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Critical viscosity exponent for fluids: Effect of the higher loops

Palash Das and Jayanta K. Bhattacharjee
Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
(Received 12 September 2002; published 10 March 2003

We arrange the loopwise perturbation theory for the critical viscosity expongntvhich happens to be
very small, as a power seriesr) itself, and argue that the effect of loops beyond two is negligible. We claim
that the critical viscosity exponent should be very closely approximateok,py(8/15n2)(1+8/3772)
=0.0685.
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Critical exponents, amplitude ratios, and scaling functionghe factork? indicates thaip(x) is conservedl is the On-
were issues of considerable importance three decades agger coefficien{9-12 and the diffusion constant i®
Sophisticated calculations and experiments were carried ouk T/, wherey is the susceptibility. Near the critical point
which clearly established the correctness of the various thane susceptibility isy=(k2+ «2)~* with k=¢ 1, the in-
oretical models(Landau-Ginzt_)urg equations for statics, andyerse correlation length that diverges nda T, as Eo|T
the various models of dynami¢s—4] introduced by Hohen-  _ |- The termN is a stochastic forcing that comes from
berg and co-workeysBasically, the exponents could be clas- the short wavelength modes. Fluctuation dissipation holds
sified into two types{i) large exponents, i.e., exponents of ang the correlation oN is related in the usual way to the
O(1) and(ii) small exponents, i.e., exponents®@f0.1) or jssjpation.
even smaller. It is the small exponents where the most crucial |n g fluid, the densityconcentrationsfluctuations will be
confrontation between theory and experiment can occur. Thaéﬁected by the velocity fluctuations and the effect of the

is why even after three decades, the small exponents remajg|ocity is to advect the concentration field, so that
an interesting issue. In static critical phenomgslghe small

exponents are associated with the critical correlation function g ¢(E)
at the transition point 4, the anomalous dimension expo-
neny and specific heatd, the specific-heat exponent, the
specific heat at constant volume for the liquid-gas transition
and the specific heat at constant pressure for the superfluid

transition of Hé), while in the critical dynamics the small e fact that the velocity fluctuations affect the concentration

exponent is associated with the shear viscosity. Accurate denoans that we need to know the velocity fluctuations. The

termination[6] of « for the superfluid transition and com-  gqation of motion(for small fluctuation is Navier-Stokes
parison with very detailed calculatiofig] confirm the theo- equation

retical expectation. For the shear viscosity exporggntthe

recent measurementd] in the space shuttle have yielded an v (K)
accurate value, namely, =0.0690+ 0.0006. The theoretical C = — kP (K)+ NY(K). 3)
self-consistent two-loop calculation =3 of Hao yields
z,=0.066+-0.002, amazingly close to the experimental .
vglue. This raises the immediate question: What happened Oted thatv, andN, arﬁ s?lemlm?al. HoweverquSZ) a{(‘f
the higher loops? The one-loop answer is 20% away from th ) ) 0 nf)t con»serve»t € local free energ_y .enﬁlg{(
experimental answer, the two-loop calculation produces the k%) ¢(k) ¢(—k) +v(k)v(—k)] when the dissipation terms
20% enhancement almost entirely, and so what happens &€ omitted, and consequently E() needs to be argu-
the infinite number of loops that have been left out? This ignented as

the question that we address in the paper, and provide insight

ka2 v(p)$(K—p)
p

= —TK2(K2+ k2) (K) + N(K). )

at

into why the higher loops happen to be unimportant. oK) 5 L e e s
In a liquid-gas system near the critical point or a binary at +'Z PPsTap(K)b(p)b(k=p)
liquid mixture near the critical mixing point, the order pa- P
rameter¢ is the density(concentratiop difference and re- = — 7k?v ,(K) + N2 (K), (4)
laxes when disturbed from equilibrium according to the
Langevin equation whereT, (k)= 5aﬁ—kakﬁlk2, the projection operator. The
effect of the nonlinear terms in Eqgl) and (5) is to renor-
d(K) ) ; malize the Onsager coefficieht and the shear viscosity.
e —Tk2(k?+ k?) p(k) + N(k), (1)  Dropping the nonlinear terms, we get the zeroth-order solu-
tion

where ¢(IZ) is the Fourier transformation of the

OV +)— —TKE(K2+ k) (=t )N+ d 47
D-dimensional field¢ (x4, ... Xp). In the relaxation rate, ¢ (kD) Je N(t")dt (5)
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vg")(lz,t):f e N (t)dt. 6) (o) (b) (c)
] o ) FIG. 1. Diagrammatic loop expansion for one- and two-loop
The first-order solution is easily seen to be diagrams for the density relaxation rate. The solid lines stand for

density fluctuation and the wavy lines for velocity fluctuation.

