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Patterns in randomly evolving networks: Idiotypic networks
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We present a model for the evolution of networks of occupied sites on undirected regular graphs. At every
iteration step in a parallel update,randomly chosen empty sites are occupied and occupied sites having
occupied neighbor degree outside of a given interyat() are set empty. Depending on the influand the
values of both lower threshold and upper threshold of the occupied neighbor degree, different kinds of behavior
can be observed. In certain regimes stable long-living patterns appear. We distinguish two types of patterns:
static patterns arising on graphs with low connectivity and dynamic patterns found on high connectivity graphs.
Increasind patterns become unstable and transitions between almost stable patterns, interrupted by disordered
phases, occur. For still largérthe lifetime of occupied sites becomes very small and network structures are
dominated by randomness. We develop methods to analyze the nature and dynamics of these network patterns,
give a statistical description of defects and fluctuations around them, and elucidate the transitions between
different patterns. Results and methods presented can be applied to a variety of problems in different fields and
a broad class of graphs. Aiming chiefly at the modeling of functional networks of interacting antibodiBs and
cells of the immune systeitidiotypic networksg, we focus on a class of graphs constructed by bit chains. The
biological relevance of the patterns and possible operational modes of idiotypic networks are discussed.
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I. INTRODUCTION network sizg5,22,23. A second principle governing the dy-
namics of INW's is a set of local rules: idiotypes die out if
Many complex coupled systems can be modeled as nethey are understimulated or overstimulated, i.e., have too few
works: Vertices being associated with the systems’ elementsr too many neighbors. As Conway’s famous “game of life”
and edges representing interactions between them. Metaboli24] suggests, systems governed by such local rules can
networks[1,2], food webs[3], social networkg4], and net- evolve towards highly complex self-organized std2s].
works in the immune systeitior some approaches see Ref.  Starting from a simple set of rules intending to mimic the
[5]) are some examples of such systems. Frequently, alynamics within idiotypic networks in the immune system,
though the detailed interactions of the elements may beve present a cellular automaton based model for the evolu-
rather complicated, the knowledge of the underlying networkion of networks of occupied sites on graphs. Depending on
structure facilitates the understanding of essential features dfie major parameter, the bone marrow influx, the model ex-
the system as a whol&]. hibits parameter regimes in which the system self-organizes
In the absence of detailed knowledge of a network’s to-into static and dynamic patterns, shows transitions between
pology, previous works tended to assume either a completelsuch ordered phases, and has a parameter range in which it is
random link structur¢7—9] or clusters given by percolation governed by randomness. We investigate these regimes and
on lattices[10]. The complexity of many systems, however, elucidate connections between the overall dynamics and the
emerges as a consequence of some underlying principle favolution of the network structure.
their evolution, e.g., preferential attachmémi], optimiza- The organization of this paper is as follows. In the follow-
tion of transportation and communication pathwpl2—14, ing section we introduce the model, give a brief introduction
extinction of the least populated specid®,16], or of the to idiotypic networks, and outline further possible applica-
mere fact that the network has randomly evolved in timetions of our model. Then, in Sec. Ill, we give an overview of
[17]. This altogether may lead to a highly organized networkthe typical evolution of the initial dynamics of the population
topology. and its connection with changes in the network structure.
Recently, much attention has been devoted to a variety dilext, in Sec. IV the stationary state and its network organi-
networks that exhibit topological properties different from zation will be characterized. In Sec. V the dependence of the
random graphsfor a review see Ref§18-20). For obtain-  system’s qualitative behavior on the model’'s main parameter,
ing a detailed understanding of their architecture it haghe influxI, will be explored. In the same section, analytical
proved useful to trace the dynamics of the network’s structesults for smalll derived from a microscopic view of the
tural growth. As recently observed, major transitions in anetwork characterizing fluctuations around the steady state
systems dynamics can even be completely governed by previll be presented and an explanation for the systems high
ceding transformations in its network structiié, 16 behavior will be given. In the final section changes in the
In the case of idiotypic network§NW's) in the immune  variety of stationary network patterns for more closely linked
systen21], dynamics and network evolution are driven by abase graphs will be discussed.
continuous influx of new idiotypes from the bone marrow. The aim of this paper is not finetuning or in detail match-
Data from experimental investigations suggest a daily bonéng of one of the applications, but rather generally exploring
marrow production only one order smaller than the actuafeatures of the dynamics caused by the window algorithm
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and understanding its connection with network structures A. Idiotypic networks
thus evolving.
Immune response against a broad class of antigess
Il. THE MODEL AND SOME APPLICATIONS teriz_i, viruses. . .) is triggered by gntibodies ar_16 cells
(which carry only one type of antibody on their surface
Let G denote a lattice or, more generally, an undirectedschematically this can be sketched as follows. Perchance the
connectedc-regular graphi.e., a graph, each of whose ver- antigen encounters a shape- and charge-complementary anti-
tices is linked tox neighb0r$. Let v € G denote the vertices body Ant|body and antigen thus form a Comp|ex that marks
or sites and the links between siteisj within G be de-  the antigen as hostile so that it will be removed by another
scribed by an adjacency matraj}1< j<|g| - For simplic-  fynctional group of cellge.g., killer cell3. If B cells, which
ity, m;; €{0,1} andm;;=0. In the followingG will also be  c4rry exactly this type of antibody on their surface come into
called base graph. A vertaxe G can either be occupied or ¢onact with such an antigen they become stimulated, multi-
empty, i.e., have occupancy(v)=1 or s(v)=0, respec- y intg a clone and finally become “production units” for
tively. Empty sites will be called holes. Avlgteanh label  ihig specific type of antibody.
i has an occupied neighbor degree=Z=,2,my;s(j)<x, It is the basic idea of idiotypic networkg1] that antibod-
counting the numbgr of its occupied r)e|ghbors. W(_a PropOSgas can not only recognize an antigen, but also complemen-
the follqwmg algorithm for an evolution of occupied and tary anti-antibodieqthe specificities of both are then also
emptyTiltes c_)rGI. ied verti . lechol called idiotypes This leads to stimulation of the respective
oy ot 1| QOCPI VG5, . SUCHIES 4 clls and hus causes a ki of a permanent ol blance
occupied vertices will be called influx. Immune activity mdepend_er_lt Of. the hostile antigen.
(i) Check the neighborhood of every site=G. If v is | _The_se mutually recognizing idiotypes build the so-called
occupied and has occupied neighbor degreegreater than 'diotyPic network. lts vertices or nodes are represented by
idiotypes, its links by functional interactions between them.

t, or less thart| the vertexv will be set empty in the next ‘ X :
time step. That iss,(v)=1—s.1(v)=0 if dv<t, or dv INW’s are thought to play a role in, e.g., the preservation of

>t,. The update ofi) and(ii) will be parallel. idiotypic memory [21], the prevention of autoimmunity
(iii ) Iterate(i) and(ii). [26,27], the discriminization between self and nonself, and

The threshold value andt, are model parameterg,=0  cancer control.

corresponds to no lower threshold at all. Thus, the main char- The interaction of idiotypes within the network can be

acteristic of the algorithm is a window of allowed occupied described by Lotka-Volterra-like dynamics, i.e.,

neighbor degrees. Hence we call it window algorithm. The

graph of all occupied vertices after iteratibis finished will dx;
be denoted by';e G andn,=|I",| will be called its popula- ik A EJ: m;X; ||+ &, 1
tion.

Note that in the first instance unlimited growth of the
network is prevented by the upper threshold Once a . ) ) _ o )
stable structure has been established, there are no vertic¥§erei is an index labeling different idiotype populations,
violating the minimum occupied neighbor degree rule unles§n® concentration of idiotypg v; its inverse lifetime,f a
vertices are taken out because they got too many neighboﬁg—called proliferation function describing the stimulation
by the last influx. On the other hand, whilg leads to an and death oB cells and antibody production by stimulatBd
instantaneous removal of vertices due to the most recent irt€lls, andg; an influx rate of new idiotype species from the
flux, the lower threshold, can cause avalanches and is thusbone marrow. Since secreted antibodies and those on the
responsible for a memory of a perturbation which may lastsurface ofB cells are not explicitly distinguished, a descrip-
over several iterations. Such avalanches are thought to adjuson of INW dynamics as by Eql) belongs to the category
the network structure. of A models[5]. Bone marrow production is thought to be

These considerations make it also plain thattfert, and  uniformly distributed and random, i.e., there is a uniform
t,=t;+1 no long lasting populations can arise. In the firstprobability for every idiotype that a member of its population
case, only &, regular graphl’; could be formed. Then al- is produced per unit of time.
ready a small local reorganization would lead to an ava- Itis a common approach to describe an idiotype or vertex
lanche extinguishing the whole graph. In the second case, of the INW by a bitstring ¢4, ... vg), v;ie{0,1} of
every vertex ofl’; is critical in a sense that it is prone to lengthd [28]. Reasonable estimates for the number of pos-
being removed by a small perturbation caused by the influxsible idiotypes yield a bit-chain length of the ordé+ 35

Our main motivation to study such kind of dynamics for [5]. Idiotypes interact if they are complementary. This is
the evolution of networks comes from trying to model idio- modelled by introducing “matching rules” that define when
typic networks INWs. The problem, however, appears to béit strings are connected in the above sense of complemen-
far more general. Two other imaginable applications will alsotarity. For instance, idiotypes can be said to interact if they
be sketched briefly: evolving networks of interacting speciesare nearly exactly complementary or—in other words—the
and, for conceiving a vivid picture of the above algorithm, arespective bit-strings match allowing for one deviating posi-
toy system of organzing coins in a box. tion, a mismatch, only. Generally, allowing bit strings with
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mismatches to interact, one obtainska 3§ o(f) regular  Though probably hard to make ou® andmy; describe the
graphG{™ whose links are described by an adjacency matrixgraph of all conceivable species and their potential interac-
with elements: tions.

