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Small-world properties of the Indian railway network
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Structural properties of the Indian railway network is studied in the light of recent investigations of the
scaling properties of different complex networks. Stations are considered as “nodes” and an arbitrary pair of
stations is said to be connected by a “link” when at least one train stops at both stations. Rigorous analysis of
the existing data shows that the Indian railway network displays small-world properties. We define and esti-
mate several other quantities associated with this network.
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Given a chance, how would we have possibly organizedo characterize a network &f nodes:(i) the diameter is the
our train travel? People dislike changing trains to reach theimaximum distance between an arbitrary pair of nodis,
destinations. Therefore an extreme possibility would be tdhe clustering coefficierd(N) is the average fraction of con-
run a single train passing through all stations in the country?ected triplets(iii) the probability distributiorP(k) that an
so that no change of train is needed at all! An obvious dis&'bitrarily selected node has the degfes.e., this node is

. : . . ked to otherk nodes.
advantage in this strategy is that the average distance bgU
tween the stations becomes very large and so, also, the time Watts and Strogati2] proposed a model of small-world

needed for travel. The other limiting situation would be to nework(SWN) in the context of various social and biologi-

. - . . ; cal networks. They argued that SWN's must have small di-
run a train between any pair of neighboring stations and try meters which grow as Mlike random networks but should

to _travel along th‘? minim.al paths. This requires a chaqge Chave large values of the clustering coefficiefi{sl) ~ 1 like
train at every station, which is also clearly not economically.eqjar networks. On the other hand the scale-free networks
V|_able. Railway networks in no country in the World_follow (SFN) are characterized by the power law decay of the de-
either of the two ways, actually they go midway. Like any gree distribution functionP(k)~k~ 7. It was observed later
other transport system the main motivation of railways is tothat the degree distributions of nodes for two very important
be fast and economical. To achieve it, railways simultanetworks, e.g., the World Wide WdB], which is a network
neously run many trains, covering short as well as longf web pages and the hyperlinks among various pages, and
routes so that a traveller does not need to change more thaife Internet network4] of routers or autonomous systems
only a few trains to reach any arbitrary destination in thehave a scale-free property. Baraband Albert(BA) pro-
country. posed a model for SFN which grows from an initial set of
In this paper we analyze the structure of the Indian rail-nodes and at every time step some additional nodes are in-
way network(IRN). This is done in the context of recent troduced which are randomly connected to the previous
investigations of the scaling properties of several complexodes with the linear attachment probabiliti@$. All scale-
networks, e.g., social, biological, computational networksfree networks are believed to display small-world properties
[1], etc. Identifying the stations as nodes of the network andvhile a small-world network is not necessarily scale free.
a train which stops at any two stations as the link between Networks defined on the Euclidean space have also gen-
the nodes we measure the average distance between an adviated much interest in recent times. The Internet, transport
trary pair of stations and find that it depends only logarith-systems, postal networks, etc., are naturally defined on two-
mically on the total number of stations in the country. While dimensional space. In these generalized networks the attach-
from the network point of view this implies the small-world ment probabilities depend jointly on the nodal degrees as
nature of the railway network, in practice a traveller has towell as the lengths of the linKs8,9].
change only a few trains to reach an arbitrary destination. A railway network is one of the most important examples
This implies that over the years, the railway network hasof transport systems. The very complex topological struc-
evolved with the sole aim of becoming fast and economicaltures of railway networks have attracted the attention of re-
eventually its structure has become a small-world networlsearchers in many different contexts. For example the fractal
[2]. nature of the structure of railway networks was studied by
The structure and properties of several social, biologicalBenguigui[10]. Very recently the efficiency of the Boston
and computational networks like the World Wide Web subway network has been studied where a different measure
(WWW) [3], network of the Internet structurgt], neural  for such networks has been propogéd).
networks[ 5], collaboration network6], etc., have been stud- Our scheme is to associate first a representative géaph
ied recently with much interest. In general a network has avith the IRN of N stations in the following way. Here the
number of “nodes” and some “links” connecting different stations represent the nodes of the graph, whereas two arbi-
pairs of nodes. Typically the following quantities are definedtrary stations are considered to be connected by a link when
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there is at least one train which stops at both the stations. 22 '
These two stations are considered to be at unit distance of
separation irrespective of the geographical distance between
them. Therefore the shortest distanGe between an arbi- 20 -
trary pair of stationss; ands; is the minimum number of
different trains one needs to board to travel frgno s;. R
Thus €;;=1 implies that there is at least one train which §, 18
stops at botts; ands; . Similarly, ¢;;=2 implies that there is
no train which stops at bot) ands; and one has to change
the train at least once in some intermediate station to board 16
the second train to reach). With this definition, if the trains
ty, to, ..., t, pass through a statiog, then all the sta- 0 L
tions through which these trains pass are unit distance 1.4 :
away froms; and are considered as first neighborsspf 10
Consequently, the numbky of such stations is the degree of
the nodes; . FIG. 1. The variation of the mean distan®P¢N) of 25 different
Indian railway network is a densely populated network ofsubsets of IRN having different number of nodé$) ( The whole
more than 8000 stations where the number of trains plying iriange is fitted with a function like)(N)=A+BIn(N), whereA
this network is of the order of 10 00{12]. However, we ~1.33 andB~0.13. The inset shows the distribution Prép(of
collected the data of IRN on a coarse-grained level followingth shortest path lengttson IRN. The lengths varied to a maxi-
the recent Indian railways timetable “Trains at a Glance” mum of only five link lengths and the network has a mean distance
[13] containing the important trains and stations in India.D(N)mz'le'
This table contains a total of =579 trains coveringN
=587 stations in a total of 86 tables. A grand rectangulathe average shortest distandg;) between an arbitrary pair
matrix G(N,L) is then constructed such that tijen element ~ Of stationss; and's;. We obtainD(N)~2.16 for this net-
of this matrix is 1 if the trairj stops at the station otherwise ~ WOrk. _ _ _ _
this element is zero. A second matfix0:N,N) is also con- Itis desirable to see ho®(N) varies withN [15]. Since
structed where the degrée of the stationi is stored at the We have the data of a single railway network, we divide the
elementZ(0,i) and the serial numbers of tie neighbors of whqle IRN into 25 different subsets_consstmg of_tra|_ns and
i are stored at the locatiorj,i),j=1k:, the rest of the stations of 10 different states, 7 different combinations of

