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Conformal invariance and the Ising model on a spheroid
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We formulate conformal mappings between an infinite plane and a spheroid, and one between a semi-infinite
plane and a half spheroid. Special cases of the spheroid include the surface of an infinitely long cylinder, of a
sphere, and of a flat disc. These mappings are applied to the critical Ising model. For the case of the sphere and
the flat disc, we derive analytical expressions for the second and the fourth moments of the magnetization
density, and thus for the Binder cumulant. Next, we investigate Ising models on spheroids and half spheroids
by means of a continuous cluster Monte Carlo method for simulations in curved geometries. Fixed and free
boundary conditions are imposed for half spheroids. The Monte Carlo data are analyzed by finite-size scaling.
Critical values of the Binder cumulants and other ratios on the sphere and on the flat disc agree precisely with
the exact calculations mentioned above. At criticality, we also sample two- and one-point correlation functions
on spheroids on half spheroids, respectively. The magnetic and temperature scaling dimensions, as determined
from the Monte Carlo data and the theory of conformal invariance, are in good agreement with exact results.
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I. INTRODUCTION

In two dimensions, the consequences of conformal inv
ance for critical systems have been studied extensiv
These studies have produced a large amount of results
both bulk and surface critical phenomena@1–4#. One of the
reasons is that the conformal group in two dimensions is
infinite-parameter group, so that the restrictions imposed
conformal invariance are strong. As a result, the forms of
bulk and surface correlation functions, and thus the criti
exponents are limited by conformal invariance. Und
Cardy’s mapping between an infinite plane and the surfac
a cylinder@5#, the algebraic decay of correlations in the pla
is transformed into an exponential decay along the cylind
By utilizing the Schwarz-Christoffel formula, Burkhardt an
Eisenriegler conformally mapped the infinite plane onto
rectangular geometry@2#. Furthermore, Cardy and Burkhard
investigated the semi-infinite plane and the parallel-plate
ometry with uniform or mixed boundary conditions@4,6#.
The universal properties of a system inside a circle with f
or fixed boundary conditions have been studied both exa
and numerically@2,3,7#.

However, as far as we know, no applications of conform
mappings onto curved geometries have been reported in
dimensions. In this paper, we use a conformal mapping o
infinite plane onto a spheroid. By rotating an ellipse ab
the minor or the major axis, one obtains an oblate or a p
late spheroid, respectively. Special cases include the sur
of an infinitely long cylinder, of a sphere, and of a flat dis
The latter case is reached when the polar diameter of
spheroid approaches zero, so that one obtains the interio
two circles connected at their perimeters. Thus, this trans
mation includes Cardy’s mapping as a special case. We
perform a different conformal mapping from a semi-infin
plane onto a half spheroid.

We apply these mappings to the critical Ising mod
From the known bulk two- and four-point correlation fun
tions in the plane, and the assumption of covariance of
1063-651X/2003/67~3!/036107~10!/$20.00 67 0361
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multipoint correlations under conformal mappings, the s
ond and the fourth moments of the magnetization densits
on the sphere and on the flat disc can be expressed in t
of integrals. Since a direct analytic calculation of most
these integrals is not feasible, we evaluated them by me
of Monte Carlo integration. As a result, we obtain the u
versal quantityQ5^s2&2/^s4&, and ratiosr 25^s2&s /^s2&d
andr 45^s4&s /^s4&d , where the subscriptss andd represent
the sphere and the flat disc, respectively.

The nonzero net curvature of a spheroid poses a prob
for numerical applications of conformal invariance. The d
ficulty is that a system defined on the spheroid seems to d
any acceptable discretization. Even if the net curvature o
given geometry is zero, numerical simulations may be co
plicated due to the presence of curved boundaries. An
ample is a system inside a circle. Badkeet al. and Rěs and
Straley have approximated this geometry for the Ising mod
A circle is drawn on a square lattice and then free or fix
boundary conditions are imposed by removing or freez
the spins outside the circle, respectively@3,7#. The effectivity
of this approximation is, however, somewhat limited beca
of irregular finite-size behavior, as shown later.