> _ CT2/1,2 K2 YA 0)
¢(1)(k’t)__f e TKA(K?+x2)(t t)lka2 vg
b 7(K) = 10k ~*7k?, (12)

X(p,t") ¢ (k—p,t")dt’ (7)  consistent with Eqs(9) and (10), wherex,, is the exponent

q that is yet unknown. Working at=0 in Eq. (9), we find
an
2

ar

o DK 1) = _if . nkz(tft’)pzpﬁd)(o) 770F0=§+O(x,]). (13

We anticipate at this stage thayf is very small and are going

to use it as a small parameter in setting up our calculation.
The fields being stochastic in nature, the effect of the non©OUr Main observation is that a loopwise expansion can be
linear terms in Eqs(2) and (4) are to be understood as av- C@St @ an expansion in powersxffor the quantityzol o.
eraged over the noise terms, and it is easy to see that tH¥€ can getyet another expansion iy’ by using Eq(10)
nonlinear terms in Eq2) yield a term of the form-— k2(k? at k=0. The_mtegral has a Iong—quelength d_lvergence at
+ %) [TRK —1) pO(—K t')dt’ and those in Eq.(4) X,=0 and this leads to the evaluation of the integral as a

give — k%[ 7P (k,t—t")voO(—k,t')dt’, when we split the pole inx, . This yields

guadratically nonlinear term as one field at zeroth order and 1

the other at first order. For Eq2), this implies writing the nol'0=75,+O(D). (14
nonlinear  term as ik (250 (p)pV(k—p)) 7
+(2 ;00 (p) ¢ (k—p))] and similarly for Eq.(4). Thisis ~ Combining Eqs(13) and(14),
exactly equivalent to a one-loop result. The two-loop results

come from all the pairings of three, the three-loop results ‘= 8
from the pairings of five and so on. The Fourier transforms 7 1572
I'R(k,w) and 7R(k,») of [R(k,t—t’) and nR(k,t—t’) are

the renormalized Onsager coefficient and the shear viscosit{p the lowest order.

respectively. We now observe that the perturbation theory Foand »

The renormalized transport coefficient$® (k,w) and can be expressed through diagrams as shown in Figs. 1 and
7®(k, ) diverge at the critical point in the zero-frequency 2, with a wavy line denoting the velocity fielggropagator or
zero-wavelength limit and dominate the molecular contribu-correlator as the case may)kend a solid line denoting the
tions. From now on we will refer to these &¥k,») and density field.

n(k,w). A little algebra shows that at one loop, we get the For higher loops, self-energy inserti¢ga3-15 are not
standard resultgn(k)k?>T (k)k?(k?+ «?)] shown separately. They are handled by a finite frequency
evaluation of a lower loop and yield insignificant corrections.
1 d3p Sinfo The important graphs are the vertex correction varigti€s
I'(k, k)= C_f IR NV (9 that are shown in Figs. 1 and 2. If we compare a one-loop
3 (p*+ k%) n(k=p)(k—=p) and a two-loop graph, we note that compared to the one-loop

X(p,t") ¢ O(k—p,t")dt’. ®)

(15

graph, the two-loop graph has two additional time zones: one

and dominated by viscosity relaxation, the other lacking any vis-
d3p cosity contribution. This means an additional factor of
(K, k)= —f - PR (mol') ~* everytime a loop increases. Now, in addition, we
4Cs) (p?+k?)(p'2+ k) note that for every loop the viscosity graphs diverge logarith-
y 0p2(p?—p'2)%sirP6 o mically if x,,=0 and have a pole for smal,. We simply
[P?(P?+ kAT (P)+p 2(p"?+ kAT (P)] _
n= r O s I
Whereﬁ7 =k— f) (a) (b) )
We now introduce the scaling behavigong-wavelength
divergence at the critical poinat k=0 as FIG. 2. Diagrammatic loop expansion for one- and two-loop
diagrams for the viscosity. The solid lines stand for density fluctua-
I'(k)=Tok 1%, (1)  tion and the wavy lines for velocity fluctuation.
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need to evaluate this pole in a manner very similar to the
dimensional regularization scheme in field theory. From Fig.

1, there emerges

Jr+ !
7ol (7700

770F0:J1+ )ZJ3+"', (16)

while from Fig. 2, we get
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|1 I I3
Xy ”OFOX (17070)%X,,

ﬁoro— (17)

wherel,, andJ, are integrals corresponding to diagrams with
n loops. Figures (&) and 2b) show the one-loop integrals
corresponding to Eq$9) and(10). The integrals correspond-
ing to the two-loop diagramig=igs. 1(b) and 2b)] are

_fd3_p dq [(k=p—a)*~ (k—p)2J[(K—p—
2] cy) ¢,

2l fd3p d°9paTap(K) AP, T (k== a)q,[P*— (k—p)*[4°— (k= 0)°] 18
) p292(k—p—q)[p3+(k—p)®I[q®+ (k—q)°] ’
1)2—(k—g)2] kTaﬁ<p><k q),;k,L (@) (k—p),
= > 3, (19
q)? q’[(k—p)3+(k—q)%+