1 if dyi,j)=<m, C. Coins in a box

i(jm): 0 otherwise 2 Imagine a box and a heap of coins put inside initially.
' Then the box will be shaken, all overlapping coins be taken
out, and randomly generated new heaps of coins be placed

wheredy(i,]) is the Hamming distance betweeandj, i.e..  on randomly selected empty areas of the box. This procedure
the number of digits, in which the bit chains differ. The better\yi pe iterated several times. Clearly, in the above algo-

the matching of the corresponding idiotypes, the stronger thﬁthm, the box corresponds to the base gr&ttoins corre-

regg:tlon(z)afflnltles.(mgn this _ respect, n 't.he sequencespond to occupied vertices @B, and empty areas to holes.
Gg 'CGy C---CGy gradually smaller affinities are taken 5, 6janping coins have too many neighbors, thus too high

Into account. an occupied neighbor degree and will consequently be taken

th Slc_)r?(etltmest Itis afg?mgor:vetnhlenft o emp}I?}/ anotg_(:r ¥|§W 2but. Since also isolated coins are allowed to remain, the situ-
€ fink structure ofog = In the frameé of these DILSIING 414 s that oft;=0. t, represents the maximum amount of

mod_els every link is assoc!ated with a b't. operatllomvhlch,_ coins that can be adjacent on a plane without overlap

applied to one of the vertices that the link connects, yields '

the vertex at its opposite end. For links between vertices with

ideally complementary bit chaing we havej=Lg(i) (i is lIl. ANALYZING THE DYNAMICS

the inverse ofj), for “one-mismatch links"j=L (i) (i is In this section we focus on analyzing the population dy-
obtained by inverting and changing the bit at positidq), namics and understanding corresponding changes in the net-
for “two-mismatch links” j=Ly (i), etc. Thus, in this work structure. Figure (8 shows a sample trajectory for the
sense, links are also labeled. initial 300 time steps of the population dynamics for,{,)

Using a discrete version of Eql), idiotypes are either =(1,7) andl =10 on a base grapﬁ(llz). As there seems to
present X;=1) or absentX;=0). An idiotypev can survive be a generic evolution with time it makes sense to look at
if it, on the one hand, receives at least a minimum amount ofveraged trajectories, i.€n,)=3,np;(n) wherep,(n) de-
stimulation from the network, but is not overstimulated onnotes the probability that aftéiterationsn occupied vertices
the other hand. Too high concentrations of antibody lead tavill be presenfsee Fig. 1b)].
each receptor of thB cell being bound to only one antibody.  Clearly, several phases of the dynamics can be distin-
Since crosslinking of several antibodies is required in ordeguished. First, it takes a certain time till accidentally at least
to stimulate aB cell, [5] this leads to suppression of this a connected pair of occupied vertices is formed which then
idiotype’s population. A more careful analysis yields that it isfunctions as a germ for further network growth.
reasonable to assume that the proliferation functienlog- To elucidate the structure of this germ fpr-1 we define
bell shaped. Then, from the steady state conditions of Hg. three subsets of a clust@: (i) its (generalized t-leaves
one obtains a rough idea of the maximum and the minimumtl(C), (ii) its (generalizegit-stems, (C), and(iii) its (gen-
occupied neighbor degredg,andt,. Normally, one match- erajized t-tree-reduced component(C). Leaves of the

ing antibody specificity is sufficient to cope with an antlgen.first generation are vertices @ with less thart, neighbors,

;Teégi%r?tg:;gfngoe%w':1' which defines the time scales ie., Iﬁll)(C):{veva <t,}. Then, leaves of the second

generatiorl ’)(C) are vertices o£\1(Y)(C) with less thart,

neighbors.(Here and in the sequel the symbol™denotes

) ] . ) the set theoretical differenge. Analogously, for n
A widely used approach to describe the interactions of= 3 | |§In):{v eC\|§|”*1)|(?‘C\,§ln—1)v<t|}, where

species(macroscopic organisms, cells, reacting molecules, ) ) _
...) is byLotka-Volterra-like dynamics of the type set forth “jcu(" v denotes the number of occupied neighbors af
in Eq. (1) [29]. The indexi now distinguishes different spe- c\1("Y  Thus, the treelike component @ is t,(C)
cies, x; denotes their concentrations,y;>0 the net effect :UC_L 10(C), the stems, =t,— 1V, and the tree-relduced
of death and birth ratesy; the adjacency matrix describing =1 ' by e . a _
their interaction structure, arfda function modeling resource component, =C\t,. Fort;=2 these notions coincide with
competition and the effect of predator-prey relations. Now, ghe usual definitions in graph theory.

species does not require a minimum amount of stimulation Consider the application of the window algorithm with
but is still going to be restrained by the effects of resourcdower threshold;,. If not sustained by random influx, tte
competition and prey. Thus,=0 andt,>0. ¢ in this con-  stem of a cluster is prone to successively fall victim to cas-
text models a kind of mutation rate, which describes thecades in which thé, leaves are taken out first. Vertices that
appearance of new species. Unlike the case of bone marroare critical, i.e., are still allowed, but will be removed if they
production,¢ is not uniform, but restricted to the neighbor- lose a neighbor represent thig# 1) leaves. On the contrary,
hood of already existing species and also much smallethe (t,+ 1)-tree-reduced component is the subset not endan-

B. Interacting species
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40 FIG. 2. Averaged trajectorgover 1000 independent runsf the
number of stable holes and of the population t+8, (t,,t,)
20 =(1,5), I=2. The dotted line indicates half the system size
|G§M|/2=128.
0 50 100 150 200 250 300 giant cluster. At the same timeé~ 150) as the maximum is
time reached, the giant cluster decays and small components start

to split off. Interestingly, whereas in the initial stages of the
dynamics the number of critical vertices is always of the

120 | ' ]

100 L& ®) same size as the influx, preceding the breakdown of the giant
- % component more and more critical vertices are assembled
S 80 X = i i iti i i
E : population [cf. Fig. 1(@)]. The maximum number of CrItIC8:| vertices is
3 60 X average cluster size —=-- assumed at the same timé~(240) as the giant cluster
2 40 % size of the greatest cluster ---»-- | breaks down.

The third phase now ensuing is marked by the complete
decay of the giant cluster and a coinciding drop of the popu-

08— e lation. As soon as this is achieved the smaller fragments start

0 200 400 600 800 1000

i becoming rearranged, again associated with an increase in
ime

the population.

FIG. 1. (a) A sample trajectory for the population, the giant Finally, the system saturates into a stationary state around
cluster, the 2-tree-reduced component of the giant cluétack-  Which fluctuations occur. The highgyris, the more the popu-
bone”), and its 2-leaves, see text. Parameters cel2, (t;,t,) lation is allowed to grow initially and the more expressed the
=(1,7), and =10. (b) Averaged trajectories of the population, the above described behavior becomes. Independent of the upper
size of the greatest clusters, and the average cluster size verstiweshold, always half of the vertices are occupied in the final
time. Averages have been taken over 1000 independent runs; patate. Recurring to clustering properties it turns out that av-

rameters arel=8, (t;,t,)=(1,5),1=6. erage as well as maximum cluster sizes tend to 2.0. Thus,
since there cannot be a cluster consisting of more than two
gered by avalanches caused by critical vertices. occupied vertices this proves that for long times com-
Apparently, the tree-reduced component of a cluster ipletely decays into 2-clusters.
invariant under stegii) of the window algorithm. So, fot, Holes play an important role in the systems’ approaching

>1 in the above context the germ, which fip=1 is just a  the steady state. A holewill be called stable if it has occu-
connected pair of occupied vertices, corresponds to a clust@ied neighbor degre@h>t,. Clearly, unless it loses its
with a nontrivialt,-tree-reduced component. In case of, e.g.property to be stable, a stable hole cannot become occupied.
t;=2 this is a 4-loop, fot;=3 a cube, etc. The highe¢yis,  Reverting a stable hole back into a “normal” hole demands
the more “organized” a germ is demanded and the longer ithe removal of?h—t, of its occupied neighbors, which itself
takes till it is formed perchance. needs a rearrangement in the 1-neighborhood of these verti-
Initially, as this germ is still small it grows only slowly, ces.
since some of the new vertices are short of neighbors and From these considerations one realizes that—depending
thus are immediately taken out again. Then as a seconoh the size of the neighborhood which has to be re-
phase of the dynamics a phase of almost linear growth of tharranged—there is a hierarchy of local structures with differ-
population is entered. During this period almost all freshlyent (local) stability. “Normal” holes have least stability
thrown in vertices survive, since the network is already al-against random influgthey simply have to become occupied
most denséthus providing enough neighbgrdut still most  to change their statethen come occupied verticéwhere a
of the vertices have only small occupied neighbor degree. Ashange of their occupancy needs a rearrangement of the
the number of vertices with higher occupied neighbor de-1-neighborhood and most stable are stable hol@ghich
grees increases, the growth of the population then abates anéed reorganizations of the 2-neighborhpod
reaches a maximum. It can also be seen from Fig) that Figure 2 shows an averaged trajectory for the evolution of
during this phase almost all occupied vertices belong to onéhe number of stable holes and the population size. Surpris-
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ingly, even during the phase of declining populatigvhich 1 m W T
means that fewer occupied vertices to make a hole stable are 8-2 i I q 7 ﬂ—w ( i