Recently, a continuous cluster Monte Carlo algorithm h
become available for the anisotropic limit of the lattice Isi
model@8,9#. One of the interesting properties of this model
that one of its dimensions is continuous, which enables
to apply the continuous cluster method to curved geomet
such as a spheroid. Using a Wolff-like version of this alg
rithm @9#, we investigate the Ising model on several sph
roids, including a sphere, a flat disc, and a prolate spher
Near the critical point, we sampled the moments of the m
netization density and the quantityQ. The Monte Carlo data
were analyzed by means of finite-size scaling. For the sph
and the flat disc, the numerical results for the ratiosQ, r 2 and
r 4 are in excellent agreement with the aforementioned ex
calculations, which will be presented in detail in Sec. III. A
criticality, the two-point magnetic correlations were sample
Moreover, the Ising model on half spheroids was studi
©2003 The American Physical Society07-1
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including that on a half sphere and inside a circle. Both fix
and free boundary conditions were used. The density pro
of the magnetization and of the energy, i.e., one-point co
lations, were sampled. From the Monte Carlo data and
theory of conformal invariance, we determined the magn
and temperature scaling dimensions with a satisfactory
cision.

The outline of this paper is as follows. In Sec. II, w
formulate the transformations of the infinite plane into t
spheroid and the semi-infinite plane into the half sphero
For systems on a spheroid and on a half spheroid, the fo
of the two- and one-point correlation functions, respectiv
are derived. In Sec. III, we perform exact calculations
moments of the magnetization density on the sphere an
the flat disc. Section IV summarizes the Hamiltonian limit
the Ising model and the continuous cluster method for cur
space. The numerical results are presented in Sec. V. Fin
we give a short discussion in Sec. VI.

II. CONFORMAL MAPPING

In three-dimensional Cartesian coordinates (x,y,z), a
spheroid can be defined by

x2

a2
1

y2

a2
1

z2

b2
51 ~a, b.0!, ~1!

wherea andb are the equatorial and the polar radii, respe
tively. The parametric equations for the spheroid are the
fore

x5a sinu sinc, y5a sinu cosc, z5b cosu, ~2!

in which 0<u<p and 0,c<2p. Thus, the line element o
the spheroid is

ds825dx21dy21dz25~a2 cos2u1b2 sin2u!du2

1a2 sin2 u dc25dw21 f ~w! dc2. ~3!

Here, we have defined a new coordinatew to specify the
distance along the ellipse from the ’north pole’ as a funct
of u ~see Fig. 1!. The coordinatew is related to the paramete
u by w5*0

uAa2 cos2 v1b2 sin2 v dv, which is an elliptic in-
tegral of the second kind, andf (w)5a2 sin2 u.

In polar coordinates (r ,w), the line element in an infinite
plane is

ds25dr 21r 2 dw2. ~4!

A conformal transformation from the infinite plane into th
spheroid is thus established by the equations

r 5e2g(u), and w5c,

with g~u!5Eu
A~b/a!21cot2v dv, ~5!
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and by the requirement that the pointsr 50 and r 5` are
mapped onto pointsu5p and 0, respectively. Transforma
tion ~5! is conformal, because the line elements Eqs.~4! and
~3! differ only by a position-dependent factor:

ds25ds82@e22g(u)/a2 sin2u#. ~6!

Under a conformal mapping (rW→rW8), a multipoint corre-
lation function covariantly transforms as@1#

^s1~rW1!s2~rW2!•••& rW5b~rW1!2X1b~rW2!2X2
•••

3^s1~rW18!s2~rW28!•••& rW8 , ~7!

wheres i is a scaling operator~e.g., associated with the mag
netization density or the energy density!, Xi is the corre-
sponding scaling dimension, andb(rW) is the rescaling factor,
which readsb(rW)25ds2/ds82.

In the infinite plane, the bulk two-point correlation func
tion at criticality behaves as@10#

^s~rW1!s~rW2!&plane5BurW22rW1u22X, ~8!

whereB is a constant. Thus, according to Eqs.~5!–~8!, one
obtains the correlation functiong1(u) of two points (u,c)
and (u,c1p) on a spheroid (c<p)

g1~u!5B~2a sinu!22X. ~9!

The evaluation of the mapping formula@Eq. ~5!# is com-
plicated in general. However, for the special cases mentio
above, it simplifies and yields more results.

~i! Surface of a cylinder. As the polar radiusb→`, the
spheroid approaches the surface of an infinitely long cy
der. The substitutions of a new coordinateu5bu and the
radiusR5a of the cylinder lead to

ds825du21R2dc2 ~2`,u,`,0,c<2p!, ~10!

FIG. 1. Example of an ellipse with 1/e5a/b52. The corre-
sponding oblate spheroid is obtained by the rotation of the elli
about thez direction. The new coordinatew specifies the distance
along the ellipse from the north pole.
7-2
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and the mapping formula@Eq. ~5!# simplifies to

r 5e2u/R and w5c. ~11!

