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Critical percolation in high dimensions
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We present Monte Carlo estimates for site and bond percolation thresholds in simple hypercubic lattices with
4-13 dimensions. Fal<6 they are preliminary, fod=6 they are between 20 and“fmes more precise
than the best previous estimates. This was achieved by three ingredi¢rgsnple and fast hashing that
allowed us to simulate clusters of millions of sites on computers with less than 500 Mbytes méimay;
histogram method that allowed us to obtain information for seyeralues from a single simulation; arfii )
a variance reduction technique that is especially efficient at high dimensions where it reduces error bars by a
factor of up to~30 and more. Based on these data we propose a scaling law for finite cluster size corrections.
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In spite of decades of intensive studigld, percolation  smaller than £, we label the neighbors of sifeasi + 1,
remains an active subject of research. While there has been i+ [9-1 |f we want to simulate bond percolation
enormous progress in understanding percolation in two digjusters with roughlyN sites, we find first the power of 2
mensions[2], mainly because of conformal invariance, nearest toN, 2~N, and use it to obtain for each sitdts
progress in high dimensions has been much slower. It hagay m.—j(mod2) (notice that this is done most efficiently
been known since long time thdt=6 is the upper critical  py pitwise AND). Assume now that sitewith key m is the
dimension[1], and expansions gf. in 1/(2d— 1) have been iy site wetted. Then an entry is written into theth ele-
given already more than 20 years ago. But up to now therghent of an array of pointetSof size . This element points
exists no detailed numerical study of logarithmic correctionsg thenth element of a structure(Q) whereQ is the above
in d=6, finite size corrections are not yet understooddor queue and. is a linked list. InQ, the coordinate is stored.
>6, and even numerical estimates f in d=6 are very  The element of. remains empty, if the keyn; had not been
poor. One reason for this is obviously that straightforwardapcountered before. Otherwise. if some other jsitéth the
simulations of large lattices id=6 require huge amounts of ¢5me keym;=m; had been wetted in an earlier step<n,
fast memory. This lack of stimulus by numerical verification {ne o|d eIerJnent o8 (which had pointed ta') is written in
certainly was part of the reason for the slow analyticalihe nth element ofL. In this way, we can deal with virtual
progress. _ _lattices of 2* sites, using ®+ 2N, storage places, where

_Itis the purpose of the present paper to improve on thigy  is an upper bound on the size of clusters to be simu-
situation by presenting precise numerical estimateof |ated. The algorithm is slightly different for site percolation
(and of finite cluster size correctionfor site and bond per- \yhere a tested site has to be excluded from further growth
colation on simple hypercubic lattices with=6 tod=13.  gyen if it is not wetted, in contrast to bond percolation. It

Our main results are summarized in Table I, where weysq has to be modified on machines with only 32-bit-long
also include preliminary results fat=4 andd=5. We also  jytegers where a pair of numbers repladesnd a pair of
give the best previous estimates fpf and expansions in - ¢oprime odd numberk; andL,, both slightly smaller than
1/(2d—1). We shall discuss them later in more detail, buty324d replaces..
here we just point out that our estimates are vastly better than This is not as storage efficient as the recent algorithm of
all previous ones. They were possible, with rath_er mOd.EShef_ [4]. But it works with usual(pseudd randomnumber
effort (we used only fast PCs and Alpha work stations, _W'thgenerators(we used the fourtap generator with period
altogether ca. TOCPU hour$, due to several important in- 2989_1 of Ref.[5]), while the algorithm of Ref[4] needs a

gredients. _ _ , randomfunctiongenerator. The most easily available random

_ (1) We used as basic routine a standard breadth-first vegynction generator today is the Data Encryption Stanfiafd
sion of Leath’s algorithm which simulates single clust_ers. Weuhich is rather slow when implemented in software and of
do notuse the popular Hoshen-Kopelman method since thal,nroven quality for this applicatiofit was developed for
would require prohibitively large memory if we want to gnirely different purposes, and lacks any published theoret-
simulate large clusters. In Leath’s method, one writes thgg justification.