availablg the number of stable holes increases till finally in
the steady state all holes tend to be stable. This can be un-
derstood from the above considerations. As described above

mean occupancy rate
o
(S}
T
1

in detail, the reversion of a stable hole into a normal hole
requires occupied vertices in the neighborhood of the hole to 0.3 - I
be removed. However, the removal of vertices becomes more g'f i ]
difficult the more stable holes are in their neighborhood. 0 L L I
Thus, apparently, stable holes situated in each othargo 0 50 100 150 200 250
2) adjacency can promote mutual stability. As a consequence vertex number
of this a formation of almost “frozen” domains that are
made of mutually stabilizing stable holes can be expected. 0.04 T T T T T
These domains compete with each other and finally one of coss MMM "} ( " r MM ﬁ ( A
them prevails and fills the complete system. Indeed, the ar- o 003F -
rangement of occupied vertices and holes in the steady state & 0.025 |- -
exhibits patterns that will be discussed more closely inthe § 0.02 H .
following section. S 0015} a
® o001 H -
0.005 H u
IV. THE STATIONARY STATE o LA - '-Lu L J L‘—M \
0 50 100 150 200 250
In order to characterize the network structure of the sta- vertex number

tionary state, every vertex e G is assigned a mean-
o) — FIG. 3. Mean-occupancy rate and mean switch rate for every
occupancy rate s(v)=1/(T;—To)= - s(v) and a ) ) .
pancy (0)=1/T1 = To) t=To 1(v) vertex after a simulation oG{ with parameterst(,t,)=(1,4), |

mean switch rate!_(v) = 1/(T1—T0)EtT=1TO(1— 5%(v)’sz+1(v))' =5. The relaxation time was chosdig= 10", then averages over

Mean-occupancy rate and mean switch rate give a measu;rr-},:s”im4 time Stezst:'ve.re taken';"t Strz'?@&(”l’ -+ e) are

of how many times a vertex is occupied or changes its occuln'duely represented by integers: 2_ov2".

pation during the time intervdlT,,T,]. Ty will be chosen .

such that the system has already reached the stationary staygrtices '(seen as a drop ofS(a)] from 130 to 128 aR
a,;) with somewhat larger mean occupanay slightly

This method provides a way of obtaining an average picture_ ) -
of the occupation oB. smaller thana;. These two connected vertices having each

Figure 3 shows the mean occupancy rate and mean switdh~ 1= 8 Neighbors froms,  are in the center of a starlike
rate of every vertex after a simulation @f). Clearly, ver- ~ cluster of low-mean-occupancy verticésf. Fig. 5. They
tices with high-mean-occupancy rate have a low switch ratéePresent a vertex pair normally belongingSg which has
and vice versa. Thus, vertices that are frequently occupie@ccidentally been taken out and not got refilled yet. Thus
tend to be occupied almost permanently; seldom occupietey form a defect in the expression of a pattern structure

ones tend to be almost always holes. (see Sec. VA
To elucidate the structure of the network formed by the
highly active vertices we define the subsei(a) M7 1 '
={v e G|s(v)>a} containing all vertices that are more fre- 120 o OfSS((E;) _______ ;
quently occupied than with rate 100 | IS(a)l .
In Fig. 4 the number of vertices belonging$¢a) and the = 80 -
greatest connected cluster$(fa) are shown as a function of P 0L i
the threshold value. Due to the logarithmic scale a first 40 - i
drop from|S(a)| =256 to|S(a)|=130 ata=0 is omitted.
Two further thresholds become apparent: oneaat=3 20 _—I ]
x 10" * where the size of the greatest componentS¢4) 0 F—=——l \ ' :
rapidly drops to size 2 and a second onazgt 0.893 which 0.0001 0.001  0.01 0.1 1
marks the decline in the distinction of high- and low-mean- occupancy threshold

occupancy vertices seen in Fig. 3 . ) FIG. 4. Number of vertices belonging &{a) (see textand the
. In _order to get ”(,j 9f flgctuat|ons occurring during the size of the greatest connected componen§(@) as a function of
iterations, one can distinguish a set of high-mean-occupancye thresholch. Data are taken from simulations @) with the

verticesS, = S(a;) (which can be considered as permanentlyindow (t;,ty) =(1,4) and influx =5. Due to the logarithmic scale
occupied and a se =G\ Sy (corresponding to permanent the first point showing a drop 08(a)| from |G|=256to 130 is left
holes of vertices with low-mean occupancy. From Fig. 4 oneout. The dotted line indicates the ley&(a)|=128. Data have been
derives further tha®, decays also into two groups, namely, assembled forT;=9x 10" iterations after a relaxation tim@&,
a setS | of 128 vertices with mean occupancy 0 and two =10".
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Saairane

Do o S

(a)

o—-—=C o—=0 (b)

FIG. 5. lllustration of the cluster structure of the defect caused
by the two vertices with mean occupancy ratea, (drawn in
gray) for k=9. These vertices are in the center of a starlike cluster
of other low-mean-occupancy vertices fr(&ip1 (empty circle$. For
a>a, they no longer belong t&(a) and thus their removal causes
a decay of this cluster into ten 2-clusters of holes.

(©)

A further clustering analysis 0§, and S, reveals that
both subsets o& consist only of 2-clusters. Therefore, every
vertex ofv € S has exactlydv =«x—1 neighbors fromS,
and thus forms a stable hole of maximum possible stability.
This justifies the above notion of a frozen domain.

In case oft,= x—1 a holes being stable would require at
leastk=t,+1 of its neighbors to be occupied. Due to the
2-cluster nature of the pattern, however, orly 1 neighbors
are available, so that holes cannot be stable in this case.
Patterns then become extremely transient in the sense dis-

cussed below in Sec. V B FIG. 6. Nontrivial clusters that appear in metastable patterns for

=5, (t;,t)=(0,7) onG{Y. (a) 5- and 16-clusters from a pattern
. built by 192 singletons, 64 5-, and 32 16-clustdls. 14- and 44-
A. Metastable patterns and global stability clusters from a pattern with with 208 1-, 48 5-, 16 14-, and 8

The actual steady state pattern, classified by groupings &4-clusters(9) _2-tree-reduced component of the 203-cluster from a
vertices with clearly distinguished mean occupancy rates, dgttem consisting of 152 1-, 12 2-, 12 3-, and 4 203-clus@rand
pends on the influx. If | is very small compared to the 3-clusters form chainsIn the cases$a) and(b) larger clusters con-
system sizéG| also patterns different from the 2-clustered tain structures that resemble the smaller clusters. Larger loops, es-
pattern appear. The variety of such patterns is very abundaﬂFCia”y_ 6-loops and trees play a dis_tinguished role. In all cases the
for t,=0, becomes smaller the more restrictive the window Imension of the cluster structures is remarkably low.

is, and increases with decreasing rdiG|. with a uniform occupation probability) will contain almost

They prove to be metastable, i.e., relax to a more St.ablglways only one giant connected component for p,
pattern and finally to the 2-cluster pattern on very long time"_ 1/« [32]. Here, multiple giant components exist, although

scales. Interestingly, fatj=0 both sets5, andS, prove to o' ratio|Sy|/|G|= 0.5 far exceeds the percolation thresh-
have exactly alike properties and thus, the system is symme&-I d

ric against an exchange of occupied vertices and H&@k
Figure 6 gives examples for such a metastable pattergt

together with a visualization of the isomorphic graph struc—pattern is, e.g., the average occupied neighbor degree of its

tures ofS, and$, . Typically, they consist of a large number -holes(dv), s . It turns out that the holes in all these meta-
of small clusters and few larger components. In the organi- L

Stability of a pattern is determined by the stability of its
able holes. Thus, @ough measure for the stability of a

zation of the network structure of subclustersSpfands,, ~ Stable pattems have an average occupied neighbor degree
basic units(e.g., 6-loops in Fig. Bplay a role. Nevertheless slightly smaller than that of the 2-clustered configurations.
the majority of the clusters turns out to be asymmetric. Figure 7 shows another way to quantify stability. For this

In this context, a comparison t@ndomgraphs onG il- purpose we apply a test influx More specifically, a pattern

lustrates the very high organization of these patterns. A ranP of holes and occupied vertices is taken, a numisefl| of
dom graphI’'CG (constructed by occupying vertices & its holesh belonging to the low-mean-occupancy Setran-
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1

the knowledge of the 2-cluster structure ®f and S, one
then knows that the vertices in the neighborhood of this pair
have occupancys;=1—s,. Thus, also the occupancy of
their 2-cluster mates is fixed, which in turn determine the
occupancy of vertices in their neighborhood and so on. By
this argument every vertex’s occupancy is uniquely deter-
mined sinceG is connected. All base configurations con-
structed in this way have been found to occur and are iso-
morphic to each other in the sense that without labeling
vertices they cannot be distinguished.
relative influx As a consequence of the above argument, fixdpgand
) ) ] choosing one arbitrary vertese G and a link associated

FIG. 7. Relative mean distan¢e(P,P’))/|L| as a function of | i o pit operationP leading to a two-cluster mate af

the relative influxi/|L| for patterns that arise oG . Different P(0), base configurations can be denotedBy p). Hence,
b,

lines correspond to patterns with different mean cluster sizés . . . .
P P fep the number of possible base configurations is Zhe sys-

which emerge for the given combinations of thresholst(); see .
text. For the given relative influx, patterns are more stable thetem IS deg.enerate, though as/2G|—0 for [G|—= not
{hacroscopically.

smaller their relative mean distance to the unperturbed pattern. No 4 . ) . ) .
that the data points marked by boxes and pluses almost coincide. FTOmM & biological point of view it appears appealing to

Both patterns have the same mean occupied neighbor degree; d&ntify 2-clusters with idiotype—anti-idiotype pairs, the anti-
text. idiotype playing the role of an internal imagememory of a

previously encountered antigg®1,34,33. The 2-clusters
found here, however, are “coherent” in a fixed pattern of a
Stable base configuration. This implies a maximum storage

0.8
0.6
0.4
0.2

relative mean distance

0

domly selected and occupied, the window algorithm applied

and the distanc@(P,P')=%, _g|sp(v) —sp:(v)| between . : .
the original pattern and the resultant graph measured. capaC|ty2<wh|ch_—aIso for large SYStemS_'S far too few to
account for experimental observations.

