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Dispersal of spores following a persistent random walk
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1Unité Biomathématiques et Epide´miologie, ENV-Lyon—INRA 1, avenue Bourgelat, Boiˆte Postale 83, 69280 Marcy L’Etoile, France

2Laboratoire Pathologie Ve´gétale—INRA, Boiˆte Postale 01, F-78850 Thiverval Grignon, France
~Received 3 September 2002; published 20 March 2003!

A model of a persistent random walk is used to describe the transport and deposition of the spore dispersal
process. In this model, the spore particle flies along straight line trajectories, with constant speedv, which are
interrupted by scattering, originating from interaction of spores with the field and wind variations, which
randomly change its direction. To characterize the spore dispersal gradients, we have derived analytical ex-
pressions of the deposition probability«(r uv) of airborne spores as a function of the distancer from the spore
source in an infinite free space and in a disk of radiusR with an absorbing edge that mimics an agricultural
field surrounded with fields of nonhost plants and bare land. It is found in the free space that«(r uv)
;e2ar / l , with a a function of l d / l , where l and l d are the scattering and deposition mean free paths,
respectively. In the disk, however,«(r uv) is an infinite series of Bessel functions and, exhibits three regimes:
absorbing (R, l d), intermediate (R5 l d), and deposition (R. l d).

DOI: 10.1103/PhysRevE.67.031913 PACS number~s!: 87.23.2n, 02.50.Ey, 05.10.Gg
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I. INTRODUCTION

Dispersal of living organisms is a critical issue in seve
fields of ecological research. Living organisms need to d
perse to colonize new territory, escape predators, paras
or competitors, find trophic resources or more clem
weather conditions, encounter an appropriate mate for br
ing, etc. Therefore, dispersal might be one of the most
portant components of establishment, persistence, and e
tion of populations. Several qualitative and quantitat
aspects of dispersion have been addressed in two recent
books Refs.@1,2#. For a given organism, the geographic
range of dispersal can be approximated by the dispersal f
tion of the organism or its propagules. This function
mostly shaped by the dispersal means and behavior~when
applicable! and their relations with the surrounding biot
and abiotic environment.

Several plant diseases of economic importance~e.g., ce-
real rusts and powdery mildews, potato late blight, and ap
scab! are spread by microscopic windborne spores. In or
to infect new host plants and therefore contribute to the
velopment of an epidemic disease, spores produced on
fected plants must be released by wind gusts and/or
drops, carried away by wind currents, and finally deposed
susceptible host plants@3#.

Experimental studies of spore dispersal from single
fected plants or small disease foci have shown that the n
ber of spores deposited sharply decreases with increa
distance from the spore source. The resulting curve i
given direction or after averaging data over a given spac
the monotonically decreasingspore dispersal gradient@4#.
Empirical models, such as the power law and the sim
exponential models can easily be fitted to the experime
spore-dispersal gradients@5#. These models usually yield
good fitting and are parameter sparse, but they are unab
explain how the gradient arose@4#, even if heuristic ration-
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ales for the choice of a given distribution as the spo
dispersal function were suggested@6#. Therefore, physical
models, based on an explicit description of the supposed
persal mechanisms, are required to better understand the
persive phases of disease@7#.

Gradient transfer theory (K theory! and Gaussian plume
models of turbulent dispersal have been used to desc
spore dispersal@8–10#. However, such models, althoug
relatively easy to use, cannot predict accurately spore
persal in the complex meteorological situations that are co
mon over diseased fields@7#. Random walk models, which
simulate the trajectories of individual spores, have been
plied in a few cases to spore dispersal within crop@10,11#.
Parameter calibration of these models required precise m
surement of several meteorological variables, such as do
stream and cross-stream components of wind velocity
friction velocity @12#, which might not be performed accu
rately in all experimental situations.