elements being zero. We define and estimate the following§t@tes, 7 different railway zones, and the whole IRN. As a
quantities for the IRN. result_we obtained 25 data p0|r(11$10ugh_ they are not nec-
SinceGy, is a connected graph, there aiéN—1)/2 dis- esgar!ly nonoverlappmg san‘_np]eseflectmg the nature of
tinct shortest paths among thé stations. We calculate the Variation of D(N) with N. In Fig. 1 we plot these data on a
probability distribution of the shortest path lengths Pi( semilog scale and though there are some wild fluctua_tlor_us for
The shortest path lengths are calculated using a burning a:p_mall values ofN, for large values oN.the_Imear behavior is
gorithm [14] and using the matrixZ In this algorithm the 9uite apparent. The whole range is fitted WilP(N)=A
fire starts from an arbitrary node and burns this node at +BIN(N) whereA~1.33 andB~0.13. _
timet=0. At timet=1 the fire burns alk; neighbors of. At The clustering coefﬂuer(t(l\_l) is defined in _the following
timet=2 all unburnt neighbors df, nodes are burnt and so Way- Let the subgrapks; consisting of the neighbors &f,
on. The burning time of a node is the length of the shortest€-» (51, S2. S, ..., S) haveE; links among them. Then
path of that node from the nodeThis calculation has been the clustering coefficienf; of the nodei is 2E;/k;(k;—1)
repeated for alN nodes to geN(N—1)/2 shortest distances. and that of the whole network &=(C;). A direct measure of
In Fig. 1 inset we plot this distribution which goes to a maxi- the clustering coefficient of the whole IRN giveS==0.69
mum of ¢ =5 implying that one needs to change at most four(Fig. 2). The high value of the clustering coefficient is ex-
trains to reach any station from any station in India on theplained in the following way. The number; of stations in
coarse-grained level. Similarly the distribution has a peak awhich a particular train stops are all at unit distance from one
€=2 implying that one can go to the majority of stations in another on the network and therefore form mag clique.
India by changing train only once. In the graph theory theTherefore if only one train stops at some statiotinen C;
diameter of a graph is measured by the maximum distance 1. When two trains stop at the statioand the seta(1)
between the pairs of nodes. Therefore according to this defandng(2) of stations covered by these two trains are differ-
nition the diameter of our network is exactly equal to 5.ent, C; is in general smaller than 1. However, there may be
However, the average shortest path between an arbitrarilgther trains which do not stop atbut stop at the stations
selected pair of nodes which we call as the mean distano&hich are not in botimg(1) andng(2). These trains enhance
D(N) is also a measure of the topological size of the graphhe value ofC;. The value ofC~0.69 is compared with a
and have been used by many authors to measure the size egrresponding random graph network having the same num-
networks as described in R¢%]. We therefore measure the ber of vertices and edges as in IRN with the edges distributed
mean distanc@®(N) of the railway network ol stations as randomly. It is found that the number of edges in IRN is
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FIG. 2. Variation of the clustering coefficieG{N) of 25 differ- FIG. 3. The variation of the clustering coefficiefitk) against