Intuitively, | is a measure for a perturbation that is applied to ¢ appears useful to consider distances between base con-
the pattern. A small mean deviatigd(P,P’)) means a high figurations. One finds
stability against random influk. For growing system sizes
the sigmoid functiofd(P,P’))/|L| tends to a step function. |Gl/2 if P#Q or sp#s,
Confirming the above ideas, Fig. 7 visualizes two tenden- d(B B )=1{ |G| if P=Q and s,=1-s,,
cies: (i) an upper thresholt,< x— 1 closer tox— 1 [33] and (80.P)»=(1.Q) .
(i) a higher mean occupied neighbor degree of holes 0 if P=Q and sp=s;.
<ah)hEsL promote the stability of patterns. Indeed, patterns 3)

whose holes have the same mean occupied neighbor degre¢gerefore, except the “inverse configuration,” base configu-
exhibit almost the same stat_nhty characte”St_'CSrations differ in exactly the half of their sites from all other
(d(P,P"))/|L|. For example, holes in the patterns with hage configurations. For the cae Q or sy, half of the
(t,t)=(0,7)(c)=8/3 and (1,7),c)=4 whose curves co- (iffering vertices are holes and half occupied vertices. Thus,
incide in Fig. 7(boxes and plusg¢dhave both a mean occu- the difference between base configurations is of the order of
pied neighbor degre@/h)y, s, =8.5. the system size and a change from one base configuration to
Due to the high supply of new idiotypes from the boneanother cannot take place without a major reorganization.

marrow these patterns are without interest for the purpose of As the influx| increases occupied vertices become more
modeling immune networks. However, it could be conceivedand more prone to being removed. So, it can be expected that
that they prove interesting in the context of evolving specieshe distinction between frequently occupied and scarcely oc-
interaction networks where the influx as the mean number ofupied vertices loses sharpness. Increakiogger a threshold
new species per time unit is small in comparison to the overleads to a completely different behavior of the system. Pa-
all network size. rameter regimes in which the system exhibits qualitatively

different dynamics will be discussed in the following section.

B. Stable base configurations

The 2-clustered patterns are distinguished in two respects: V. DEPENDENCE ON THE INFLUX |
(1) th"ey are the only patterns evolving if the |nflulx is high The systems behavior depends crucially on the clustering
and(ii) they are stable, i.e., if once such a pattern is assumed

: groperties ofl';. To obtain a picture of the dynamics of
the system will not relapse to one of the metastable patterncluster changes the time-averaged cluster size distribution
Therefore we call these stable base configurations. . > T,

The complete decay of both hole and vertex configura®Ve’ the interval[T,,To], p(c)=1/(T1—To)Z 21 pi(C),
tions into 2-clusters allows it to calculate the multiplicity of wherep;(c) denotes the probability that an arbitrary vertex
these base configurations. It turns out that the global strumf I'; belongs to a cluster of sizg¢ has been investigated.
ture of a base configuration is already determined locally byFigure 8 shows numerical data for the cluster size distribu-
fixing the occupancg, of one connected pair of vertices. By tion obtained for five different values of For small influx
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| =20 [Fig. 8@)] the systems’ behavior is dominated by the vertex that is empty i, but occupied inl';. Clearly, hole
occurrence of 2-clusters. Occasionally also other clusters afefects are caused by~ 1—t, correlated vertex defects and

sizesc=6,...,11 andsizesc=16, . ..,20appear. Forl

thus are much less probable than vertex defects. As long as

=30[Fig. 8b)] the distribution has a structured tail of seriesonly vertex defects occur only 1- and 2-clusters can be

of local extrema. Then, fot=40 [Fig. 8(c)] the 2-cluster

formed. However, once a hole defect is established, it serves

dominated structure is still expressed, but now also clusterds @ junction for its surrounding 2-clusters and clusters of

some orders of magnitude larger are found. Finally, Ifor
=80 andl = 120[Fig. 8d)], the clustering structure is domi-
nated by(depending ort; andt,) one or several giant clus-
ters and 1-clustergsingleton$ which more and more out-
weigh other small clusters dsis further increased.= 20,

40, and 80 represent three different parameter regimes f

the influx that will be treated below.

A. Small |: A statistical approach of defects

size 2v+1, v=1,2,... x are built. For example, in Fig.
8(a), local maxima are found foc=7,9, and 11. The latter
one corresponds to the most probable kind of hole defect: a
formerly stable hole now is occupied and has five remaining
occupied neighbors. In the case of the less probable cluster
of sizec=9 four once occupied neighbors of the hole are
Qfefective, thus four are remaining. Analogously ée+ 7. As

the 2-clusters surrounding a hole defect might also be defec-
tive though less frequently also clusters of even size appear.
The second series of local maxima arowd20 in Fig. §a)

can be explained by hole defects that are correlated, i.e., hole

For smalll during the initial stages of the dynamics the defects whose occupied 2-cluster neighbors are connected.
2-cluster dominated pattern as described in Sec. IV B is This microscopic picture of the process suggests a treat-

formed. Once such a pattern is establishegbrks as a per-

ment borrowed from equilibrium statistical mechanics. Since

turbation that incidentally causes defects to the ideal patterdefects are more likely to occur for higher influxcan be
structure. These defects can be classified into two groupsissociated with a kind of a “temperatur&(l). T(l) will be

“hole” defects and “vertex” defectgcf. Fig. 9. Both terms

growing monotonically with. Defects are assigned an “en-

arise from a comparison between the perturbed configuratioargy” «(t,) that describes the probability that a defect is

I'; at timet and the base configuratidhthe system is in. By

caused. Since it is harder to remove occupied vertices the

the term vertex defect we understand a vertex that is occlhighert, is, it is also expected that grows with increasing

pied in B, but empty inT";. Likewise, a hole defect is a

upper thresholds,.
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FIG. 9. lllustration of “hole defectsTleft) and “vertex defects” 112 1 1 1 1 1 1 1 T
(right) for (t,,t,)=(0,4). The defective vertex is printed in gray, 5 10 15 20 25 30 35 40
holes in white, and occupied vertices in black. On the left hand side, influx
one of the central holes has>§,, occupied neighbors and thus is ) ) )
stable. The gray hole has lost two of its neighbors due to “vertex FIG. 10. Mean populatiogin) versus influxl taken from simu-
defects.” Only 3<t, neighbors remain so that the gray hole has lostlations for ¢;,t,)=(0,5) onG§". The crosses represent simulation
its stability and can be occupied. Both unstable and occupied holedata; the line corresponds to a fit(f) calculated from Eq(6). Fit
are called hole defects. On the right hand side, the gray vertex waRarameters are=88.14 and ,=0.67.
removed, thus causing a defect to the ideal 2-cluster pattern struc-
ture. can cause not more than exactly one vertex defect, li.e.,
<2(t,+1), the probability per site for a defect[i81]
In the following we derive a statistical description for an
ideal gas of defects. k-1
N I\ [k—1\/N—(xk—1)
L. The case =0 pd('):(l) %(i)( j )( -] ) "
The probability to cause a vertex defect depends on the
number of holes surrounding the occupied vertex. In spite off no more than one defect can arise, the mean number of
this no distinction between defects of completely removedjefects is given byl)(1)=Npy(l). Using Eq.(7) one cal-

2-clusters and singletons will be made. This is justified sinceyjatespy(t,) and py(t,+1). A comparison with Eq(6)
for large systems an occupied vertex that remains after itgje|ds