More general mechanistic models, which did not inclu
explicit weather variables, have been used to derive a m
ematical expression for the spore-dispersal gradient, th
called ‘‘contact distribution’’@13,14#. Considering that the
distribution of moving spores follows a Gaussian dens
with a variance that increases linearly with time, the resu
ing contact distribution was found to be a Bessel funct
@15,16#.

In this paper, we consider a persistent random walk mo
for spore movement where the random walk is caused
scatteringevents that change the direction of the spore t
jectory from its initial direction. The scattering originate
from interaction of spore particles with the field and var
tions in wind velocity components. To study the effect
scattering on spore-dispersal gradients, we apply the tr
port equation and characterize the spore-dispersal grad
in two situations:~i! an infinite homogeneous space, here
ter referred to as ‘‘free space,’’ and~ii ! a disk with absorbing
edge, which might be a better representation of an agri
tural field surrounded by fields of nonhost plants and b
land @17#. In the latter case, long-distance spore disper
©2003 The American Physical Society13-1
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which has been demonstrated in wind-borne plant pathog
@18,19#, is not considered and all spores leaving the disk
longer contribute to the epidemic process. To complete
infection process, spores have to be deposited on suscep
plant surface. In our model, it is assumed that the deposi
of spores may occur anywhere with a homogeneous p
ability per unit of time. Mechanisms of spore deposition, s
gravity and scrubbing by rain drops@3#, are not explicitly
modeled but they contribute in a random manner to sp
deposition.

II. TRANSPORT EQUATION AND DISPERSAL
FUNCTIONS

Consider an ensemble of spores released atr50 with a
constant modulus of the velocity. Letu be the angle made b
the unit vectoru of the direction in which a single spor
particle moves along a fixed axis, say thex axis, andr and
v(u)5vu denote the position and velocity of the spore.
describe the motion of the spore we consider that the sp
particle travels along straight line trajectories, with const
speed, which are interrupted by scattering that rando
changes its direction. Scatterings are assumed to be sta
cally independent events of zero duration, and the time in
val between successive scattering~or the time spent moving
along any given straight line without changing directions! is
a random variable described byge2gt, whereg is the scat-
tering frequency. After each single scattering, the probab
density of changing the direction of the spore path from
initial directionu0 to u is peq(u), assumed to be independe
of u0.

For this type of motion, the evolution of probability den
sity, P(r ,u,tuv), of finding the spore particle atr moving
with constant speedv in the directionu at time t can be
modeled by the transport equation

]P~r ,u,tuv !

]t
52v~u!•“P2gP1gpeq~u!E

2p

p

du8

3P~r ,u8,tuv !, ~2.1!

where we assume the initial condition,P(r ,u,t50uv)5d(r
2r0)d(u2u0). Mathematical framework for the derivatio
of transport equation for dispersed objects in a fluid can
found in Refs.@20,21#. The initial value problem for Eq
~2.1! can be rewritten in integral form as

P~r ,u,tur0 ,u0 ,v !5e2gtG0~r ,u,tur0 ,u0 ,v !

1gE
0

t

dt8E dr 8E
2p

p

du8e2g(t2t8)

3G0~r ,u,t2t8ur 8,u8,v !peq~u8!

3E
2p

p

du9P~r 8,u9,t8ur0 ,u0 ,v !,

~2.2!

where the traveling wave,G0(r ,u,tur0 ,u0 ,v)5d„r2r0
2v(u)t…d(u2u0), is the solution of Eq.~2.1! in the limit
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g50. In a homogeneous space, the dens
P(r ,u,tur0 ,u0 ,v) is a function ofr2r0 such that we can se
r050. We are interested in what follows by the reduc
probability density,

P~r ,tuv !5E
2p

p

du0E
2p

2p

duP~r ,u,tuu0 ,v !peq~u0!,

~2.3!

which is the probability density of finding the spore partic
at positionr and with velocityv at time t regardless of the
direction of the motion. After performing the angle avera
overu0 andu in Eq. ~2.2!, we find thatP(r ,tuv) satisfies the
integral equation,

P~r ,tuv !5e2gtG0~r ,tuv !1gE
0

t

dt8E dr 8e2g(t2t8)

3G0~r ,t2t8ur 8,v !P~r 8,t8uv !. ~2.4!

