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Survival-extinction phase transition in a bit-string population with mutation
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A bit-string model for the evolution of a population of haploid organisms, subject to competition, reproduc-
tion with mutation, and selection, is studied, using mean-field theory and Monte Carlo simulations. We show
that, depending on environmental flexibility and genetic variability, the model exhibits a phase transition
between extinction due to random drift and survival. For weak selection the population attains a neutral regime.
The mean-field theory describes the infinite-size limit, while simulations are used to study quasistationary
properties.
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[. INTRODUCTION gene$. The individuals undergo asexual reproduction, sub-
ject to mutation, competition, and selection. Selection is rep-
Many mathematical models have been proposed teesented though a survival probability that depends on the
describe the evolution of populationgl], focusing on difference between a genome and a ceridal genome.
varied aspects, for example, mutation accumulafipr6]  Varying the parameters in the survival probability, the im-
and adaptatiofi7—14]. Since its introduction in the context Plied “fitness landscape” varies from one having a single
of prebiotic evolution, Eigen’s mod¢R] of chemical repli- sharp peak to one having a broad maximum. Environmental
cators has attracted increasing interest in the mathematicehanges can be represented via alteration of this ideal. In the
description of populations subject to natural selection andresent study, however, the ideal genome is fixed, allowing a
mutation. As a model of molecular and viral evolution, manySystematic analysis of the effect of various other parameters
authors use it to study competition between replicators of th&lPon survival, so as to provide a benchmark for understand-
same Species with different production rd@ﬁ] or different ing the effects of a variable environment in future work.
kinds of replicators as, for example, competition between a We develop a mean-field theofyIFT) that describes the
viral population and the immune systdrt?]. Recently, the ~evolution of an infinite population exactly, since the latter
quasispecies model was also used to study the more fundfas no spatial structure. We also perform Monte Carlo simu-
mental problem of stability of different kinds of replicators lations of the model. The latter are useful for studying fluc-
[14]. tuations due to finite population size, which are not captured
A related prob|em is the deve|0pment of a Simp|e mode|in the MFT. We determine the survival-extinction phase
capable of describing the response of a population to envioundary, and compare the temporal evolution, and the ge-
ronmental mutability. Of interest, for example, is the ability nomic distribution of the population predicted by the MFT
of a population to adapt to rapid changes in its environmentagainst simulation results.
In this paper, we propose a model in which a genome is The paper is organized as follows. In Sec. Il, we define
represented as a String of binary Symb(ﬁs“bit-string”) the model and in Sec. lll, we develop the MFT. Section IV
[4,15], subject to mutation and selection. We use the modefiescribes the Monte Carlo simulation algorithm, while Sec.
to study the consequences of variation of the conditions af¥ reports the MFT and the simulation results. We present our
fecting survival, related to environmental flexibility, and the conclusions in Sec. VI.
genetic variability of the population. Our main interest is to

describe the conditions determining the extinction or survival Il MODEL
of the population. While our modélo be defined beloywhas '
certain aspects in common with Eigen’s modgikcrete ge- We study a model for evolution of a population of haploid

nomic sequences, genome-dependent reproduction effindividuals defined by their genomes, subject to competition,
ciency), an important difference is that here, as is common irasexual reproduction with mutation, and selection. In this
population biology studieg8], we allow the population size model, successive generations do not overlap. Each indi-
to fluctuate, even to the point of extinction. vidual is represented by a bit-string &f positions(genes,

In our model, the population evolves in discrete time withdenoted by the vectar= (o1 ,05, . .. ,0¢), Wwherea;=0 or
nonoverlapping generations. It consists of haploid organism&. The survival probability of an individual in the given
defined by their genotypéa bit-string of G positions, or environment is measured in relation to a “model individual”