Thus, Cardy’s mapping is restored@5#. The critical two-point
correlation functions along the cylinder are then

^s~u1 ,c!s~u2 ,c!&5BR22Xe2Xuu12u2u/R

3~12e2uu12u2u/R!22X. ~12!

So the correlations decay exponentially foruu12u2u@0.
~ii ! Surface of a sphere. One obtains a sphere when th

polar and the equatorial radii are equal, i.e.,b5a5R. The
line element Eq.~3! reduces to ds825R2 (du21sin2udc2),
and the mapping formula becomes

r 52R cot~u/2! and w5c. ~13!

A geometric picture of this mapping involves the placem
of a sphere with radiusR on top of an infinite plane~Fig. 2!.
The mapping of a pointrW in the plane on the sphere is d
fined as the intersection between the sphere and the line
necting the north pole and the pointrW. Here, the vectorrW
stands for the point (r ,w) in Eq. ~13!. According to Eqs.~7!,
~8!, and ~13!, one has the pair correlation function on th
sphere as

^s~u1 ,c1!s~u2 ,c2!&5BR22X22X@12sinu1 sinu2

3cos~c12c2!2cosu1 cosu2#2X.

~14!

If one introducesRW to represent the vector from the center
the sphere to the point (u,c), Eq. ~14! reduces to

^s~RW 1!s~RW 2!&5BuRW 12RW 2u22X, ~15!
e

c

e
t
-
t

03610
t
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which, interestingly, has the same form as Eq.~8!.
~iii ! Surface of a flat disc. In the limit b→0 of an oblate

spheroid, a flat-disc geometry is reached. The coordinatw
and the element~3!, respectively, reduce to

w5a sinu and ds825dw21w2dc2 ~w<R5a!,
~16!

and the mapping formula becomes

r 5H w/R 0<r ,1

R/w r>1.
~17!

This mapping can be generalized to any number of dim
sions.

Under the mapping Eq.~17!, one finds two formulas for
g(wW 1 ,wW 2)5^s(wW 1)s(wW 2)&, of which the applicability de-
pends on whether or not the two pointsrW1 and rW2 lie in the
same face of the flat disc:

FIG. 2. Illustration of the conformal mapping of an infinit
plane on the surface of a sphere.
g~wW 1 ,wW 2!5H B@w1
21w2

222w1w2 cos~c12c2!#2X
~wW 1 ,wW 2 : same face!

B@~w1w2!21R222w1w2 cos~c12c2!#2X
~wW 1 ,wW 2 : opposite faces!,

~18!
as

ons
ly
where we have introducedwW to represent the vector from th
center of the disc to the point (w,c).

The derivative]r /]w in the Eq.~17! is discontinuous at
the edgew5R. One may thus expect that finite-size corre
tions arise for the critical behavior near the edge.

Next, we describe the conformal transformation betwe
a semi-infinite plane and a half spheroid. The latter objec
defined by Eq.~1! but with z<0. The mapping can conve
niently be described in two steps. First, one parametrizes
-

n
is

he

plane complex numbersz5x1 iy , so the formulaz85(z
2 i )/(z1 i ) maps the semi-infinite planeR3R1 onto the in-
terior of a unit circle~Fig. 3! @1#. This conformal mapping
yields the profile of a scaling operator inside a unit circle

^s~r 8!&5~12r 82!22X. ~19!

This result can be generalized to any number of dimensi
@1,2#. Second, the interior of the unit circle is conformal
7-3
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mapped on the half spheroid under the transformation
~5!. In the limit b→`, a semi-infinite cylinder@Eq. ~10! but
with u>0] is reached, on which the profile of a scalin
operator behaves as

^s~u!&}R2Xe2uX/R~12euX/2R!2X. ~20!

For b5a5R a half spheroid reduces to a half sphere, a
one has

^s~u!&}~R cosu!2X. ~21!

III. EXACT CALCULATION

Since the transformations between the plane and the
cial cases of the spheroid@Eqs.~11!, ~13!, and~17!# are rela-
tively simple, it is possible to derive the expressions for^s2&
and ^s4& from the exact solution of the Ising model in th
infinite plane@10#. For the case of an infinitely long cylinde
Burkhardt has evaluated these expressions by mean
Monte Carlo integration@11#. The result is consistent with
that obtained from direct simulations of systems on the c
inder @11#. Here, we follow analogous procedures for t
surface of a sphere and of a flat disc.