Now Laplace-Fourier transforming this equation and solv
the resulting equation for the reduced probability distrib
tion, we get

P̄~k,suv !5
Ḡ0~k,s1guv !

12gḠ0~k,s1guv !
, ~2.5!

where the Laplace-Fourier transform of any functionf (r ,t)
is defined asf̄ (k,s)5*0

`dreik•r*0
`dte2stf (r ,t), and thus,

Ḡ0~k,s1guv !5E
0

`

dreik•rE
0

`

dte2(s1g)tE
2p

p

du0

3E
2p

2p

duG0~r ,u,tu0,u0 ,v !peq~u0!

5E
2p

p

du
peq~u!

~s1g!2 ik•v~u!

5E
2p

p

du
peq~u!

~s1g!2 ikv cos~u!
. ~2.6!

For isotropic scattering, i.e.,peq(u)51/(2p), the integration
can be readily performed to give

G0~k,s1guv !5@~s1g!21~gkl !2#21/2, ~2.7!

where the scattering mean free pathl 5v/g is the average
distance a spore travels before scattering, i.e., before ch
ing its flight direction. For anisotropic scattering, however
fairly good approximation ofG0 can be obtained from Eq
~2.7! provided thatl is replaced by the transport mean fre
path l * 5 l /@12^cos(u)&#, which is the length scale beyon
which the scattering angles are randomized. In what follo
we will restrict ourselves to the isotropic case.

Now, we consider that the spore particles are stopped
deposited anywhere with a homogeneous probabilitym
5m(v) per unit of time. It may be worthwhile to mention a
this stage that the spore deposition rate is in general a fu
3-2
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tion of velocity asm5ms1v/ l c , wherems represents the
sedimentation rate constant andl c the compaction length
over which the deposition of spores increases as their ve
ity gets larger. Similarly, we define the mean deposition
capture lengthl d5v/m as the average distance a spore tr
els before deposition. The object we are after to is the con
density function or the spore-dispersal density function
fined as

C~r u0,v !5C~r uv !

5mE
0

`

e2mtP~r ,tuv !dt

5m P̄~r ,muv !

5
m

2pE0

`

e2 ik•r P̄~k,muv !dk. ~2.8!

This function gives the density of spores deposited at
tancer from the source when released with the initial velo
ity v. However, it may be more convenient for practic
purposes to deal with the probability«(r ) that a spore is
deposited at distance greater than or equal tor from the
source,

«~r uv !5E
r

`

C~r 8uv !dr 8. ~2.9!

In the absence of any absorbing obstacles, the conserv
of the probability implies that«(0uv)51 and «(r→`uv)
50. However, when there is a loss of probability due
absorbing boundaries, for instance,«(0uv)5mt,1, wheret
is the lifetime of the spore particle in the field before eith
deposition or escape from the area under observation.
deed, the spore lifetimet in the presence of absorbin
boundaries is smaller than the lifetime 1/m in the absence o
absorbing boundaries because of additional loss of spor
absorbing boundaries. This results in less spores deposit
the field. These features will be illustrated in the followin
sections.

III. DISPERSAL IN FREE SPACE

As an application of the above formula, we consider
isotropic dispersion of spores in an infinite homogene
field. In this case, the probability density of spores is

P̄0~k,suv !5
1

A~s1g!21~gkl !22g
. ~3.1!

Laplace-Fourier inversion of this expression is given in R
@22# as,
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P0~r ,tuv !5
d~r / l 2gt !