(or “ideal genome’), represented by the sequenee=0,

i=1,...G. Each gene in state 1 represents a reduction
*Email address: kathia@escelsa.com.br in survival probability, and carries the same weight, in-
"Email address: dickman@fisica.ufmg.br dependent of its position Thus, the Hamming distance from
*Email address: atb@iceb.ufop.br the ideal genome, given byi=2X;0;, characterizes an
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individual's survival probability(This type of survival prob- theory and simulation are due to fluctuations that appear in
ability has been used in several studies of age-structurefinite-sized systems, but that are absent in the infinite-size
populationg 9—11].) The survival probability is given by limit.
In the full stochastic description there ar€ gistinct ge-
1+eB nomeso, and an integer-valued random variaiNg(t)=0
(D for each. Our first step in constructing a simplified descrip-
tion is to reduce the set of variables{H,t): the number

whereS(H) is the probability for an individual to survive up Of individuals with Hamming distancel from the ideal, at
to the stage in which she must compete with the rest of thdMe t. Since the model does not distinguish between indi-
population; individuals that survive the competition stage go/iduals with the same Hamming distance, the probability dis-
on to reproduce offspring, as detailed below. The parametdfibution at any time>0 will be a function ofH only, if it is

7, which plays a role analogous to temperature in equilibSO att=0. We shall always suppose this to be the case.
rium statistical mechanics, represents environmental flexibil- N the mean-field theory, the discrete-time evolution of the
ity. The parameteB is related to the genetic variability of the Population may be written as

population, and represents mutational tolerance, playing a

role analogous to the selection factor defined in certain theo- N(H,t+1)=E[N(H,t+ 1)[{N(H,0)}], (3

ries of populations, to describe the influence of deleterious : . .
mutations on the survival probabilifil5]. S(H)=1 for H where{N(H,t)} represents the entire set of population vari-

=0, and decays monotonically witH. We note that for ables "’!t step. In qther words, the pppulation at S.teﬁ.l is
fixed H andB, the survival probability is an increasing func- 2PProximated by itexpected valuegiven the distribution at
tion of 7, and that for fixedH and 7, Sis an increasing stept. (The latter, in turn, is given by the expected distribu-

function of B. For small~ and B, S(H) decays rapidly, so tion, given that for time — 1, and so on.The integer-valued
that only individuals withH clos'e to zero have an a’ppre- random variables of the exact description are therefore re-
ciable probability to survivésharply peaked “fitness” land- placed by a set of real-valued, deterministic variables.

scapg. For larger values oB the function exhibits a steplike d Et?]Chf _stgp .gf tlhe devc;lution cotrjtgistsf of two St‘giﬁf)i
change fronS~1 to S~0 for H=BGr, with an inclination eath of individuals due to competition for resourceder-

~1/7. The Fermi-like functionS(H) was used in a similar hulst stage’ and(2) reproduction with selection. In the Ver-

manner in the model of Thoret al. [9]. These authors de- hulst stage, the total population sike=2%,N(H) is evalu-

fine a death probabilitpy=[e*®~®+1]-1, whereg is an ated; then each subpopulation is reduced by the same factor,
inverse temperature ant { a) represents the difference be- V=1-N/Nmax, yielding the values

tween the typical number of mutations in the population and
the number of mutations of the individual.

At reproduction, each organism is replaced by two Oﬁ.’Note that the Verhulst stage involves an interaction between

r]ndividuals[N’(H) is a nonlinear function of alN(H)], and
that each individual interacts equally with all others in this
process.

S(H)= ———,
( ) eH/GT+eB

N'(H)=VN(H), H=0,...G. 4

numberm of mutations. Each position has a probabilityrof
to mutate(mutations 61 and 1-0 are considered equally

likely), with mutations at different positions constituting in- . L :
’ ) In the reproduction stage each individual is replaced by a
dependent events. The number of mutationtherefore fol- b 9 b y

. PN . _pair of offspring that have, in general, Hamming distances
lows a binomial distribution. The mean number of mutationsjigtarent from those of the parent. We assume independent
per reproduction eveni G, is set to unity in this study. y .

c e tindividuals i ted by the f equally probable mutations at each site, so that the number of
_~ompetiion amongst individuals IS represented by Ih€ 1w, 1ationsmin a given reproduction event is binomially dis-
miliar Verhulst factor

tributed:
N(t)