coordinates of each cluster sifeshich consist of a single (3) In order to estimate cluster statistics for several values
integer—see iten2) below] into a first-in—first-out queu®, s p from a single run at nominal valug,, we use a trick
where each new entry represents a newly wetted neighbor @milar to the histogram methods used by Dickman IRE]
the oldest entry in the queue. o _ for the contact processee also Ref12]). If a cluster with

(2) We used a simple but very efficient form of hashing 1, \yetted sites anth nonwetted boundary sites was generated

[3] for storing the information whether a site has already,ith nominal valuep,, it contributes to the ensemble with
been wetted or not. On Compaq Alpha work stations W|thpo replaced byp with weight

64-bit-long integers, we labeled lattice sites by a single long
integer. Using as lattice size, an odd number slightly W= (p/po)"[(1—p)/(1—po)]°. 1)
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TABLE |. Estimates ofp. for bond and site percolation id=4 to d=13. Numbers in round brackets are single standard deviations;
square brackets refer to the citations at the end of the paperd¥6rthe best previous estimates backed by theory were given by the
(presumably asymptotiexpansiong7) and(8), while Eq.(9) was a heuristic guess. The estimatesdfer4 andd=5 are preliminary, since
we do not yet understand the important corrections to scaling in these(eflssor bars in this paper include plausible worst case estimates
of systematic errojs

Bond Site
Previous Previous
d Present Best estimate EQq) Present Best estimate E®@) Eqg. (9)
4 0.160131413) 0.16013@3) [4] 0.15666092 0.19688614) 0.1968893) [4] 0.19304456 0.19880605
5 0.1181721) 0.1181744) [4] 0.11664888 0.14079685) 0.140811) [4] 0.13793629 0.14004471
6 0.094201%%) 0.0942Q1) [8] 0.09365356 0.109012) 0.10795) [9] 0.10754047 0.10848530
7 0.0786753) 0.07868%3) [8] 0.07847711 0.0889519) 0.088932) [10] 0.08823220 0.08871655
8 0.0677083) 0.0677@5) [8] 0.06763062 0.0752108) 0.07485431 0.07512757
9 0.0594960(5) 0.0595@5) [8] 0.05946233 0.0652093) 0.06502556 0.06519119
10 0.0530925@1) 0.05307663 0.0575980) 0.05749265 0.05759880
11 0.04794964) 0.04794152 0.0515897) 0.05153203 0.05160316
12 0.0437238@.) 0.04371939 0.04673098) 0.04669616 0.04674559
13 0.0401876@) 0.04018504 0.04271508 0.04269312 0.04272853

Instead of collecting histograms for cluster numbers with

fixed n and b (which would have led to excessively large > M(OE[M(t+1)/M(1)|C] N

| rEeeTTE C p(M ™ (1))
arrays, we calculated on the fly three distributions: One for r(t)= = . (4
the nominalp, [which was chosen close . as estimated S M) (M(1))
from short test runs and from Eg&) and (8)] and two for C

neighboring valuep.. = py* 8p, using Eq.(1) for the latter.
Observables g values in betweefincluding pc) were ob-  oyr estimate for the true ensemble averagdidt) is then
tained by geometrici.e., linear in logarithm interpolation.  finaly
Having three values op instead of just two allowed us to
check that the error due to the interpolation was negligible. t—1
(4) Our main observable will be the numbler(t) of wet- M= rt). (5)
ted sites with “chemical distancet from the seed of the =0
cluster(i.e., the number of sites infected at tirhdf cluster

growth is interpreted as spreading of an epidemir d = sjnce we measured also the direct estin{atigt)) and the
>6 we expect its averaggM(t)) to become a constant at (cg) variances of both estimates, we can also compute the
the critical point, since the process is basically a branchingariance of any linear combination of both. For4 and
process with small corrections. But instead of usfiMy(t))  g=5, where both variances are comparable and the covari-
itself, we obtain a less noisy signal by the following trick ance is negative, a substantial achievement is obtained by
which would give theexactensemble average M (t) if the  taking as the final estimate the linear combination with the
cluster growth indeed were a branching proddsy. smallest variance.