2p lr
e2gt

1
exp@2gt1A~gt !22~r / l !2#

2p l 2A~gt !22~r / l !2
H~gt2r / l !,

~3.2!

whereH(z) is the Heaviside step function defined asH(z)
51 for z.0 and H(z)50 for z,0. The spore-dispersa
density and the deposition or captured probability are rea
obtained from integrations of Eq.~3.2! as follows:

C0~r uv !5
exp@2~11 l d / l !r / l d#

2p l dr

1E
1

`

dx

expH 2
r

l d
F S 11

l d

l D x2
l d

l
Ax221G J

~2p l l d!Ax221
,

~3.3!

and

«0~r uv !5E
r / l d

`

dxexpF2S 11
l d

l D x1
l d

l
Ax22S r

l d
D 2G .

~3.4!

Figure 1 shows that this function~solid lines! decays expo-
nentially as a function ofr / l d with a rate depending onl d / l .
That is to say,«0;e2r / l d for l d! l and «0;e2r /Al l d for l d
@ l .

This behavior can also be understood by considering
ballistic and diffusion regimes of the spore motions. Inde
the mean square displacement of a spore particle is

FIG. 1. Probabilities in Eq.~3.4! ~solid lines! and in Eq.~3.8!
~dashed lines! as a function of the reduced distancer / l d from the
focal for various values ofl d / l as quoted in the figure.
3-3
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^r 2&5E
0

`

2pr 3P~r ,t !dr52l 2@e2gt1gt21#

.H ~ lgt !2, gt,1

4Dt, gt.1,
~3.5!

where D5g l 2/2 is the diffusion constant. It follows from
this expression that the spore motion can be approximate
a ballistic motion for timest,1/g and by a diffusive motion
for times t.1/g. This is the equivalent of writing

Papp~r ,tuv !5H~12gt !Pb~r ,tuv !1H~gt21!Pd~r ,tuv !,
~3.6!

where Pb(r ,tuv)5d(r 2vt)/(2pr ) and Pd(r ,tuv)
5e2r 2/4Dt/(4pDt) are the probability densities for ballisti
and diffusion motions, respectively. Now, using this appro
mate expression ofP(r ,tuv) into Eq. ~2.8!, and carrying out
the integration, we obtain the approximate spore-dispe
density function as

Capp~r uv !5
exp~2r / l d!

2p l dr
H~ l 2r !

1E
l /r

` dx

2p l l dx
expH 2

r

l d
S x1

l d

2lx D J . ~3.7!

It is an easy matter to show that whenr , l we have
Capp(r )5@1/(2p l dr )#e2r / l d like for wave propagation in
ballistic motion, while for r . l it is Capp(r )
5@1/(2p l l d)#K0„(2r 2/ l l d)1/2

… like for the diffusion @16#.
Similarly, the probability«app(r uv) is given by

«app~r uv !5@e2r / l d2e2 l / l d#H~ l 2r !

1
r

l d
E

l /r

`

dxexpH 2
r

l d
S x1

l d

2lx D J . ~3.8!

This function~dashed line! is compared to«0(r uv) in Fig. 1.
It is clear that the approximate formula describes very w
the exact probability«0(r uv) in the limit of l d! l and l d
@ l . As a check, we have«app.exp(2r/ld) when r , l ~bal-
listic regime! and «app.(2r 2/ l l d)1/2K1„(2r 2/ l l d)1/2

…;exp
(22r/A2l l d) when r . l ~diffusion regime!.

IV. DISPERSAL INSIDE A DISK WITH ABSORBING EDGE

In this section, we investigate the effect of boundaries
the spore-dispersal density function and the deposition p
ability. To this end, we consider the isotropic dispersion
spores within a disk bounded by an absorbing edge. T
latter mimics the escape of spores leaving the disk. To de
mine the expression ofP̄(r ,s) for the disk with absorbing
boundary, we consider the expansion

P̄~r ,suv !5 (
n51

`

Ān~suv !cn~r !, ~4.1!
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where the eigenfunctioncn(r )5A2J0(anr /R)/@RJ1(an)#
andJi(•••) is a Bessel function of first kind of orderi and
an are zeros ofJ0(•••) @23#. The eigenfunctionscn(r ) are
normalized such that*0

Rrcn(r )cm(r )dr5dnm . Thus, it fol-
lows that

Ān~suv !5E
0

R

rcn~r !P̄~r ,suv !dr5
cn~0!