Nmax

vV=1-

G
’ @ P(m)=(nJAﬁK1—A)G‘m. (5)

whereN(t) is the population at timéandN,, is the maxi- . ] . )
mum capacity of the environment. The evolution of the[SinceG>1, while the mean number of mutation§ is of

population proceeds by discrete time steps: at each step, tigder unity, we may approximate(m) by a Poisson distri-
Verhulst factor is app"ed by Se|ecting at rand(ﬁimdepen_ bution in S|mu|at|0ns; we retain the binomial distribution in

dently ofH), NV survivors; the survivors go on to reproduce the MFT analysi. ' .
as described above. Each reproduction event may be represented schemati-

cally asH'—H,,H,, whereH’ denotes the Hamming dis-
tance of the parent and; andH, those of the offspring.
SinceH’—H,; andH'—H, are independent eventsven

We have developed a mean-field description of the modehough they happen simultaneouslit suffices to consider
defined above. For this model, which has no spatial structurene such, i.e.H' —H; let W(H|H') represent its probabil-
the deterministic mean-field description describes thaty. If the offspring differs from its parent at exactty posi-
infinite-size limit (N,ax—) exactly. Differences between tions, then,

Ill. MEAN-FIELD THEORY
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G—H’)( H’ )
Let m=mgy+m,, with my the number of mutations-61 Mo m—Mo
0 1 0 . p(moleryH,): . (6)
and m,; the number of type +-0. Each event is character- G

ized byH’, m, andmg. (Evidently, H=H’+my—m;=H’ ( )

+2mgy—m.) The probability of such an event is given by the

maO0H’'—m]sH=smin[H'+m,G].

m

hypergeometric distribution: Now usingmy=(H—H’'+m)/2, we have
W(H[H")=(G—H’ |H’|§ M-S .
(HIHD=( MY 2 TH=H +m ([(H —H+m) HtH'+m| (H'+H-m| ° @
2 ' 2 T2 ' 2 '

Next we observe that the expected numbesuriviving off- may survive until a certain maximum time {;,=30 000
spring with Hamming distancll produced by a parent with steps in the simulationsattaining a quasistationary state, or
Hamming distancet’ is W(H|H’)=2S(H)W(H|H’). Thus may go extinct. We record the Hamming distance distribu-
the expected number of individuals with Hamming distancetion in the quasistationary state.

H, at stept+1 is

G V. RESULTS AND DISCUSSION

E[N(H,t+1)[{N(H",1)}]= E W(H[H")N'(H'), Depending on the values & and r that characterize the
H=0 (8  Survival probability functionS(H), Eq. (1), the population
either survives or goes extinct. In the mean-field theory this
whereN’(H") is the distribution just after the Verhulst step. is a sharp transition. In simulations, due to finite population
The evolution of the population is found via numerical itera-size, fluctuations into the absorbing stappulation zerp

tion of Egs.(4) and(8). are to be expected. Indeed, for afigite system size the
population must eventually go extinct due to random drift, if
IV. SIMULATION ALGORITHM the process is permitted to continue indefinitely. We adopt

tmax=30000 as a convenient maximum time, allowing us to
We study the evolution of the model population in the discriminate between survival and extinction, afid the
Monte Carlo simulations. InitiallyNo=Np,4,/10 individuals  former casg study quasistationary properties, except very
of G=128 bits are generated, each with a random gene sewear the transition, where, as noted, the sharp distinction is
quenceo=(04,0,, ...,0g), Wherea;=0 or 1 with equal  blurred by fluctuations.
likelihood. The procedure is as follows. Figure 1 shows the phase boundary between survival and
(1) The Verhulst factorV=1—N(t)/Nnax is evaluated. extinction in theB-r plane, comparing the mean-field pre-
Then for each individual, a random numteis generated; diction against simulations usini,,=10"10, and 5
the individual survivegdies if s<V (s>V). X 10°. As Ny is increased, the survival-extinction line
(2) Each individual reproduces: two copies are createdfound in simulation approaches the MFT prediction, as ex-
with possible mutations. The number of mutationss given  pected. For small values af (a “hard” or inflexible envi-
by a random integer, chosen from a Poisson distribution withonmenj, survival of the population requires high values of
parameter 1. The mutation loci are selected at random. B, the mutational tolerance. The mean-field survival-
(3) For each daughter, the Hamming distaitérom the  extinction line of the diagram is obtained by fixing the pa-
ideal is evaluated, and a random numbeuniform on[0,1]  rameterr and measuring the stationary population density
is generated. If <S(H), the individual survives; otherwise, p=N/N,,,,as a function oB. Near the transitiorp depends