Let us assume we have (atill growing) clusterC with An expression similar to Eq5) can be obtained also for
M(t) sites wetted at stepand denote by " (t) the number  the rms radius, if we replace the ratios in E€8.and(4) by
of free neighbors, i.e., the number of sites tbah bewetted  differences and the product in E@) by a sum. This would

at stept+ 1. The actual number wetted will fluctuate, but the a|so be exact and nonfluctuating if the cluster growth were a
expected average number, conditioned®and thus also on  pranching process with translation invariance.

M(t), is exactly given by The variance reduction due to E@) is largest for small
t. Yet, for bond percolation id=11, it gave even for the
E[M(t+1)|C]=pM*(t). 2) largestt(=200) a factor~1/1000 over using justM(t)).

For d=6 andt=2000, the reduction was still by a factor
~140. Indeed, there were substantial improvements even for
Thus the expected geometric increase of the number of wett=4 and 5, while the improvement iti=3 was marginal.

ted sites, still conditioned o@, is For site percolation the improvements were similar but
somewhat less dramatic.
E[M(t+1)/M(t)|C]=pM*()/M(t) 3 We should note that we calculated alBt), the prob-

ability that a cluster survives at ledstteps(i.e., has “chemi-
cal radius” =t), the cluster size distributio”R(n), and the
and its weighted sample average over all clusters is spatial extent of clusters with sites. All of them gave vastly
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FIG. 3. Plot of M(t) vs t~2'for bond percolation ird=11.

. .FIG' 1. Plot ofM(\t) vs Int for bonq percolation ird=6. Sta . Statistical errors are again smaller than half the distances between
tistical errors are smaller than the width of the curves. The main__. . . : -

: R . neighboring curves. The exponent 2.18 is chosen since it gives the
uncertainty in pinning dowrp, comes from the nonobvious and

somewhat subjective extrapolationtte>«. straightest fine.
d=6 has not yet been calculated, though the results of Ref.

[14] and the fact thav, (the exponent controlling the corre-
lation time is 1, suggesM (t)~(Int)?” to leading order.

more noisy signalfsince we could not use a similar variance
reduction trick as foiM(t)] and were not used in estimating

the critical point. . o . - .
. Therefore, and since it is notoriously difficult to verify loga-
Results forﬁ(\t) are shown in Figs. 1-3 fal=6,7, and  (inmic terms (see, e.q., Ref15-17), we have not at-
11. In all these figures, we show results for bond percolatlontempted any detailed analysis.

Results for site percolation are similar albeit somewhat more 5, Figs. 2 and 3, we also see that corrections to scaling

noisy. In the first two cases we checked explicitly that n0yacrease strongly with increasing dimension ¥ 6. In

cluster was larger than the virtual lattice sizéwhich was . . . B .
>500 in both casgsso there are strictly no finite lattice size F|g..2, we see a st.ra|ght line fqr= pclwhen pIott-lngﬁ(\t) .
against 1{t, showing that the leading correction term is

effects. Ford=9 this was no longer possible for the cluster t—o57 73" 7 Similarly, a straight line is obtained fat
sizes used herdypically up to 1610’ siteg, but we can =11 when using %! (Fig. 3). All these(and similar results
easily convince ourselves that also there finite size effects arfE g 9. 9. All ;

or other values ofi>6 and for site percolation, not shown

negligible. :
In each of the three figures, the critical pomy is char- herg strongly suggest anomalous scaling,

acterized bydM(t)/dt—0 for t—c. Ford>6 we also have
M (f)— const forp=p., while we see a logarithmic diver-
gence ind=6 as predicted by the renormalization grqag]
(see Fig. L Unfortunately, the detailed behavior bf(t) in