ent subsets of IRN having different number of nodésStarting  the degreek for the IRN indicates a logarithmic decay for large

from a somewhat higher value at a small number of nodes, the

clustering coefficient decreases slowly on increasihgnd finally  in Fig. 5 on a semilog scale after scaling by the average

saturates at 0.69. number of traingn,)~12.06 along both the abscissa and the
ordinate. The data are binned as before and is fitted to an

19 603. If these edges are distributed randomly within thegxponential formD,(ny)(n,)=aexp(-bx) with x=n/{ny),
maximum possible edges on a graptNof 587 nodes the the @~0.47, ando~0.75. _
clustering coefficient should be 19 6PRAN—1)/2] '_I'he dlstrlput|onD(nS) of the n_umber of stations through
~0.113 which is the same as Pt@p We also compute a which an arbitrary train passes is plotted in _Flg. 6. The data
modified clustering coefficien€, by counting inE; only  are scaled by the average number of statiomg~12.37
those links in the subgrap®; which pass through the node ~ @l0ng both the abscissa and the ordinate. Dife) grows
We obtained a valug,~0.55 for the IRN. very fast at the begmnlng, rea_lches a maximum, and _then
Recently, the study of the clustering coefficient as a funcdecays to £€10. Aznumgenc_al fit to a functional form like
tion of the degree of the node of some real-world networkDs(Ns)(Ns)=ax"/(x“+b)* with x=ns/(ns), a~0.6, andb
has shown an interesting featuit7] C(k), defined as the ~0-096 turns out to be reasonably good.
clustering coeffcient of the node with degreeshowing a We also measure the connectivity correlation of IRN fol-
decreasdapparently a power-law decawith k in several lowing the works of Ref[16]. Let F(k’|k) denote the con-
networks like the actor, language, or World Wide Web net-ditional probability that a node of degrkehgs a neighbor of
works. However, in the network of the Internet at the routerdegreek’. Then to see how the nodes of different degrees are
level or power grid network of the western U.8(k) was correlated we measure the average degr(é«ﬁn(k»_
found to be more or less a constant. In the IRN also, we find™ ~k’k’F(k’|k) of the subset of nodes which are all neigh-
thatC(k) (Fig. 3) remains at a constant value close to unity
for smallk and shows a logarithmic decay at larger values of
k. In all these real-world networks whefgk) remains more
or less a constant, the nodes are linked by physical connec-
tions which may be responsible for this common feature.
However, in this context it should also be mentioned that the 08 7
scale-free BaralsiAlbert network[7] also predictsC(k)

1.0 e

09 - 8

k% andC(N)«N~%7 In the IRN, althoughC(N) shows a ®
. . 0.7 + A
decrease with\, it is apparently much slower than a power Ry
law.
The degree distribution of the network, that is, the distri- 06 | |

bution of the number of statiorls which are connected by
direct trains to an arbitrary station is denoted Bgk). We
plot the cumulative degree distributiéi(k) = [, P(k)dk us-
ing a semilog scale in Fig. 4 for the whole IRN. We see that 0.5 e —
F (k) approximately fits to an exponentially decaying distri- 0 20 40 k 60 80 100
bution F (k) ~exp(—ak) with «=0.0085.