2-cluster mate has been removed is still surrounded by al-
most the same number of holes. Furthermore,tfer0 the

mean population

-1 -1_ -1
algorithm allows the permanent existence of singletons. a =[Inpy(ty)] " —[Inpy(t,+1)] "7, ®
The probability of havind independent defects of energy
a at temperature B(1) in an ideal pattern oN=|G|/2 oc- 0.16 @’ ' ' '
cupied vertices is 0.14 - 7
0.12 | i
1[N} £ 01 .
ph=5| Je, (4) 3 008 -
g_ 0.06 - .
where the partition sur is easily determined as 0.04 - ]
0.02 -
NN 0 +——++ L L 1
zZ=> ( | )e'ﬁa:(1+eﬁa)N_ (5) 110 115 120 125 130
I=0 population size
Then the mean number of defects is given by 0.3 (b) ' '
0.25 |
1dInz e P > o2f
h=-35 50 =N=(m=N-—mp.  (® s
B da 1+e B« § 0.15 |
[¢]
(n) being the mean number of actually occupied vertices. & 01r
Comparing with data obtained from simulations it turns 0.05 |
out that the ansatz g&~1,+1 holds for a broad range of 0 i , . . ,
different values of. From a fit of the mean populations with 120 121 122 123 124 125 126 127 128
Eq. (6) one obtainsy=88.14+0.48 andl,=0.67+0.18. In population size

the whole range up td<<35 mean values and probability

distributions calculated by Eq4) are in good agreement  FIG.  11. Probability ~ distributions  p(n)=1/(T,

with simulations(see Figs. 10 and 11 fTO)EtT:lT > .np(n) for the population size obtained from simula-
For very smalll it is by simple combinatorics possible to tions onGYY for (t;,t)=(0,5) andl =30 (@) and|=20 (b). The

obtain an approximation for the “energies” fitted from the simulation resultgcrossesare compared witpp(N—n) from Eq.

data of Fig. 10. If for fixedt, the influx| is so small that it  (4) (lines connect calculated pointssing «=88.14 and ,=0.67.
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which, e.g., evaluated fod=8 andt,=5 gives «a=50.8,

which is of the same order as the numerical value
=88.14. Comparindy is not reasonable, since E®) bears
deficits for small influxes.

Indeed, the range of validity of E@6) is limited in two
respects. First, although the possible number of defects for
smalll is limited by| I/t,] the sum in Eq(5) extends up td\N.
However, for low temperatures surplus defects are counted
with only a small statistical weight. This approximation be-
comes worse for high upper threshotgs Second, too many
vertex defectgwhich then become correlatetead to hole
defects. Hole defects destabilize the 2-cluster pattern and
lead to a qualitative change of the above picture.

mean population

FIG. 12. The mean population f&{% with (t,,t,)=(1,5). Fit-
ting with Eq. (13) leads toa=632+99, y=250.6+13.1, andl,
2. The case =1 =36.1+4.2. The fit breaks down if one tries to include the range
For t,=1 a distinction between two types of vertex de- I =150 that marks the onset of the transition regisee Sec. V B
fects becomes necessary. Now, unless a new 2-cluster mate is
provided by fresh influx during the next iteration, a singleton ~The ansatz B=1,+1 is again confirmed by a compari-
violates the lower threshold rule. Hence it can only surviveson of Eq.(13) with numerical data for the mean population
for one time step. (see Fig. 12 The probability distribution that vertices are
To cope with this situation in the present framework de-occupied at a time is
fects consisting of a singletorny(defect$ are assigned an
energy«, defects made of a completely removed 2-cluster Imax
pair (y defect$ an energyy. Both energies are expected to prob{n occupied verticés= > p(N—n—2l,,1,),
increase with growing bit-chain lengthand for higher up- 12=0

per thresholdg,. Then a configurations energy with «
andl, y defects isE(l1,l5)=11a+1,y.

The probability of havind; independentr andl, y de-
fects is

(14)

wherel ,,,=|N/2—n/2| andp(l,l,) as given by Eq(9).
Analytical results derived from E@14) are again in good

agreement with simulation dataee Fig. 13 Equationg13)

1(N/2\[N/2—1,
p(l1.l2)=5 | | 2l1ighBag=l2By  (9) 0.2 | . . .
! 2 0.18 | (a)
0.16 -
For the partition sum one obtains > 014 | i
= o012 .
N/2 N/2—| ® 01 F 4
N/2 1 [(N/2—]
7= 2 ( )2Ile—llﬁa 2 ( 1)e—|2ﬁy S 0.08 | -
=0\ I 13=0 l, S 006 i
0.04 + A -
_ - Ba — N/2 - m
=(1+2e Pete AnNZ (10) o.og VA | | |
) . 490 495 500 505 510 515
Lne{aeréiogy with Eq.(6) one derives the mean number @f population size
! 0045 T T r‘q T T
o—fa 0.04 |-(b) : .
_ 0.035 | .
{lp=N 1+2e Baye By (4D Z 003 .
3 0025} .
. 3 o002}k -
and obtains the mean number pfdefects, 2 0015 - i
0.01 + i
0 N e P 12 0.005 | -
2)= & — “a- 0 ] ] ] 1
2 1+e Fr+2e7F 400 420 440 460 480 500 520

population size
Finally, the number of empty vertices is=N—1,—2I,,
and hence the mean population is given by FIG. 13. Comparison between simulation data for the probabil-
ity distributions of the population size f@{Y, (t,,t)=(1,5) (@
I =25 and(b) | =80 and results derived from E(L4) for the same
a, v, andly as in Fig. 12. In(b) the influx is already high enough

that both types of defects appear with almost equal probabilities.

1+e P
1+e Pr+2e Po

(n)=N (13)
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T FIG. 14. Simulation data foG$", (t;,t,)
N 40 =(1,4). (a) shows the population, the numbeh
of stable holes, and the size of the greatest con-
nected component of,, gc. Initially, approxi-
AR M 0 mately half of all sites onG§" become stable

20 60 100 140 180 1600 1700 1800 1900 2000 2100 ~ NOles and a pattern is assumeél. shows a tran-
time fime sition period. The number of stable holbsand

the populatiom drop suddenly, a giant cluster is
(d) formed. (c) shows the smallest and the second

16 k- ' ' s:tatel ' | smallest distance to a stable bg_se con_figuration
m; andm, (cf. tex®). In the transition period no
14 1 7] pattern is selectedd) displays a number for the
12 T pattern that has the smallest distancé&'to In the
10 | . transition period between two sharply assumed
8 I - patterns the state changes quickly. For
6 I _ €[200,1700Q, Knyin=>5, for t>2000, kn=4.
4 -
2 - -
0 1 1 1 1 1
0 1000 2000 3000 g 1000 2000 3000
time time
and(14) are subject to the same limitations as in the case for m,= min d(T";,By) (16)
t,=0. k#Kpmin
B. The transition region to any stable base configuration are shown. For the time

As previously discussed increasihgeyond a threshold intervals [200,1700 and [2000,3000 it holds my<m,.
leads to a growing number of hole defects. The appearanCgon:~:equ<_antly the system is in the staple bas_e configuration
of correlated hole defects is connected with the formation 0Bk, Incidentally, hole defects associated with the emer-
great clusters consisting of connected 2-clusters. Ag-  gence of larger clusters appear. Mostly, as long as hole de-
comes still larger, the probability that hole defects becomdects remain uncorrelated, they are repaired during the next
correlated increases. Occasionally this leads to the emeiterations. Att~1700 the exact lock in of state,,;=5 is
gence of a giant clusteisee Fig. 8, the different series of lost and fort e | ;pange=[1700,2000 a phase marked by fre-
local maxima correspond to an increasing number of conquent changes ok, is entered. During this perioth;
nected hole defectsSpeaking in the language of thermody- ~m, and thus no base configuration is sharply assumed. A
namics, growing influx entails a growth of fluctuations thatcomparison of vertex mean occupancy rates during this
finally tend to overthrow the regular pattern structure. phase and the previous one justifies to speak of the time

The building of a giant cluster requires the reversion of ainterval t € | ,ange @S Of a disordered period, since, clearly,
major fraction of the stable holes into normal holes. Thusany distinction between high-mean-occupancy and low-mean
since stable holes form the “skeleton framing” of the patternoccupancy vertices is logsee also Fig. 15As expected, the
structure, the system relapses into a phase where no pattegmergence of the disordered phase goes hand in hand with
lasts for a longer time span. the formation of a giant connected component’in a dras-

Figure 14 illustrates this behavior for a simulation@ﬁ) tic loss of stable holes, and a drop in the population.
with (t;,t,)=(1,4). Initially, after the first stages of the dy-  The whole dynamics of the system is marked by a se-
namics the system settles into a steady state. For better illuguence of ordered and disordered phasesl &sincreased,
tration every stable base configurati®s, r) is given a the residence time in ordered phases declines till finally the

unique numbek,k=1, ...,18. In Fig. 14c) the minimum frequency of “base configuration” changdslefined as a
distance change ofk,,,,) tends to 1. Thus, the system becomes com-

pletely disordered.
my=min d(T';,By) (15 Figure 16 displays simulation data (531(1%) with (t;,t,)
k =(1,8) for the mean timgresidence timeduring whichk,;,
remains unchanged. An abrupt transition from a phase
and the second smallest distance marked by permanent patterns to a phase of transient patterns
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§ 0.5 § 05 | . pancy distributions measured in a transition pe-
8 04 { 8 04 - riod (left) and during the time before the transi-
© 03§ o 03} - tion period (right). In the right hand figure a
& 02 & 02 . 2-clustered pattern is assumed. Same parameters
£ 0.1 H e o1l | asinFig. 14.
0 . 0 .
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vertex number vertex number
interrupted by periods of disorder occurd g&270. Accord- The functiong(x) is a polynomial of ordet,. Thusg™

ingly, as can be seen from Fig. 17, the mean lifetimeer-  is of ordert; and there is no general analytic solution to
aged over all verticgsdrops abruptly during this range of x* =g("(x*). As an example we consider the casgt()
influxes. Forl >300 mean lifetimes decay exponentially and =(1,8) onG(l})), i.e., k=11 and|G|=1024. Evaluating the
quickly tend to 1. Very short lifetimes, however, do not allow fixed point equations numerically, one obtains the bifurcation
for static order or memory. Apparently, the transition from diagram displayed in Fig. 18. At=0.2 one finds a forward

order to disorder goes through a phase of more and morgitchfork bifurcation towards a 2-cycle, which then at

frequent pattern changes. =0.3 becomes also unstable, leading to the emergence of a
. 4-cycle. Forx=0.45 this 4-cycle is found to become un-
C. High I>1.: Iterated maps stable and a backward pitchfork bifurcation leads again to a