Using Eq.(14) to substitute forpgl'y in Egs.(16) and (17),
we end up with

7ol o=J1+ 15%,Jp+ (15x,)?J3+ - - -. (20

The important fact is that 3§,J,<1 and this trend continues

through higher loops. This fixeggl'y.
Turning now to the diagrams of Fig. 2, they lead tising
Eq. (14) repeatedly

I
nor0=x—7]+15|2+x,,(15)2|3+ -

| I,
= |1+15, X197 +}
7 1
8 8 15l 8 15
L L L k. AL
15, R B 22 1y

(21)
Ieadmg to the ordering ir,,. The calculation of,/1, yields
£ and hence to two-loop order

8
X,=——
7 1572

8
1+ —]=0.0685. 22
37#) (22)

The reason whyl, is smaller thanl; has to do with the
projection factors that yield zeros in the integrand. The large

(k—p)2(k—q)?(k—p—

+(k—p—q)°]

needs to appreciate is thigi<l, butlz<I,. What we will

try to elucidate is the reason behind this change. Unfortu-

nately this reason is not a universal feature. It is specific to

this problem. The combination of projection operators asso-

ciated with the transverse velocity field makes the three-loop
integrals small, and this combination is maintained in the

subsequent loops. It should be pointed out that this does not
imply that this will make an asymptotic series convergent. As

in all loop expansions in critical phenomena, this expansion

in x,, too is an asymptotic expansion. What the smallness of
the loop integrals does is that it postpones the onset of the
divergent behavior to a higher order. This implies that the

effect of the higher loops will be muted and the agreement

between a two-loop result and experiment will be better than

expected.

The generic form of the three-loop graph of Figc)2
involves a few different time orderings, all of which are
shown in Fig. 3. A typical contributioh{® coming from the
last two graphs of Fig. 3 is

- f d°p d°q d*r [(k—p)*~p°I[(K—1)*~r?]
i Cs Ca s (k-p)i(k—0)
paTaﬂ(k)er;LTMV(p_q)pV
(k=02 p*+|p—KI*1[ g3+ |k—q|*]
quyx(q r)ay
[r3+|k—r|3](k p—q)2(k—g—r)?

(23

number of zeros and their distributions in the three loop in-

tegral lead td 3/1, being significantly smaller thags. The

The evaluation ofi; has to be in the limit ok—0. This

additional factor ofx, now makes the three-loop contribu- allows us to drogk from all the terms after a factor &f has

tion negligible. The important point is that forraloop inte-

been extracted from the integral. We now carry out the fol-

gral I,, the projection factor produces sufficient cancella-lowing steps in eD-dimensional space for generality

tion, so that 13721, is alwaysO(1), andthis ensures that

higher loops produce insignificant corrections whep<1.

(a) Expand the number in powers kf and keep the first
term (this is proportional tck?), and setk=0 everywhere

This is the crucial point of the paper. The thing that oneelse.
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I{N=— —4D([1)+2)f d®pd®qdPr
X[D<|5~F>2—|o2r2]
r(a—-r)*(p—q)*
X[p2q2—<5-a>2][q2r2—<a.f>2]_

D~AD.D

(24)

of the angle betweep andr because of the terfg—r|* and
||5— ﬁl“ in the denominator, the averaging over the directions

of r (or 5) would makel (31) identically zero. In practice, this
effect makes it unusually small comparedigoor | ;, which

do not have such a factor. If we look at the higher loops, each
additional loop brings in a factor of this type, and that is the
reason behind the successive diminishing of each of these
integrals.

A numerical evaluation inD=3 yields I§"=—(%)?,
which makes the point that we wanted to make. The correc-
tions from the three-loop graphs are down by an order,pf
and this effect persists to higher orders. This is the reason
why the two-loop calculation of the viscosity exponent gives
an answer surprisingly close to the experimental value.

p-g-r
It is the factor p-r)2—p?r/D that is qualitatively new, to
the best of our knowledge. The two-loop integraldid not
have such a factor. The characteristic feature of this factor is
that in the absence of the quite indirect additional appearance

again largest at the loop level when it first appears. There are
no genuine three-loop graphs involving only the quartic term
in the expansion shown in E¢L7). In the expansion of Eq.
(16), J; involves a combination of two four-point and two

FIG. 3. Three-loop diagrams of the vertex correction variety forthree-point vertices. It should be noted tdatalready plays
the viscosity, showing all possible time orderings. Propagators apa negligible role. Consequently, it is not necessary to thke
pear with an arrow and correlators with an open circle. into account. The net result is that from one to two loops,

_ there is a substantial changexy, but thereafter the contri-
(b) Perform an angular average over the direction&.of  bution of the higher loops are ordered Yy itself, and with
In a D-dimensional spacd$" after some long algebra the integrals themselves quite small, the small value,of

90 ¢
0 0¢
006
0 6 ¢
5

In closing we would like to mention that we have used a
Gaussian free energy in this calculation. There is a quartic
part in the free energy which is responsible for the anoma-
lous dimensiony. The correction coming from this is once

reduces to ensures that the higher-loop effects are small.
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