We also calculated the distributidd(n,) of the number FIG. 4. The cumulative degree distributidf(k) of the IRN
of trainsn, which stop at an arbitrary station. This is plotted with the degree is plotted on the semilogarithmic scale.

036106-3



SENet al. PHYSICAL REVIEW E 67, 036106 (2003

101 T T T T T T 10’ T T

A
A

Z 10 ;
'Mﬂ
vV

10"‘ 1 L 1 1 L L L 101 0 N . ......ll ) N ......Iz ...:l

0 1 2 3 4 5 6 7 8 10 10 10 10

n/<n> k
FIG. 5. Scaled probability distributioB,(n,) for an arbitrary FIG. 7. The variation of the average degréen(k)) of the

station through whichn, trains pass wherén,)~12.06. Binned neighbors of a nodg of degrdewith k. After some initial fluctua-
data are presented through the circles connected by lines which fioNS. (Knn(K)) remains almost the same over a decade ardund
best to an exponential formD,(n,)(n,)=aexp(-bx) with x =30-300 indicating the absence of correlations among the nodes of

=n,/(ny), a~0.47, ancb~0.75. different degrees.

bors to a particular node of degrieln general this average A more sensitive measure for the dggree correlations was
has a variation like(k,(k))~k ¥ where a nonzera re- proposgd in Rei['18]. Newman has defined a degree-degree
flects a nontrivial correlation among the nodes of the netforrelation functionr which measures whether a vertex of
work. We calculatedk,,(k)) for IRN and plotted it in Fig. 7 1igh degree at one end of a link prefers a vertexhigh

on a double logarithmic scale. Aimost over a decade thé&l€gree("assortative mixing,”r=>0) orlow degree(*disas-
(Knn(K)) remains same on the average and is independent §Ortative mixing,”r<0) at the other end. It has been ob-

k, indicating the absence of correlations among the nodes &erved that social networks are assortative and technological

different degrees. and biological networks are disassortative. We have mea-
sured for IRN the normalized correlation function following
1.0 ————— Ref. [18] and found its values to be=—0.033. This indi-

cates that the IRN is afisassortativenature, i.e., rich verti-
ces at one end of a link show some preference towards poor
08 _ vertices at the other end, and vice versa.

To summarize, we investigated the structural properties of
the Indian railway network to see if some of the general

A_06 | _ scaling behavior obtained for many complex networks in re-
\=/ cent times may also be present in IRN. While nodes of the
> I ] network are evidently the stations, the links are defined as
5,,,0_4 L ] the pairs of stations communicated by single trains. With
Q such a definition of link, the mean distance of the network is

a measure of how good is the connectivity of the network.
02 - ] Indeed, we observed that the mean distance of IRN varies
logarithmically with the number of nodes with a high value
of the clustering coefficient. This implies that IRN behaves

0.0 . . . like a small-world network, which we believe should be typi-
0 1 2 3 4 cal of the railway network of any other country, which we
n/<n> are unable to study at present for unavailability of data.
FIG. 6. Scaled probability distributioB¢(ng) for an arbitrary We would like to thank I. Bose for constantly encouraging

train passing throughy stations wheréng)~12.37. Binned data US to work on this problem and also to S. Goswami for
are presented through the black dots connected by lines which fiuggesting Ref[13]. P.S. acknowledges financial support

best to the form:Dg(ng)(ng)=ax*(x?+b)® with x=ng/(ng), a  from DST grant SP/S2-M11/99. G.M. acknowledges the hos-
~0.6, andb~0.096. pitality of the S. N. Bose National Center.
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