For influxes|>1. the lifetime of occupied vertices be- stable 2-cycle. Far outside_ the rt_agion of biological intgrest,
comes very short. This indicates that the system can nfr x=0.93 a backward bifurcation occurs and the single
longer form ordered patterns and long-time correlations befixéd point solution again becomes stable. Figure 18 also
tween the systems configurations disappear. Thus, while fd#isplays data obtained from simulations of the window algo-
low influx clearly (n,. ) is an intricate function of both the fithm onG{g which exhibit the same qualitative behavior as
systems configuratiol, at time stept and the most recent f[he iteration ofg. As expected, deviations become small as
influx, for high influxes the mean population at time step Ncreases.
+1 tends to depend only on the size lofand the mean
population at the previous time step. Also, from the mean
occupancy distributions one conjectures that the structure of VI. MORE DENSELY WIRED SYSTEMS:

I, is essentially random, i.e., obtained by randomly occupy- TWO-MISMATCH BASE GRAPHS
ing |T'| vertices of the base gragh.

If one randomly occupies sites of a base grap& the
relative mean numbédr(n) of occupied sites after sites with
occupied neighbor degrees outside gf,t(,) have been re-
moved is given by

In this section some observations about the dynamics cre-
ated by the window algorithm witlhy=1 on more densely
wired base graphs will be presented. As a consequence of a
higher coordination number different static patterns and sev-
eral dynamic patterns can be observed. In principle, we ex-
A o\ el pect(i) more sparsely populated, and hence transient patterns

n —_> ( )(—) (1— —) if n<|G]| of reduced stability for lowt,, and(ii) enhanced stability for
h(@> =1 1G] =, 1/1]G| |G| upper thresholds close to—1 (cf. Sec. IV A).

0 otherwise. As an extension of the base graph§’ whose link struc-
(17)  ture is created by “one-mismatch links” we now introduce
o ) ~additional links connecting bit chains that deviate in two
Considering a large random influx, apart from fluctuationspositions from complementarity, so defining the base graphs
the relative populatiorx, will evolve according tox;.; G®, cf. Eq.(2).
=h(I/|G[+x,). Thus, in the steady statewill preferably  “ciearly, sinceG{) is connected such “two-mismatch
assume values near the st'able fixed points Qf the fh'ftefﬂwks” of ng) are shortcuts of paths i@((jl). For example,
function g(x)=h(1/|G| +x), i.e., near the solutions of referring to the notion of bit operations associated with links

=g(x*). Linear stability analysis yields that a fixed point . .
is g(stazble if Ig'(X*)y|<1. yAnglogously n cyclgs (see Sec. Il A two vertices linked byli,, =Gy, ki

x*,g(x*),g@(x*)=g(g(x*)), . .. g D(x*)} are solu- #Kk,, are also linked by the six paths corresponding to com-
tions of g("(x)=x and are stable ifg(™’ (x*)|<1. binations of the edgelso, Ly, Ly, G{.
For k=11 and ¢,t,)=(1,8) g(x) is a function with one Although every vertex now acquired(d—1)/2 new

maximum. Consequently, one expects th@&t has at mosh  edges the former link structure is conserved. Thus, it could
maxima. Thus, in principle, cycles of higher order are pos-be conceived that patterns createcmﬁ) retain a part of the
sible. structure of the stable base configurations that are formed on
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FIG. 16. Mean residence time, i.e., time during which,, re-
mains unchangetexcluding a relaxation time of the first 5000 time relative influx
steps. All simulations onG{} with (t,,t,)=(1,8) have been al-
lowed to run for 16 time steps. Fot<I.=270 no change ok,
has been found.

FIG. 18. The bifurcation diagram obtained by iterating the func-
tion g(x) in comparison to simulation results for the maxima of the
population histogram fort(,t,) =(1,8) onG(l})) (filled squares con-
nected by lines Solid lines correspond to stable branches and
ijl). Counting, e.g., “two-mismatch” links in a base con- dashed lines to unstable branches. The region of the simulation data
figuration B(so,Fl)CGél) one finds that every occupied ver- where three s.table sollutions coexist corresponds to the onsetlof
tex now acauires link c@ . : dlsqrder: The |ptermed|ate branch represents the mean popula_tlon

quiresl new links onGy™~ (cf. Fig. 19, aggregat durin d hich i
. . . g periods in which the system closely assumes a base configu
Ing to a total occupied nelghbor degrde-1. Thus, these ration; the upper and lower branches are data sampled during dis-
kind of pa}tterns are forbidden fdg<d+1. Fort,=d+1, ordered phases. Especially for higher influx, simulation results and
however, it turns out that apart from metastable structures fofe gata obtained by iterating are in very good agreement. The
small influx the dynamics always ends up in the above degmajler diagrams visualize changes in the stability of fixed points of
scribed configurations. Thus, in this case the base g at the branching pointsia) g (solid line) becomes unstable at
always decays into two groups of high-mean-occupancy ver/|G|=0.2, butg® (dashed lingis stable. Hence a cycle appears.
tices S, and low-mean-occupancy vertics. Both S, and  (b) At 1/|G|=0.3 alsog‘® (solid line) becomes unstable and—since
S, form (d+1)-regular subclusters @&{?). Resuming the g® (dashed ling gives only one unstable solution—a 4-cycle
considerations of Sec. IV B one finds that these stable bag¥merges(c) At |/|G|:0-45g(2) becomes stable again leading to a
configurations orG{?) have multiplicity 2d. The scenario for Packward bifurcation and a 2-cycle.
growing influx is the same as o@gl): for 1>1, phases of
well-defined base configuration are interrupted by disorderethe mean-occupancy-patterns by defining subSgiC fo)
periods leading to pattern changes, and finally to a dynamicwith different threshold-occupancy ratagsee Sec. V. In
marked by randomness and very short lifetimes. analogy with results for the one-mismatch case we find meta-

However, fort,<d+1 where “relics” of patterns form- stable patterns for small influxes. Depending on the ratio
ing on G are no longer allowed the behavior turns out toI/|G&2)|, first completely 2-clustered, 4-clustered, or
be more interesting. 8-clustered patterns appe@rclusters are chains, 8-clusters

As tools to investigate the structure of networks we agaircubeg. Next in a range of influxes cube-configurations domi-
consider the mean occupancy rates of all vertices and prolmate (cf. Fig. 20. Different from the 2- and 4-cluster pat-
terns, however, the cubes do not fill the base graph com-
pletely and 256 vertices not matching in the cube pattern are
left.

Figure 21 shows data for every vertex’s mean occupancy
obtained by a simulation o6{2 with (t,,t,)=(1,10). The
set of vertices with highest mean occupargydecays into
cubes, the set with lowest mean occupaBgyforms a giant
component of 2816 verticesS, consists of 1536 almost
E never occupied vertices of occupied neighbor deg)qgesL
1 R S R T ] =61, 256 withd|g,5 =43 and 1024 withyg.s =39. Al
100 150 200 250 .300 350 400 450 500 occupied neighbor degrees are larger tharand thusS.

influx entirely consists of stable holes. The 256 vertices not exactly

FIG. 17. Mean lifetime versus influk obtained from simula- Matching in the cube pattern form a subSgtof intermedi-
tions onG{Y for (t;,t,)=(1,8). The mean lifetime was determined at€ mean occupancgy turns out to contain only singletons,
after allowing 5000 time steps for relaxation to a steady state. Fopach of which is surrounded by elementsSf which are
everyl the simulations then run for 95 000 more iterations. Data foralmost never occupied. Thus, vertices &, are isolated

<100 are not shown since mean lifetimes exceeded simulatiospots of activity sustained by influx temporarily placed at
times. their surrounding stable holes, but taken out immediately af-

10000
1000 |

100 |

mean lifetime

10 |
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FIG. 19. An illustration of how “two-mismatch links{dashed = | | | | | | | R

line) contribute to the occupied neighbor degree of occupied verti- 0 1000 2000 3000 4000
ces in a base configurati(Bl(SOVLl). Occupied vertices ilB(so,Ll)
are drawn in black, empty ones in white. Two clustérg.,o0 and
p) in B are connected via the “one-mismatch liniSolid line) L;. FIG. 21. Every vertex's mean occupancy obtained by a simula-
Excepto the one-mismatch neighbotg=L;(p), j#1, of p are  tions onG(lzz) with (t;,t,)=(1,10) andl =30. Vertices are labeled
holes. Apart from the holes’ 2-cluster mateg(h;) all their neigh- by integers z corresponding to their respective bit chains. The re-
bors are occupied. If one pursues an inversion linkfrom any  laxation time wasl;=5000; mean occupancies have been sampled
such holeh; adjacent top, a vertexq=Fg(h;) is reached which  over T;—Ty=15000 further time steps. An offset has been added
is—via L,j— also a two-mismatch neighbor of One can easily to display the groupS,_ with the lowest mean occupan((ys)sL
verify that o has no other occupied “two-mismatch neighbors.” =0. The intermediate grouB, has mean occupancf(s>SM