M(t)=M.. — constt(d, (6)

similar to the scaling for self-avoiding walks @>d found
in Ref. [17]. But while the exponents were simplyd (
—d¢)/2 in Ref.[17], they seem to depend less trivially dn
1.23 . : . . .

in the present case, although we cannot exclude the possibil-

ol A PO 0reares —— | ity thatw(d)=(d—d)/2 also here, and the observed devia-
) N p =0.0786747 - tions are due to higher-order corrections. The latter is indeed
1.21 + suggested by the results of RgL8].
The constant$/., defined in Eq(6) are plotted in Fig. 4
121 againstd— 6 on doubly logarithmic scale. They seem to fall
‘E"J 119 | on parallel straight lines, suggesting a universal Iy,
—1~(d—6)"2 with a=0.73+0.03. But a closer look re-
118 ¢ veals that deviations from this are significdatthough they
1147 + are small, suggesting that it holds neither fdr—c nor for
d—6 exactly.
1.16 ¢ d =7, bond percolation Let us finally discuss thp, values given in Table I. They
1.15 . . . . . . . should be compared to the predictidirg
005 01 015 02 025 03 035 04
1172 Pe.bond= S+ 5812+ 158%/2+ 575+ - - - (7)
FIG. 2. Plot of M(t) vs t~2 for bond percolation id=7.  and[19]
Statistical errors are always smaller than half the distances between
neighboring curves. Pe site— S+ 35%/2+ 158%/4+ 83s*/4+ - - -, (8)
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FIG. 4. Log-log plot ofM,,—1 againsd—d, . Statistical errors FIG. 5. Log-log plot of the discrepancies between the simulation
are smaller than the data symbols. results and Eqg7) and(8). Error bars are smaller than the sizes of
the symbols.

with s=1/(2d—1). The dots in these equations stand for
higher powers of. It was suggested in Ref19] that they dicted Eq.(7) or (8). More recently, such heuristics have
can be approximated, for site percolation at least, by addingeen discussed again in Rg21] and in the papers quoted

2/3 of the last term, there. We have not attempted any detailed comparison in
5 . . view of their complete lack of theoretical basis.
Pe,site™ S+ 352+ 156°/4+ 4157/12. ) In summary, we have presented vastly improved estimates

. . , for percolation thresholds on high-dimensional hypercubic
The full series are presumably only asympto.tlc. Itis taus |5ices. They should be compared to improved series expan-
priori not clear whether any of these equations should bgjqns andjor rigorous bounds. At present such results are not
good approximations to the present data. From Table I, W, aijaple, partly because it had seemed that they could not be

see that Eq(9) is excellent in the range studied here, but it compared to any numerical estimates. Apart from this, the
has wrong asymptotic behavior and should be worse than Egathods used in the present paper should also be of use in

(8) for d=15. As seen from Fig. 5, the agreement with Eqs-(_)ther similar problems. These include simulations of perco-
(7) and (8) is indeed better than could have been eXp_ejéftedlation backbones, conductivity exponents, percolation on
For bond percolation the difference decreases rough/'as more exotic lattices, directed percolation in high dimensions,

(instead ofsse), while for site percolation it decreasessls 5 self-avoiding walks. In all these cases both the hashing
instead ofs”. Obviously the next terms in Eqé7) and (8)  and the variance reduction should be of help in simulating

would be needed for a more detailed comparison. larger systems with higher precision.
Finally, we should remind of several heuristic formulas
for p. values on various lattices. All earlfnsdze of this | thank Walter Nadler and Hsiao-Ping Hsu for discussions

type were already refuted in R4R0] because they contra- and for carefully reading the manuscript.
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