2p
P̄0~k5an /R,suv !,

~4.2!

whereP̄0(k,suv) is given in Eq.~3.1!. This gives

P̄~r ,suv !5 (
n51

`

@A~s1g!21~ang l /R!22g#21

3
J0~anr /R!

pR2J1
2~an!

. ~4.3!

Using this expression in Eq.~2.8! leads to

C~r uv !5
l

l d
(
n51

`

@A~11 l / l d!21~anl /R!221#21

3
J0~anr /R!

pR2J1
2~an!

, ~4.4!

and, after integration of this latter expression with respec
r we obtain

«~r uv !5
l

l d
(
n51

`

@A~11 l / l d!21~anl /R!221#21

3
2

anJ1~an! F12
rJ1~anr /R!

RJ1~an! G . ~4.5!

This function is displayed in Fig. 2. It is clear from th
figures that due to the additional absorbing edge the sp
lifetime t in the disk is smaller than 1/m as «(0uv)5mt
,1. Three different regimes can be drawn.

Absorbing regime, R, l d . This case is dominated by th
loss of spores escaping from the disk. The lifetime of spo
in the disk increases with the ratiol d / l indicating that the
more the spore motion is diffusive~i.e., R@ l ) the more
spores are deposited in the field.

Intermediate regime, R5 l d . As a result of equal length
scales for the absorption~or escaping! and deposition, the
lifetime of spores in the disk is enhanced and the deposi
probability has the same general trends as a function ofl d / l
like in the absorbing regime, i.e., larger«(r uv) corresponds
to spore diffusive motions.

Deposition regime, R. l d . In this case, the depletion o
spores is dominated by the deposition in the field rather t
by the escape or absorption. As above, the lifetime of spo
in the disk is larger than in the intermediate regime but w
different general behavior. Almost all spores are deposite
the field for diffusive (R@ l andl d@ l ) spore motions while a
small fraction is absorbed when spores undergo ballistic m
tions (R< l and l d< l ).
3-4
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FIG. 2. Probability in Eq.~4.5! as a function of the reduce
distancer /R from the focal for various values ofl d / l as quoted on
the figure. Panels~a!, ~b!, and~c! correspond toR/ l d50.5, 1, and
2, respectively.n550 values ofan have been used to compu
«(r uv).
03191
To gain some insight in the discrimination between dep
sition and absorption to the total spore depletion, one
estimate the fraction of deposited spores from the relatio

D«~r uv !5
«~r uv !

«0~r uv !
, ~4.6!

where«0(r uv) and«(r uv) are given in Eqs.~3.4! and ~4.5!,
respectively.D«(r uv) is the fraction of spores which are de
posited at the distancer from the source out of 100% o
spores reaching that distance; the corresponding fractio
absorbed spore is simply 12D«(r uv). Figure 3 shows that
the fractionD«(r uv) decreases withr approachingR and
when the spore motion goes from diffusive to ballistic on
Combination of Figs. 2 and 3 indicates that the fraction
deposited spores at a given distancer decreases on going
from deposition to absorbing regimes.