Consequently, in a base configuratinon G’ every occupied  ~0.01: the group with highest mean occupasys ~1.0.
vertex hasd+1 occupied neighbors. )

vertex number

lead to different numbers of groups and changing mean oc-
terwards due to overstimulation. Consequently, as long as neupancy levelgdepending on the time step when transitions
fresh influx is placed adjacent to it in the next time step aoccup simulations performed with different initial conditions
vertex ofS,, dies out one time step after it has been insertednow always reproduce these six groups and their mean oc-
This view is confirmed by very short mean lifetimes cupancies.
<T”fe>SM%1 of elements ofS,,, which slightly grow with Th_e_ interval of influxed €[80,10Q is char_acterized by
increasing influx. Together with a growing probability that transitions between both types of patterns in the course of
isolated holes get filled this accounts for relatively largeWhich for higher influxes periods during which the six-group
mean occupancie@s}SM in comparison t0(5>sL- Though at pattern is assumed more and more prevail. The change of the

) . - . mean population averaged in both types of pattern is drastic:
the first glance it seems surprising that a vertex can SUNVIVE "1 _'90 the cube pattern can sustain approximatey
at a site where it is surrounded by almost always empty sites,_ 1024 vertices while at the onset of their appearance six-

this indicates a mechanism that is to prevail in a consecutiverou atterns can support a mean population of only about
regime: isolated vertices of high durability are sustained by? PP bp bop y

quickly fluctuating short-living influx in their neighborhoods. n)~600 occgp|ed sites. Comparmg the. mean occupancy
) ) levels of the six-group pattern with all previous pattern struc-
Increasingl over approximately 80 the cube patterns be-

come unstable and froin=100 onwards a pattern marked by tures one remarks that, while groups of always emp'ty sites
) . . are still present, groups of almost permanently occupied ver-
six-levels of mean occupancisee Fig. 22 is chosen. In

tices are lacking. All groups have mean occupancy rates
contrast to the appearance of several levels of mean OCCaller than 0.7. This, and the relatively short lifetimes of
pancy due to transitions between isomorphic stable base coll, tices belon |n o ';he rou and S- with hiah
figurations this grouping is of a different nature. While in the ging K 9 f F&sz . Se 9

first case simulations started with different initial conditions T can OccUpancy, speaks in favor ot an Interpretation as a

“dynamic” pattern. Occupied vertices belonging to different
groups “fluctuate” with different rates, while the interplay of

10000 F T T T T T T E
i - cube patterns ] o S 050
o 1000 § 3 g S O
= F . ] .
2 400 L |singleton patterns disorder - S s o3
c E l E 8 5 .
3 F 3-5-group patterns ] 3
£ 10 F —transient patterns - g S, 020
: 3 c
[}
1 6-group patterns L I g gs 8'83 F;r,zc«ememu e
100 200 300 400 500 600 700 ge 003 [rommmpeomiip sty
influx 0 1000 2000 3000 4000

. . . . vertex z
FIG. 20. Mean lifetimgllog scalg versus influx for simulations

on G{2 with (t,,t,)=(1,10). Successively, the system forms cube FIG. 22. Mean occupancy rates of verticeslerived from a
patterns, multiple-group patterns, singleton patterns, and agaisimulation onG{2 with (t,,t,)=(1,10) andl =100. Six groups of
multiple-group patterns. Then, patterns become transient and finallyerticesS,, ... ,SsC G(fz) can be distinguished by their mean oc-
a randomness-driven regime is entefsee text cupancy.
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TABLE |. Data characterizing the six grouf®, ..., Sg ob-
tained from simulations o{3 with (t,,t,)=(1,10) and =100. In
30000 time steps vertices 8f have always belonged to the great-
est subcluster of';, hence{(Cgya) could not be measured. Since
they are immediately taken out after they get into the system, stable
holes have a mean lifetimgr)=0.0. This means that their mean
lifetime is shorter than the discretization of time.

GroupS |S| <C> <7'> <I’> <fsmalb <Csmalb <n>

S, 1124 371.0 0.0 1.0 0.0 0.05
S, 924 371.0 3.8 0.26 0.0 7.0 27.2
924 3710 54 0.8 0.0 4.6 61.3
S, 134 1.0 100 0.1 1.0 1.0 26.5
330 160 18.1 0.06 0.5 1.007 107.05
S 660 260 35.3 0.028 0.27 1.03 318.16

FIG. 23. Visualization of the network structure of the groups
S, . ..,S6. The squares indicate many connections of vertices of a
them secures that the distinct role of the groups is preservegroup among themselves, isolated circles in a group visualize that it
In the following the nature of this dynamic pattern will be consists of singletons. The thickness of the connecting lines gives a
elucidated in more detail. measure of the number of links connecting elements of different
Figure 22 and Table | give data characterizing these sixgroups. Because of their importance for the existence of giant com-
groups: mean size of the clusteC) onT', that a vertex of a  ponents inI';, the core groupsS, and S; are bounded by thick
group belongs to, its mean lifetimgr), mean switch rate lines. Larger boxes correspond to larger groups.

(r), the mean frequendif ¢4 Of Not belonging to the giant

component, and the mean cluster s{£&,,,» of the small in Table | are in qualitative agreement with this interpreta-
clusters if the vertex is not in the greatest componerit,of  tion.

On average, elements & ,S,, andS; belong to 371 clus- Figure 24 displays simulation data for the change of the
ters onl’y, but are very seldom members of small clusters ofrelative occupations;=1//S|2, .ss(v), i=1, ... ,6, of the
singletons, have relatively short lifetimes and h.igh switchgijy groups with increasing influlx. Initially, all groups are
rates. In contrast, elements of the groups of higher meapiearly distinct, groups 4—6 have relatively low occupation
occupancys,, Ss, andSg typically have smaller mean cluster 5nq the mean populations & and S, are clearly above
sizes, form more frequently small clusters, preferably singles g Agl grows whileS, andS; lose populatiors,, Ss, and
tons, and have long lifetimes. Mean lifetimes are increasin%6 become more populated, but at different rates. Thus, at

with increasing mean occupancy of the groups. | ~150 the groupsS,, Ss, andSs become united leading to

Exploring the interconnectedness and network structure oo tormation of a single se8, of high mean occupancy

the groupsS,, . .. ,S one obtains the following pictureef.  \atices. A similar outcome is observed in the caseSof
Fig. 23: The strongly interconnected groufs andS; form

a core ofG to which—exceptS,—all the other groups are

attached. Excluding this core, each of the other groups con- o8l ]
sists of singletons. The largest &itis a reservoir of stable 5 e el
holes and connectS, with the core. Thus, vertices &, = 06 1g7 R
play a similar role as the previously mentioned isolated holes 5 o4l /ffé1 o

in the cube pattern: they receive their whole sustenance from 8 ~° [--7.-~ §2 ------ e
the influx and have no permanent connections. While the £ o2 |-~ g3 a7 o
group of second largest mean occupar&y, has only links g gg_‘_‘_ 10,556 230 240 250 260
to the less populated part of the co®, the most active S0 e

vertices, elements @&, have connections with both parts of
the core. i
Consequently, apart from stimulation by random influx, influx
elements o Obt[ain Sti,mUI,us from the core QVP@- Nev- FIG. 24. Relative occupatiosi:1/|3|21,€§§(v) of the six
ertheles_s, the stimulation is not optimal Ieadl_ng to a meal'gl,Jroups(Iabeled by their group numbgefor different influxes. For
occupation of only 1/3 oBs. The groupSg receives stimu- [ _ 149 groupsS; and S, unite, for I~175 S, joins them. Atl
lation from both core groups and so can support a higher 5505 again becomes separated, for240 alsaS, disjoins from
population tharss. Contrarily, since being strongly intercon- g - similarly, S,, Ss, and Ss merge atl~150. This leads to
nected and connected to both the richly populated gr&Jps 5-group patterns|(e[140,15Q), 4-group patterns|(e[150,175
andS; most vertices of5, are suppressed. In the caseSgf  and | e[240,26Q), singleton patterns 1E€[175,22Q), and a
which does not connect 18, suppression is lower and thus 3-group pattern ((e[220,24Q). For I>260 transitions between
a higher mean population can be sustained. The data shovisomorphic configurations set in.

100 120 140 160 180 200 220 240 260
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S,, andS;. For 1=140 groupS, joins S; and becomes in- 1 T T
distinctive fromS; at | =175, leading thus to a single low 09 B tae e s - aewateia i
occupancy grougs, . During this process the overall mean

0.7 b =150 + 8
population of I'y, (n), is growing. Consequently, fot 0.6 ;=300 x -
€[175,22Q again a 2-group pattern of 1124 high-mean- i=500 .