In the continuum limit, the second and fourth moments
the magnetization densitŷs2& and ^s4& can be given in
terms of the two- and four-spin correlation functions, resp
tively:

^s2&5r2E dS1dS2g~rW1 ,rW2!, and

^s4&5r4E dS1•••dS4g~rW1 ,rW2 ,rW3 ,rW4!, ~22!

wherer is the areal density of the spins, and dSi represents
the number of spins in an infinitesimal area. For a spherr
and dSi can be written as 1/(4pR2) and R2 sinuidu idc i ,
respectively. For a flat disc,r51/(2pR2) and dSi
5r idr idc i . R is the radius of the sphere or the flat dis
g(rW1 ,rW2) andg(rW1 ,rW2 ,rW3 ,rW4) are the two- and four-spin cor
relation functions.

The two-point correlation function is known exactly@Eq.
~8!#. An exact result is also available for the bulk four-sp
correlation of the two-dimensional critical Ising mode
which is given in terms of pair correlations by@12#

g~1,2,3,4!5
1

2 H Fg~1,2!g~2,3!g~3,4!g~4,1!

g~1,3!g~2,4! G2

1~2↔3!

1~3↔4!J 1/2

. ~23!

Here, for simplicity, we have writteng(rW1 ,rW2) and
g(rW1 ,rW2 ,rW3 ,rW4) as g(1,2) andg(1,2,3,4), respectively. The
notation (i↔ j ) represents the expression between squ
brackets@ # with i and j interchanged.

The universal amplitude ratioQ5^s2&2/^s4& is simply
related to the Binder cumulant@13#.
03610
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~i! Surface of a sphere. The substitution of the pair corre
lation on a sphere@Eq. ~14!# leads to

^s2&5r24pR2E
0

2p

dc2E
0

p

du2R2 sinu2g~0,0;u2 ,c2!

5BR22X22X21E
0

p

du2 sinu2~12cosu2!2X

5BR22X222X/~12X!, ~24!

for the Ising model, X522yh51/8 so that ^s2&
5(211/4/7)BR22X'0.961 024 5BR22X.

Equations~22! and ~23! and substitutions of the integra
tion variablesxi5u i /p andyi5c i /2p lead to

^s4&5BR24Xp3222X23

3E
0

1

dx2dx3dx4dy3dy4f ~x2 ;x3 ,y3 ;x4 ,y4! ~25!

with f (x2 ;x3 ,y3 ;x4 ,y4)5sin(px2)sin(px3)sin(px4)
3g(1,2,3,4), where the coordinates of these four points
(0,0), (px2 ,0), (px3 ,2py3), and (px4 ,2py4). This equa-
tion was evaluated with a Monte Carlo procedure, wh
approximates the integral by

FIG. 3. Illustration of the conformal mapping from a sem
infinite plane on a single disc.
7-4
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CONFORMAL INVARIANCE AND THE ISING MODEL ON . . . PHYSICAL REVIEW E67, 036107 ~2003!
^s4&5BR24Xp3222X23N21(
i 51

N

f ~x2
( i ) ;x3

( i ) ,y3
( i ) ;x4

( i ) ,y4
( i )!,

~26!

wherex( i ) and y( i ) are uniformly distributed random num
bers in the interval (0,1). It yieldŝs4&5BR24X(1.198 78
60.000 02), where the two decimal numbers are the ave
and standard error obtained from 1000 determinations of
integral. Each integral involves 106 Monte Carlo steps.

Thus, the value of the dimensionless quantity is obtain
asQ50.770 4260.000 01.

~ii ! Surface of a flat disc.The critical pair correlations on
a flat disc are given by Eq.~18!. The evaluations both o
^s2& and ^s4& were done by means of Monte Carlo proc
dures because in this case the symmetry lower than that
sphere. The calculation must allow for the fact that the fo
of the pair correlation depends on whether or not the t
points are in the same face@Eq. ~18!#. Taking into account all
possible distributions of the four correlated points, one fin

^s4&5r4E
0

R

dr 1•••dr 4E
0

2p

dc1•••dc4

3r 1r 2r 3r 4@2g0~1,2,3,4!18g116g2#, ~27!

whereg0(1,2,3,4) defines correlations of four points on t
same face,g1 applies to three points on one face and one
the other, andg2 applies to two points on one face and tw
on the other. From this calculation, we obta
^s2&5R22X(1.041 5660.000 01), ^s4&5R24X(1.412 73
60.000 05), and thusQ50.767 9160.000 03.

The ratios of moments of the magnetization density on
sphere and on the flat disc are thus given as

r 25^s2&s /^s2&d50.922 68~2!

and r 45^s4&s /^s4&d50.848 57~4!, ~28!

where the number between parentheses stands for the
mated error in the last decimal place.