it dies. linearly onB: pcB—B,(7), as is normally the case in mean-
During the simulations, we record the population, averagsield descriptions of a continuous phase transition to an ab-
Hamming distance, the average survival probability, sorbing statd16]. The line B,(7) is readily obtained via
N(t) linear regression to thp(B) data near the transition. Note
(S(t)) = i 2 S(H)) 9 that B.=0 for 7>0.192. Forr<1, on the other hand,
N(t) =1 v «1/7. (Increasing the mutation probabilitx, the phase

boundary is displaced upward and to the right, enlarging the
and thesurvival rate S(t)=N(t)/N(t—1). (Note that in  extinction region. Figure 2 is a three-dimensional plot of the
general(S(t))<1, while S(t) may, in principle, take any population density as a function & and 7; the extinction
non-negative value, and is unity in the stationary stdde-  region is evident, as is the monotonic growthpofvith either
pending on the parameters B, andN,,,y, the population parameter.
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T FIG. 3. Time evolution of the population densigyfor 7=0.1
and B=4, in the MFT (smooth curvg and simulation
FIG. 1. Survival-extinction phase boundary in Ber plane for ~ _ ) ( P Rimax

AG=1. The solid line is the MFT prediction; dashed lines represent

simulation results foNmq,=5x 10°, 10°, and 18 (bottom to top. 454t 32 the value expected for a binomial distribution with

. . . . p=1/2 andN=128, giving a standard deviatiom=5.7.
Figure 3 presents a typical evolution of the populationgig, e 5 shows the stationary values(#f) andey, as func-
densityp(t). ForB andr in the survival phase, the popula- {ions of B, as predicted by the MFT; simulations yield very

tion exhibits a rapid initial decay and then evolves 10 agimjjar pehavior. In simulations, extinction occurs at larger

quasistationary state. Simulation and MFT evolutions are ifg \41ues than are predicted by the MFT, due to finite-size

good agreement, despite fluctuations in the former. effects, as noted above; the difference between simulation
The quasistationary distribution of Hamming distances,nq theory diminishes with increasing system size.
obtained in simulation is compared in Fig. 4 with the station-

ary distribution predicted by the MFT. In all cases, the dis-
tribution peaks near the mean val{t¢), and has a generally

Gaussian appearance. For fixedwe observe tha¢H) in- We propose a bit-string model of the evolution of a simple
creases monotonically witB, attaining aplateay if 7 is  haploid population. Similarly to previous studigs-11], the
sufficiently large. The plateau value(isl)=64, i.e., half the model includes the effect of enviromental flexibility and tol-
genome size, since this corresponds to the largest number efance to genetic differences on the survival probability. Un-
genome sequences. The plateau indicates that the populatifike previous works, we employ a survival probability that is
has attained a neutral regime: individuals have nearly the monotonic increasing function of the paramet@rand r

same survival probability, independent of the Hamming disthat represent tolerance of genetic difference between a given
tance, due to weak selection. For fixBdwe observe that

VI. SUMMARY

(H) increases withr, until attaining(H)=64. The variance =001, B=15 1=0.1, B=5
of the distribution behaves similarly. Its saturation value is %% N 0.10
020 | - 0.08
0.15 | . 0.06
P P
0.10 | - 0.04
005 | . 0.02
0.00 L L 0.00
10 15 20 25
H
1=0.2, B=5
o 0.08 ——T—T—
MFT
.Nm.:\x=104 0.06 | E
=N, =10°
B AN =5x10° P oo4r 1
0.02 | .
0.00 —
35 45 55 65 75
H
FIG. 2. Population density as a function oB and = from the FIG. 4. Stationary Hamming distance distribution for various
MFT. For 7=0.192, the population survives for any valueRf parameters, as indicated.
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80 . . vides no information regarding fluctuations. On the other
hand, simulations for parameter values in the active phase
I yield information on the quasistationary state of a finite sys-
60 - 4 tem (N,ax<°°). It is also of interest to obtain tHdetime of