O«
~

T

I

occupancy and 2972 low-mean-occupancy vertices appears,

== X . _ . 03k R T~ - U PP T s
consisting now entirely of long-living singletons “sustained '

mean occupancy rate
(=]
(3]
T

by the influx.” Transition patterns before this pattern appears 8:? s it iataatan ]

are 5- and 4-group patterns, after it grew unstable 3-group 0 ' ' = :

patterns are forming. 0 500 1000 1500 2000
As | is further increased the influx that heretofore guaran- vertex number

teed the sustenance 8f andSg gradually causes overstimu-
lation. Thus, the mean populations & and S are shrink- 44546 650G with (t,,t,) =(3,10) and influxes = 150, 300, and
|ng,'causmg, In turn,' less overst!mulatlon of the core. SO‘500. For low influx both the high-mean-occupancy group and low-
again a small population can persis3pandS;. Altogether,  ean_occupancy group are considerably apart from their extreme
for further increased influx the different groups disentangle,ajyes 1 and 0. At grows, S, becomes less occupied and vertices
leading to a revival of the multigroup patterns. of Sy evolve to an almost permanent presence. Thus, increasing
From 1~260, on these dynamic multiple group patternsfurther the high mean occupancy set loses stimulation and the pat-
become unstable and rearrangements between difféseat  tern becomes unstable.
morphig configurations set in. Analogous to the scenario
discussed in Sec. V B disordered periods dominate more anghich are present. On average, whereas elemeris bave
more and finally lead to disorder. high occupied neighbor degre¢and are on the verge of
Interestingly, the group structure allows some insight intopeing overstimulateg elements ofS, have low occupied
the actual cluster structure &f; at an arbitrary time step. neighbor degreegand are threatened by understimulajion
Obviously, giant and greater clusters Bpcan only emerge  On the whole, however, vertices occupying such holes tend
as long as the core is populated. As the mean population aé get removed with higher probability. One can imagine this
S, does not suffice to form a giant component witlin S;  situation as a pattern of long-living occupied 2-clusters flown
functions as the “glue” of giant clusters dn;. Elements of  round by short-living 1- and 2-clusters, living just for their
the “backbone” of the giant cluster preferably come fr@n  stimulation.

FIG. 25. The mean occupancy rate of every vertex from simu-

and S;. As the population ofS, decreases vertices @s Considering this situation as evolved from an ideal
increasingly become detached from the core and tend to forr-cluster pattertB s py one understands that it can only sur-
small clusters and singletons. vive for an intermediate range of influxes. On the one hand,

A great component, however, is still retained by elementst the influx is too low, not enough occupied sites are driven
of Ss andS, bound together by;. As the population o6,  out by overstimulation that holes could lose stability. Thus,
also sinks below a certain threshold, greater components @he sites occupied in the ideal patteBrdid not receive the
I'y become starlike, their hubs being 8. Finally clusters  pecessary stimulation and the pattern was unstable. On the
different from singletons completely vanish, resulting inother hand, too high influx causes more and more of the
purely influx sustained patterns of singletons. frequently occupied vertices to be almost permanently occu-

pied. This but leads to many stable holes. So, for higher
influxes an abrupt transition to disorder occurs. The interme-
VII. PATTERNS FOR t>1 diate behavior(transitions between isomorphic configura-

For completeness in this section stationary patterns ap}lons) is lacking in this case.
pearing for lower thresholdg>1 will be sketched briefly.
Figure 25 displays data for the mean occupancy rates of VIIl. CONCLUSIONS

every vertex gathered from a simulation dB{y with To conclude, we have presented a probabilistic model for
(t1,t)=(3,10). One realizes two relatively broad bands ofy |ocal-rule governed evolution of occupied and empty sites
mean occupancy rates. Investigating the structure§pof gp regular graphs. Aiming chiefly at a description of
=5(0.5) andS =G\ S, reveals that, analogously to the  |NW's in the immune system we studied two types of base
<1 situation both high- and low-mean-occupancy groupsyraphsGt) and G created by describing idiotypes by bit
completely decay into 2-clusters. Now, however, suchstrings and their functional interactions by “matching rules.”
2-cluster patterns are only existing with mean occupancyn contrast to most modeling approaches to idiotypic net-
rates(s)s, significantly smaller than 1 ans)s far above  works[5], the model abstains from all details of the dynam-
zero. Thus, since a “frozen” 2-clustered stdee Sec. Il ics of the real-life interactions of cells, but aims at under-
cannot subsist fot,>1, a fluctuating 2-cluster pattern is standing principal mechanisms of network formation.
formed. At every single time step only a part of the high- On G andG‘® the dynamics generated by the window
mean occupancy vertices is occupied. As a consequence, ralgorithm leads to organized network structures, which con-
all holes are stable. A part of the holes can become occupiedijst of functionally different subsets, distinguished, e.g., by
thus giving the necessary stimulation to the verticeSef their mean occupancy. On both types of base graphs for in-
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fluxes| small compared to the system size, a multitude ofis still much disputed. Apart from the “internal image hy-
such network patterns has been found. We developed a npothesis” several mechnisms are currently knowo-43.
tion of pattern stability and classified them as metastable. FaDne of these bases on certain céftdicular dendritic cell$
larger influxes one type of pattern prevails. In the case of th¢hat occasionally exhibit parts of antigen, which is deemed
one-mismatch graph&® patterns for intermediate influx enough to sufficiently stimulate the complementary
always consist of an arrangement of 2-clusters of holes anidliotype—allowing in this way idiotypic memory in a single
occupied vertices. We have given a classification of thesantigen-specific clone.
patterns and have described fluctuations around an ideal pat- Derived from our model, a mechanism for idiotypic
tern structure by a statistical approach via defects. IFor memory seems possible: Memory could be retained in a
>|. these 2-clustered patterns become unstable, and the sysngle antigen-specific clone that is not preferably stimu-
tem starts oscillating between periods during which a pattertated, but occasionally receives stimulation from the central
structure prevails and periods of disorder. Finally, increasingart of the network and from new complementary idiotypes
| further, the dynamics is marked by randomness and exfrom the bone marrow which serves as a background stimu-
tremely short lifetimes. We elucidated the nature of thesdus. This mechanism could collaborate with antigen presen-
transitions. tation by follicular dendritic cells.
These 2-clusters are nothing but the idiotype—anti- Two further issues that follow from the multigroup struc-
idiotype pairs that have been proposed as one mechanism fture of networks in our model seem worthwhile to note.
the preservation of memory of previously encountered anti- First, during its evolution the system generates a gi®up
gen. (The anti-idiotype represents the internal image of theof always suppressed idiotypes. Although the dynamics of
antigen[21,36.) Their arrangement in a coherent pattern,antigens differs from that of idiotypes, the existence of such
however, leads to an overall memory capacity of the networla group implies that there should be a set of antigens against
that increases only logarithmically with the system size. Thisvhich an individual is immune, without ever having been
is clearly insufficient for a real immune system. The paramimmunized against. More speculatively, one could identify
eter range where the coherent 2-cluster patterns emerge cehe setS; with a “mirror image of the molecular self.” Fol-
therefore not be the working regime of a healthy immunelowing this interpretation, antibodies belongingSpare au-
system. toreactive, but are almost always suppressed by the remain-
It is worthwhile to note that in this regiménd in all  der of the network. The actual location of this set is
regimes allowing for memory o6(?) the network connec- determined by encounters with other antigens and, chiefly, by
tivity decreases with growing simulation time, i.e., with the fortuitous history of the deployment of bone marrow in-
growing age. This is in accord with experimental observaflux during early life.
tions and was also found in other modeling approa¢Bgst As a second fact, while the number of autoantibodies in-
suggests that the networks’ gradually losing links is an esereaseg44], the bone marrow production is known to de-
sence of the limited range of allowed occupied neighbor deerease with growing ade2]. Here, additional to a decline in
grees and hence of crosslinking. connectivity till stationarity is reached, our model suggests
On the more densely wired grapl&® cube patterns another structural alteration of the network. Assuming for
have been found for an intermediate range of influxes. Inyoung individuals a working point of INW’s that is above the
creasingl beyond a threshold, the system then settles intgparameter regime of single-clone patterns, a decreased bone
dynamic “multiple-group” patterns. In this regime, several marrow production leads to smaller cores and an increasing
subsetsS; of the base grapi(® can be distinguished ac- periphery, i.e., an accumulation of memory and loss of plas-
cording to their mean occupancy. Vertices of these subsetiity.
also differ in the structure of the cluster éh, which they Summarizing our main result, taking into account differ-
typically belong to. Two of these subsets form a stronglyent levels of coarse graining of reaction affinities between
interconnected core ofi;, to which vertices of the other idiotypes—as represented by the base grapiy and
groups are bound with different strengths. Each of the otheGgZ)_|ead5 to two different regimes of steady-state behav-
subsets consists only of singletons and links to the core angys: (i) rigid “coherent” configurations orG® and (ii) dy-
some of the other groups. The core groups have been founghmic patterns oB? which are increasingly dominated by
to be always rarely populated, the major fraction of the popu1.clones. We conjecture that generally isolated clones are a
lation being typically contained in two of the other groups. consequence of a high connectivity of the network and high
The structure encountered in this parameter regime is ifhteraction strength between idiotypes. It is suggestive that
very good agreement with general ideas about the topologihe bone marrow influx is a driving mechanism for shaping
of INW's [21,27,37-3@ It exhibits a structured core that the structure of INW’s, which together with the interaction

could correspond to a central part generally believed to exis§trength of idiotypes, determines the working point of an
in INW’s. Furthermore, richly populated noncore groups arejnyy.

in good agreement with the notion of a peripheral part of

INW’s. Long lifetimes of vertices belonging to these groups

are in accord with the idea that the peripheral part of the

network is responsible for the preservation of idiotypic

memory. M.B. gratefully acknowledges financial support by the
The issue about the in detail working of idiotypic memory Sachsische Graduiertenfiderung.
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