IV. MODEL AND ALGORITHM

As mentioned before, simulations on a spheroid are d
cult due to the incompatibility of regular lattices with curve
geometries. Here, we tackle this problem by using
Hamiltonian limit of a two-dimensional lattice Ising mode
For such a system, an efficient continuous Wolff-like meth
has been explained in detail@9#. Here, we describe the appl
cation of this algorithm to simulations in curved geometri

The Hamiltonian of an Ising model on aL3L square
lattice with periodic boundary conditions reads

H/kBT52(
x,y

@Kxsx,ysx11,y1Kysx,ysx,y11#, ~29!
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where the integers 1<x,y<L label the lattice sites.Kx and
Ky are the coupling strengths along thex and y direction,
respectively. The spins can assume the valuessx,y561.
The critical line of this model is given by@10#

sinh~2Kx!sinh~2Ky!51. ~30!

In the anisotropic limite→0, the couplings therefore are

Kx5e/t, exp~22Ky!5e, ~31!

wheret is a temperaturelike parameter whose critical poin
tc51. It is known that in this limit the system is equivale
to the quantum transverse Ising chain@14,15# with nearest-
neighbor couplings and an external fieldt:

HQM52(
x

~sx
zsx11

z 1tsx
x!, ~32!

with sz andsx Pauli matrices.
Since our purpose is the application of conformal inva

ance, we have to restore isotropy asymptotically for the s
tem with Kx,Ky . This can be done by increasing the num
ber of spins in they direction by a factorLy /Lx5sinh 2Ky
51/2e @16#. Meanwhile, one rescales they direction asy8
52y/e so that the system sizes along thex and y direction
are equal again,Ly85Lx . As a result, they dimension be-
comes continuous ase→0, i.e., there is an infinite number o
spins per physical length unit, and the lattice structure tra
forms into L lines of lengthL. The spins form ranges o
1/2 signs, and the number of interfaces in the system is
orderL2.

For this anisotropic limit, a full description of the afore
mentioned continuous Wolff-like algorithm has been given
Ref. @9#. For the convenience of the reader, we summar
the essential points. During the formation of a cluster, a bo
between nearest-neighboring spins with the same sig
‘‘frozen’’ with a probability P512exp(22K) or ‘‘broken’’
with 12P. Sites connected by frozen bonds are included
the same cluster. For the anisotropic limit, the probabilityP
in the x andy direction will be of ordere and 12e, respec-
tively. Thus, the strong-couping bonds will continue to co
nect spins in they direction until a break occurs with a prob
ability of order e per bond. Therefore, after the rescalin
discussed above, the connected spins along the lines iny
direction form ranges of1/2 signs with lengths of order 1
and the breaks are just the aforementioned interfaces. M
over, the average distance of the bonds between adja
lines is also of order 1. These weak-coupling bonds serv
‘‘bridges’’ between neighboring lines to connect ranges
the same sign, and help to build clusters. Analogous to c
ter methods for the discrete models, the aforementioned c
tinuous cluster algorithm flips one or more clusters durin
Monte Carlo step depending on whether it is Wolff-like
Swendsen-Wang-like. The correctness and efficiency of
method has been demonstrated both in two and three dim
sions@9#.
7-5
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Y. DENG AND H. W. J. BLÖTE PHYSICAL REVIEW E67, 036107 ~2003!
Although the long-distance behavior of such an ani
tropic system is the same in thex andy direction, corrections
may exist at short distances. We investigate this problem
system with sizeL540. We sampled the differencedm(r ) of
the magnetic correlation functions over distancesr in the x
andy direction

dm~r !5
1

V (
x
E dy^sx,ysx1r ,y2sx,ysx,y1r&, ~33!

whereV5(x*dy5L3L is the area of the square. A plot o
dm as a function ofr is shown in Fig. 4. The fact that the lin
becomes approximately straight at the right-hand side in
cates that the leading correction behaves asr ya. From Fig. 4,
we estimate the associated exponentya'22.25, so we sim-
ply assume thatya522Xh1yi , where yi522 is the
correction-to-scaling exponent in the two-dimensional Is
model, andXh51/8 is the magnetic scaling dimension. Ta
ing into account the periodic boundary conditions, we fitt
the Monte Carlo data according to the least-squares crite
on the basis of

dm5r 22Xh$a1 @r yi1~L2r !yi#1a2@r y11~L2r !y1#%,
~34!

where a1 , a2 are unknown parameters, and the term w
y1523 is another significant correction. We obtaina1
50.0228(6) anda250.027(3).