V. CONCLUDING REMARKS

The model we developed in this paper describes the de
sition probability of airborne spores according to the distan
from the spore source. Although it is known that source
ometry ~height and area of diseased part of a crop! might
dramatically shape spore-dispersal gradients@4#, we have
considered only the transport and deposition subproce
involved in the overall spore-dispersal process. Biophys
mechanisms affecting spore dispersal~i.e., removal, trans-
port, and deposition of the spores! have been extensively
characterized: removal of wind-borne spores has been sh
to occur mostly during short wind gusts causing high turb
lence @24#, which have been characterized in various cr
and weather situations@25,26#. Explicit models of spore dis-
persal in relation to turbulence have been validated and
plied to practical phytosanitary problems@27–29#. In our
model, we do not characterize explicitly the biophysical e
vironment within which spores are traveling. Though, w
develop in a first approximation a simple model of transp

FIG. 3. Fraction in percentage of deposited spores in Eq.~4.6!
as a function ofr /R for various values ofl d / l as quoted in the
figure.
3-5
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for description of complex processes occurring in real sit
tions. Our goal is to establish simple relations between pr
ability of spore dispersal and a few parameters of biolog
significance~Figs. 1 and 2!. As far as we are aware, th
present model is the first attempt to apply concepts of sta
tical physics to phytopathology and to consider airbo
spores as particles submitted to swift changes in flight dir
tion and random deposition, without any explicit descripti
of weather factors.

Among the parameters used in the model, those with
most straightforward biological interpretation areR and l d ,
the radius of the field and the average distance traveled
spore before deposition, respectively. The latter param
can be estimated for several pathosystems by fitting a sim
function, such as a negative exponential function, to exp
mental plant disease or spore-dispersal gradient@4,5#. As
shown in Fig. 2, the simulated pattern of spore depositio
dramatically affected by the ratioR/ l d . This ratio can also be
related to the two opposed mechanisms of autodepos
and allodeposition by which spores produced in a given a
whatever its unit and size, are deposited on the very s
area and outside the area, respectively. The frequency o
lodepositionf is one of the most important parameters
models of plant disease spread within genetically hetero
neous crops@30#. When restricting for instance the ‘‘field’’ to
a single plant, autodeposition on the source plant should
cur for R< l d , while allodeposition occurs for a field with
several plants whenR. l d . The biophysical determinism o
autodeposition vs allodeposition, which would help to eva
ate the parameterf, is still not fully understood.

The ratio l d / l ~Figs. 1 and 2! of the average distance
spore traveled before deposition to the average distan
spore traveled before scattering would be more difficult
evaluate in field conditions. Increased turbulence may
crease scattering and therefore decreasel, but its effect onl d
might be more complex. The average distance a spore t
d

ls

d

i-
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eled before deposition depends on several other factors.
instance, occurrence of rain will cause an increase in sp
deposition by washing off the air@3#, and therefore a de
crease inl d . Experimental assessment of spore scatter
could anyway be attempted, at least in controlled conditio
using flow visualization technology@31#. This model dis-
cussed above considers both ballistic (l d! l ) and diffusive
( l d@ l ) spore motions. Most models of passive dispersal
spores by wind~e.g., Refs.@6,13,15#! consider spore motions
to be a diffusive process. Ballistic motion would be mo
appropriate for spores forcibly discharged from fruiting bo
ies, such asSporobolomycesballistospores@32#, which have
a very restricted dispersal range.

Although initially designed for studying spore dispers
our model could be already useful for a broader range
spreading organisms. Scattering is a component of rand
walk models used for insects, but occurs in this case
much larger time and space scales@33#. In the case of
smaller, wind-borne propagules, such as spores, pollen gr
@34#, or small seeds@35#, dispersal was supposed in mo
cases to be driven by the main wind direction, and chan
in the flight direction before deposition were not address
Such changes might be of relevance when considering lo
distance dispersal@36–38# and contribute to the difficulty of
assessing correctly the tails of dispersal gradients.

However, this work can be extended in number of dire
tions. Indeed, we have assumed up to now that the sp
particles travel with a constant velocity. The next improv
ment of the model will be to include the velocity dynamics
assuming, for instance, that the spore velocity undergoe
diffusion process. This leads to a spore-dispersal proc
with fluctuating mean free path. Another issue is to deal w
the turbulence by using the appropriate distribution funct
of time interval between successive scattering. Such exte
ing works are underway.
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