bgLYe+ b, LY}, (39)

between two points with same coordinatesy() but on op-

posite faces, andj,(r) and gs(r) as those between two
points (,y) and (,¥+m) on opposite and on the same
faces, respectively. On the basis of Efg), one expects that

gu(r) o (L—4r?/L)~#n, gy(r)oc(L+4r?/L) =%,

ga(r)er~2n, (40)

whereag,a; ,a3,bo,by ,¢ are unknown parameters. The cor- o piot for g,(r) is shown in Fig. 9. The curvature near

rections with amplitudea,; anda, are due to the deviations

from isotropy at short distances; the term with accounts

for the inhomogeneity because of the discretization oféthe
direction. Equation(39) was fitted to the Monte Carlo data.
As a consistency test, we chooXg as a free parameter. We
obtain X;,=0.124 974), which is in a good agreement with

the exact resulX,=1/8 (see Table )l Although the param-

=L/2 is due to the discrete property of the derivatiiréow

in the mapping formula Eq17). We assume that this effect
decays as in order ofL{2—r)Yc whenr approaches zero.
Thus, one can obtain the finite-size behavior of these quan-
tities by including corrections in Eq40). For instance, the
quantity gs(r) follows

eteras is quite small, it is necessary to obtain a reasonable

residual.

(i) Surface of a flat discThe system sizes on the flat-disc
geometry were taken as values of 12 odd numbers ranging +o ]

from L=13 to 91. The corresponding radii dt&2. Near the
critical point, we sample®@g, (o), and(s*). The finite-
size behavior of these quantities also follows from E@§),
(37), and (38), respectively. The fits vyield thatm,
=0.6719(1), m,=0.5879(1), and Q.=0.76802(15),

-1.14

-1.16 =,

118 b e

-12 ¢ g

122 ¢

124+

-1.26 |

-1.28 +

132

134 +

-1.36 : : : : : T
0 01 02 03 04 05 06 0.7

In(1+4r2/1.2%

Ing, (1)

FIG. 9. Decay of the magnetic correlation functigp(r),
shown as Irgy(r) vs In(1+4r%/L?). The finite-size parameter of the
flat disc isL=17.

ga(r)=r =20+l a +a,rVe+aprYi+dy(L/2—r)Ye+ byl Ve
(41
By introducing a cutoff at large, we made fits forg,(r),
go(r), and gs(r) independently, and obtain X

=0.12497%9), X,=0.12501(16), anK,=0.1250%7), re-
spectively, in good agreement with the exact result.

-0.4

-0.6 1
-0.8 1

-1F e

In g, (8)

-1.2 g

14 b

-1.6

0 1 2 3 4 5 6 7 8 9
In [1-+e*+1)' tan® 01
FIG. 10. Decay of the magnetic correlation functigga(6),

shown as I,(6) vs In(1++e?+1tarfd). The finite size of the
spheroid isL =64 ande=b/a=2.
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2.5 -0.15
3 02 |
35 L 025 |
:0 L . E
s A4 N £ 03¢
g -
45 . 035 |
5t Mg -04 |
s . . . 045 b .
3 25 2 15 -1 05 0 2 -1.8-1.6-1.4-12 -1 -0.8-0.6-0.4-02 0
In cos 6 In [1-r4L-1/2)21

FIG. 11. Decay of the fluctuation of the energy densi(y) FIG. 13. Decay of the magnetization density= (o (r)), shown
—ng for half the surface of a sphere, shown agtfg) vs Incosf.  as Inm vs I1-r%(L—1/2)?]. The system size it =16. Fixed
The system siz& =24. ng is obtained from the Monte Carlo data poundary conditions were applied.

for flat systems.
and the energy densityas a function off. Since the inter-

(iii) Spheroids with & 2. As an example, we performed actions along th@ and ¢ direction are_ofdifferent forms,. the
Monte Carlo simulations for a prolate spheroid with the ratio€Nergy density can be represented in two ways: the interac-
e=b/a=2. We sampled the universal raf@; and the mag-  tions due to the weak-couplings(6)o(6+ 1)), or the den-
netic correlation functiony;(6) =(a(6,)o(,y+ m)). The sity of interfaces along the strong-couplings(6)). We .
analysis of the finite-size behavior Qf leads to the result chose the latter because it needs much less computer time.
Q.=0.7643(1). From the Monte Carlo data fag,(#) and The behavior of the magnetization density follows Ezp),

Eq. (9), we obtainX,=0.1249(2). and the energy density behaves as

We also sampled the correlation functiong,(6)
=(a(0,y)a(m— 6,¥)). The mapping formula is relatively
complicated in this case, and we did not work out the expres-
sion ofg,(6). But we observe that a plot of the Monte Carlo wheren, is the bulk density, an¥, is the temperature scal-
data Ifg,(6)] versus In(3-e®+ Ltarf#) approximately fol-  ing dimension. An example is shown in Fig. 11. Finite-size
lows a straight lingFig. 10. By means of finite-size scaling, analyses of the quantitieéo(6)) and (e(8)) vyield X,
we obtain the value of the slope as 0.148), which is  =0.12499(2) andX,=0.9956), respectively, which are
close to the exact resui,=1/8. again in excellent agreement with the exact values.

(iv) Half surface of a sphere with fixed boundary condi-  (v) Interior of a circle Conformal invariance on the inte-
tions We also investigated the anisotropic limit of the Ising rior of a circle with free and fixed boundary conditions has
model on a half sphere. An infinite ordering field was appliedbeen numerically tested by Badkeal, and Re and Straley
at the equator. The system sizes are taken as 10 values rang:7]. They approximated this geometry by drawing the
ing from L=4 to 40. The corresponding radius®=(2L  circle from a square lattice. In this way, the symmetry along
—1)/m. We sampled the magnetization density=(c(6))  the ¢ direction is broken, and irregular finite-size effects

e(6)=(n(h))=ny+a(L cosh) *, (42)

arise (Fig. 12. Thus, it seems appropriate to simulate the

0.1 = interior of a circle by means of the continuous algorithm. We
T - used both free and fixed boundary conditions. The system
-0.15 ) sizes are taken as 10 values ranging from8 to 40. An
] example is shown in Fig. 13, and no irregular effects are
02 e observed. Analyses vyield that,=0.124994(15) andX;
E \ =1.0047).
y— ;\\
-025 - VI. DISCUSSION
-0.3 x“a“ 1 Conformal invariance is known as a powerful tool to in-
“\\ vestigate critical behavior. Its applications in two dimensions
-0.35 . - - : ; have so far been focused on flat systems. We have shown
3 25 2 15 -1 05 0 how one can apply it in curved geometries. The validity of

In [1-%AL-1/2)21

our method is confirmed by the agreement between predic-
tions based on conformal invariance and our numerical re-

sults. Moreover, in the case of the Ising model, the difficulty
of numerical simulations in curved geometries is solved by
the recently developed continuous cluster algorithm. Trivial

FIG. 12. Decay of the magnetization density=(co(r)), shown
as Inm vs IN1-r%(L—1/2)?]. The circle was cut from 4 XL
square lattice with. =24.
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