Since the model is now continuous in they direction, one
can investigate it in curved geometries such as a spheroid
an example, we consider the case of a sphereS2. The struc-
ture of the anisotropic model in the flat geometry defined
Eqs. ~29! and ~31! consists ofL lines of lengthL. Each of
these lines can be understood as a circleS1 because of the
periodic boundary condition. As a result, one can repres
the ‘‘lattice structure’’ on a sphereS2 by L uniformly distrib-
uted circles with varying radius~Fig. 5!, such that there are
strong couplings along the circles while weak couplings
cur between adjacent circles. The location of thekth circle is

FIG. 4. Decay of the differencedm(r ) of the magnetic correla-
tion functions in thex andy direction, shown as lndm vs lnr. The
system size is 40340.
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uk5(k2 1
2 )p/L, with k51,2, . . . ,L ~Fig. 5!, and the corre-

sponding circumference isck52L sinuk , which accounts for
the S2 curvature. Since the probability of a weak-coupin
bond is definedper unit of length, and the adjacent circles o
a sphere have different radii, the distribution of these we
coupling bonds still requires a length scale. It was chosen
the average length scale of both circles. Self-interactions
weak bonds over the polesu50 or p could, in principle,
occur at the circles withk51 andL, respectively. But these
interactions may be set to zero because the circles atu50
andp have a zero length. By means of the continuous Wo
like algorithm, we simulated the above model on a sphe
The magnetic correlation of diametrically opposite poin
was sampled,

g0~u!5
1

pE0

p

dc^s~u,c!s~p2u,c1p!&. ~35!

An example for systems without self-interactions atu50
and p is shown in Fig. 6. As the number of the circlesL
increases, the poleu50 is approached, and the spacing
adjacent circles decreases. The lines are quite straight, w
indicates that the spherical symmetry is restored asymp
cally. We have also investigated the system with se
interactions over the poles. Significant deviations from is
ropy occur in this case.

On a microscopic scale, the lattice structure on a spher
the same as that on a flat plane. However, for finiteL, apart
from microscopic deviations from the uniformity, the di
cretization inu may lead to a global effect on the couplin
strength. According to the trapezium rule, we expect that
deviation vanishes asL22. Under renormalization this effec
leads to corrections proportional toLyt22, whereyt51 is the
temperature renormalization exponent. Thus, this effect v
ishes whenL→`, and the critical point on a sphere is ide
tical to that on the flat plane. Moreover, since the exponen

FIG. 5. Example of ‘‘lattice structure’’ on a sphere, on whic
L55 circles represent continuous lines of spins in the stro
coupling direction. The full and dash-dotted parts of the circ
represent~arbitrarily chosen! ranges of spins with different signs.
7-6
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the irrelevant fieldyi522, it is expected that the term wit
Lyt22 dominates over the corrections of orderLyi, as will be
confirmed later.

As an alternative way for the distribution ofL circles on a
sphere, the location of thekth circle can be given byuk
5(k21)p/(L21), so that in this case the circumference
the sphere isc52(L21). It was found numerically that the
spherical symmetry is less well restored in this case. T
may be due to the singularity of the zero radii of the circ
with k51 andL.

The same procedure can be applied to the disc geom
The kth circle is simply located atr k5(k21) and its cir-
cumference is given by ck52p(k21), with k
51,2, . . . ,L. For a general spheroid with constant ratioe
5b/a, the problem that the circles should be evenly distr
uted is solved in two steps. First, since the circumference
the corresponding ellipse is 2L, the value of the parametera
can be numerically calculated from the equationL5a*0

Ldw
5a*0

pduAcos2u1e2 sin2u. Second, the location of thekth
circle can be obtained by solving foruk in the equationk
2 1

2 5a*0
ukduAcos2u1e2 sin2u.The corresponding circumfer

ence isck52pa sinuk (k51,2, . . . ,L).

FIG. 6. The magnetic correlation functionsg0(u) on spheres vs
u. The Monte Carlo data are shown for system sizesL58 (s),
L512 (h), L516 (n), andL520 (L). The lines show the cor-
responding fits. The angleu is given in radians.

FIG. 7. The dimensionless quantityQR at criticality vsR21.
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V. NUMERICAL RESULTS

By means of the continuous Wolff-like algorithm, we pe
formed simulations of the Ising model on a sphere, on a
disc, on a spheroid withe52, on a half sphere, and inside
circle.