I this quasistationary state, or, equivalently, the mean first-
I passage time to extinction. Such information can, in prin-
H 40 - 1 ciple, be obtained from simulations, or from a probabilistic

I analysis of finite populations starting from the master equa-
I tion [17]. Given the large number of random variables in-
20 1 volved (G+1, if we assume that the probability depends

I only on Hamming distanced), the multivariate Fokker-

I Planck equation would seem the most convenient tool; theo-

ol retical analysis of finite populations is left as subject for fu-

0 5 10 15 ture work. The simulation results reported here should prove
B useful in testing such theories.

Another interesting direction for future study is the re-
sponse of the population to changes in the environment.
Such changes can be represented by variations in the ideal
genome(as presented in Reff10,11,18) and/or in the pa-

genome and the ideal. The model is studied via computerrameterST’ B, A, andNmay. A related question is that of

simulations and the mean-field theory, which are in gooofranSItIonS in the genome Q|str|butlon when two or more
agreement Ideals (corresponding to distinct, well-adapted types in the

The model, like many others in population dynamics Or“fitness" landscapg exist. Studies of these problems using

epidemic analysis, exhibits a continuous transition betweeHje bit-string model are in progress.
an active phasésurvival) and an absorbing on@xtinction.

We map out the phase boundary in tBer plane, and find
clear evidence of mean-field-like critical behavior, as in other A.T.B. acknowledges the kind hospitality of the Departa-
population models lacking spatial structides]. The mean- mento de Bica-UFMG. This work was partially supported

field description is exact in the infinite-size limit, but pro- by the Brazilian Agencies CNPq, FINEP, and FAPEMIG.

FIG. 5. Dependence of Hamming distanceBfor 7=0.1 in the
MFT. Central line: mean Hamming distanc®{); upper and lower
lines represent one standard deviation above or below the mean.

ACKNOWLEDGMENTS

[1] B. Drossel, Adv. Phys50, 209 (2001). [12] C. Kamp, C.O. Wilke, C. Adami, and S. Bornholdt, e-print
[2] M. Eigen, Naturwissenschaftes8, 461 (1971). cond-mat/02096182002.
[3] M. Eigen and P. Schuster, Naturwissenscha@gn7 (1978. [13] S. Bonhoeffer and P. Sniegowski, Natuteondon 420 367
[4] T.J.P. Penna, J. Stat. Phy&g, 1629(1995. (2002.
[5] A.T. Bernardes, Physica 230, 156 (1996. [14] C.P. Ferreira and J.F. Fontanari, Phys. Rev6% 021902
[6] P.R.A. Campos and J.F. Fontinari, J. Phys32\L1 (1999. (2002.
[7] R. Burger and M. Lynch, EvolutioiLawrence, Kang.49, 151  [15] D. Charlesworth, M.T. Morgan, and B. Charlesworth, Genet.
(1995. Res.59, 49 (1992.
[8] B. Charlesworth, Evolution in Age-Structured Populations [16] J. Marro and R. DickmanNonequilibrium Phase Transitions
(Cambridge University Press, Cambridge, 1994 in Lattice Models(Cambridge University Press, Cambridge,
[9] J. Thoms, P. Donahue, D. Hunter, and N. Jan, J. PHys1689 1999.
(1995. [17] R. Dickman and R. Vidigal, J. Phys. 35, 1147(2002.
[10] S. Cebrat and A. Pekalski, Eur. Phys. J1B 687 (1999. [18] C.O. Wilke, C. Ronnewinkel, and T. Martinez, Phys. R&#9,
[11] A. Pekalski, Physica R65 255 (1999. 395 (200)).

031915-5