~i! Surface of a sphere. For systems on a sphere, w
sampled^s2&, ^s4&, and QR(t) near the critical point. In
addition, the two-point magnetic correlation functiong1(u)
5^s(u,c)s(p2u,c)& was determined at criticality. The
system sizes are taken as 15 values ranging fromL58 to 96.
According to finite-size scaling, in the critical region,QR(t)
behaves as

QR~ t !5Qc1a1Ryt~ t2tc!1a2R2yt~ t2tc!
21•••1b1Ryc

1b2Ryi1•••, ~36!

wherea1 ,a2 ,b1, andb2 are unknown parameters, andQc is
the universal value for the infinite system at criticality. Th
correction with exponentyc5yt22521 is due to the dis-
cretization of the sphere as explained above. An exampl
shown in Fig. 7. The approximate linearity indicates that
approach ofQR(0) to Qc occurs asR21. Formula~36! was
fitted to Monte Carlo data according to the least-squares
terion. The value of the temperature parameter is fixed atc
51. We obtainQc50.770 43(3), which is consistent with
the exactly calculated value 0.770 42(1) in Sec. III.

Similarly, the finite-size behavior of̂s2& is

^s2&5R22Xh@m21a1Ryt~ t2tc!1a2R2yt~ t2tc!
21•••

1b1Ryc1b2Ryi1•••# ~37!

and that of̂ s4& is

^s4&5R24Xh@m41a1Ryt~ t2tc!1a2R2yt~ t2tc!
21•••

1b1Ryc1b2Ryi1•••#. ~38!

FIG. 8. Decay of the magnetic correlation functiong1(u),
shown as lng1(u) vs ln sinu. The number of circles on the sphere
L596. The line shows the corresponding fit.
7-7
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TABLE I. Fits of the correlation functionsg1(u) on spheres.

Lmin Lmax umax Xh a0 a1 a2

8 96 1.40 0.12497~4! 0.72215~5! 20.026(2) 20.023(4)
a3 b0 b1 c

20.0006(1) 20.427(3) 0.21~2! 20.209(3)
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The exponents22Xh and 24Xh of R are obtained by the
substitution ofXh51/8. The fits yieldm250.619 88(3) and
m450.498 75(5).

According to Eq. ~14!, g1(u)}(L cosu)22Xh, which is
confirmed numerically in Fig. 8. On the basis of finite-si
scaling and conformal invariance, the correlation funct
g1(u,L) is expected to behave as

g1~u,L !5L22Xh$~cosu!22Xh1cLyc@a01a1~Lp2Lu!yc

1a2~Lp2Lu!yi1a3~L sinu!yc#

1b0Lyc1b1Lyi%, ~39!

wherea0 ,a1 ,a3 ,b0 ,b1 ,c are unknown parameters. The co
rections with amplitudesa1 anda2 are due to the deviation
from isotropy at short distances; the term witha3 accounts
for the inhomogeneity because of the discretization of thu
direction. Equation~39! was fitted to the Monte Carlo data
As a consistency test, we chooseXh as a free parameter. W
obtainXh50.124 97(4), which is in a good agreement wit
the exact resultXh51/8 ~see Table I!. Although the param-
etera3 is quite small, it is necessary to obtain a reasona
residual.

~ii ! Surface of a flat disc. The system sizes on the flat-dis
geometry were taken as values of 12 odd numbers ran
from L513 to 91. The corresponding radii areL/2. Near the
critical point, we sampledQR , ^s2&, and ^s4&. The finite-
size behavior of these quantities also follows from Eqs.~36!,
~37!, and ~38!, respectively. The fits yield thatm2
50.6719(1), m450.5879(1), and Qc50.768 02(15),

FIG. 9. Decay of the magnetic correlation functiong2(r ),
shown as lng2(r) vs ln(114r2/L2). The finite-size parameter of th
flat disc isL517.
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which agrees well with the exact calculationQc
50.767 91(3). Thus, we also obtain the ratiosr 2
50.922 63(13) andr 450.848 41(14), which are consisten
with Eq. ~28!.

At criticality, three types of two-point magnetic correla
tion functions were sampled. We denoteg1(r ) as the one
between two points with same coordinates (r ,c) but on op-
posite faces, andg2(r ) and g3(r ) as those between two
points (r ,c) and (r ,c1p) on opposite and on the sam
faces, respectively. On the basis of Eq.~18!, one expects tha

g1~r !}~L24r 2/L !22Xh, g2~r !}~L14r 2/L !22Xh,

g3~r !}r 22Xh. ~40!

A plot for g2(r ) is shown in Fig. 9. The curvature nearr

5L/2 is due to the discrete property of the derivative]rW/]w
in the mapping formula Eq.~17!. We assume that this effec
decays as in order of (L/22r )yc when r approaches zero
Thus, one can obtain the finite-size behavior of these qu
tities by including corrections in Eq.~40!. For instance, the
quantityg3(r ) follows

g3~r !5r 22Xh1cLyc@a01a1r yc1a2r yi1d1~L/22r !yc1b0Lyc

1•••#. ~41!

By introducing a cutoff at larger, we made fits forg1(r ),
g2(r ), and g3(r ) independently, and obtain Xh
50.124 92(9), Xh50.125 01(16), andXh50.125 05(7), re-
spectively, in good agreement with the exact result.

FIG. 10. Decay of the magnetic correlation functiong2(u),
shown as lng2(u) vs ln(11Ae211tan2u). The finite size of the
spheroid isL564 ande5b/a52.
7-8
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~iii ! Spheroids with e52. As an example, we performe
Monte Carlo simulations for a prolate spheroid with the ra
e5b/a52. We sampled the universal ratioQR and the mag-
netic correlation functiong1(u)5^s(u,c)s(u,c1p)&. The
analysis of the finite-size behavior ofQR leads to the resul
Qc50.7643(1). From the Monte Carlo data forg1(u) and
Eq. ~9!, we obtainXh50.1249(2).

We also sampled the correlation functionsg2(u)
5^s(u,c)s(p2u,c)&. The mapping formula is relatively
complicated in this case, and we did not work out the expr
sion ofg2(u). But we observe that a plot of the Monte Car
data ln@g2(u)# versus ln(11Ae211tan2u) approximately fol-
lows a straight line~Fig. 10!. By means of finite-size scaling
we obtain the value of the slope as 0.1241(8), which is
close to the exact resultXh51/8.

~iv! Half surface of a sphere with fixed boundary con
tions. We also investigated the anisotropic limit of the Isin
model on a half sphere. An infinite ordering field was appl
at the equator. The system sizes are taken as 10 values
ing from L54 to 40. The corresponding radius isR5(2L
21)/p. We sampled the magnetization densitym5^s(u)&

FIG. 11. Decay of the fluctuation of the energy densitye(u)
2n0 for half the surface of a sphere, shown as ln(e2n0) vs ln cosu.
The system sizeL524. n0 is obtained from the Monte Carlo dat
for flat systems.

FIG. 12. Decay of the magnetization densitym5^s(r )&, shown
as lnm vs ln@12r2/(L21/2)2#. The circle was cut from aL3L
square lattice withL524.
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and the energy densitye as a function ofu. Since the inter-
actions along theu andc direction are of different forms, the
energy density can be represented in two ways: the inte
tions due to the weak-couplings^s(u)s(u11)&, or the den-
sity of interfaces along the strong-couplings^n(u)&. We
chose the latter because it needs much less computer
The behavior of the magnetization density follows Eq.~20!,
and the energy density behaves as

e~u!5^n~u!&5n01a~L cosu!2Xt, ~42!

wheren0 is the bulk density, andXt is the temperature scal
ing dimension. An example is shown in Fig. 11. Finite-si
analyses of the quantitieŝs(u)& and ^e(u)& yield Xh
50.124 99(2) andXt50.995(6), respectively, which are
again in excellent agreement with the exact values.

~v! Interior of a circle. Conformal invariance on the inte
rior of a circle with free and fixed boundary conditions h
been numerically tested by Badkeet al., and Reˇs and Straley
@3,7#. They approximated this geometry by drawing t
circle from a square lattice. In this way, the symmetry alo
the c direction is broken, and irregular finite-size effec
arise ~Fig. 12!. Thus, it seems appropriate to simulate t
interior of a circle by means of the continuous algorithm. W
used both free and fixed boundary conditions. The sys
sizes are taken as 10 values ranging fromL58 to 40. An
example is shown in Fig. 13, and no irregular effects
observed. Analyses yield thatXh50.124 994(15) andXt
51.002(7).

VI. DISCUSSION

Conformal invariance is known as a powerful tool to i
vestigate critical behavior. Its applications in two dimensio
have so far been focused on flat systems. We have sh
how one can apply it in curved geometries. The validity
our method is confirmed by the agreement between pre
tions based on conformal invariance and our numerical
sults. Moreover, in the case of the Ising model, the difficu
of numerical simulations in curved geometries is solved
the recently developed continuous cluster algorithm. Triv

FIG. 13. Decay of the magnetization densitym5^s(r )&, shown
as lnm vs ln@12r2/(L21/2)2#. The system size isL516. Fixed
boundary conditions were applied.
7-9
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modifications can generalize this algorithm to Potts mod
including the percolation model@18#.

Furthermore, since conformal mappings of thre
dimensional systems usually lead to curved geometries,
algorithm enables us to investigate applications of confor
invariance in three dimensions@9,17,18#.
,
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