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Dispersal of spores following a persistent random walk
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A model of a persistent random walk is used to describe the transport and deposition of the spore dispersal
process. In this model, the spore particle flies along straight line trajectories, with constani spdech are
interrupted by scattering, originating from interaction of spores with the field and wind variations, which
randomly change its direction. To characterize the spore dispersal gradients, we have derived analytical ex-
pressions of the deposition probabiligyr|v) of airborne spores as a function of the distanéem the spore
source in an infinite free space and in a disk of radusith an absorbing edge that mimics an agricultural
field surrounded with fields of nonhost plants and bare land. It is found in the free space(tha)
~e @' with & a function ofl4/I, wherel and |, are the scattering and deposition mean free paths,
respectively. In the disk, however(r|v) is an infinite series of Bessel functions and, exhibits three regimes:
absorbing R<ly), intermediate R=14), and depositionR>14).

DOI: 10.1103/PhysRevE.67.031913 PACS nuner87.23-n, 02.50.Ey, 05.10.Gg

[. INTRODUCTION ales for the choice of a given distribution as the spore-
dispersal function were suggesté@l]. Therefore, physical
Dispersal of living organisms is a critical issue in severalmodels, based on an explicit description of the supposed dis-
fields of ecological research. Living organisms need to dispersal mechanisms, are required to better understand the dis-
perse to colonize new territory, escape predators, parasitgsersive phases of diseasd.
or competitors, find trophic resources or more clement Gradient transfer theoryK( theory and Gaussian plume
weather conditions, encounter an appropriate mate for breednodels of turbulent dispersal have been used to describe
ing, etc. Therefore, dispersal might be one of the most imspore dispersa|8—10. However, such models, although
portant components of establishment, persistence, and evoltelatively easy to use, cannot predict accurately spore dis-
tion of populations. Several qualitative and quantitativepersal in the complex meteorological situations that are com-
aspects of dispersion have been addressed in two recent texton over diseased field§]. Random walk models, which
books Refs[1,2]. For a given organism, the geographical simulate the trajectories of individual spores, have been ap-
range of dispersal can be approximated by the dispersal funplied in a few cases to spore dispersal within cf&p,11.
tion of the organism or its propagules. This function isParameter calibration of these models required precise mea-
mostly shaped by the dispersal means and behdwben surement of several meteorological variables, such as down-
applicable and their relations with the surrounding biotic stream and cross-stream components of wind velocity and
and abiotic environment. friction velocity [12], which might not be performed accu-
Several plant diseases of economic importateg., ce- rately in all experimental situations.
real rusts and powdery mildews, potato late blight, and apple More general mechanistic models, which did not include
scal) are spread by microscopic windborne spores. In ordeexplicit weather variables, have been used to derive a math-
to infect new host plants and therefore contribute to the deematical expression for the spore-dispersal gradient, there
velopment of an epidemic disease, spores produced on imralled “contact distribution”[13,14]. Considering that the
fected plants must be released by wind gusts and/or raidistribution of moving spores follows a Gaussian density
drops, carried away by wind currents, and finally deposed omith a variance that increases linearly with time, the result-
susceptible host plan{s]. ing contact distribution was found to be a Bessel function
Experimental studies of spore dispersal from single in{15,16.
fected plants or small disease foci have shown that the num- In this paper, we consider a persistent random walk model
ber of spores deposited sharply decreases with increasirfgr spore movement where the random walk is caused by
distance from the spore source. The resulting curve in acatteringevents that change the direction of the spore tra-
given direction or after averaging data over a given space igctory from its initial direction. The scattering originates
the monotonically decreasingpore dispersal gradien4].  from interaction of spore particles with the field and varia-
Empirical models, such as the power law and the simpldions in wind velocity components. To study the effect of
exponential models can easily be fitted to the experimentadcattering on spore-dispersal gradients, we apply the trans-
spore-dispersal gradien{$]. These models usually yield port equation and characterize the spore-dispersal gradients
good fitting and are parameter sparse, but they are unable o two situations:(i) an infinite homogeneous space, hereaf-
explain how the gradient aro$é], even if heuristic ration- ter referred to as “free space,” ariid) a disk with absorbing
edge, which might be a better representation of an agricul-
tural field surrounded by fields of nonhost plants and bare
*Email address: d.bicout@vet-lyon.fr land [17]. In the latter case, long-distance spore dispersal,

1063-651X/2003/6(8)/0319137)/$20.00 67 031913-1 ©2003 The American Physical Society



D. J. BICOUT AND |. SACHE PHYSICAL REVIEW E67, 031913 (2003

which has been demonstrated in wind-borne plant pathogeng=0. In a homogeneous space, the density
[18,19, is not considered and all spores leaving the disk ndP(r, 6,t|rq, 6y,v) is a function ofr —ry such that we can set
longer contribute to the epidemic process. To complete the,=0. We are interested in what follows by the reduced
infection process, spores have to be deposited on susceptilpeobability density,

plant surface. In our model, it is assumed that the deposition
of spores may occur anywhere with a homogeneous prob-
ability per unit of time. Mechanisms of spore deposition, say,

P(r,t|v)=fﬁ deofiﬂdHP(r,G,ﬂGo,v)peq(eo),

gravity and scrubbing by rain drofd8], are not explicitly (2.3
modeled but they contribute in a random manner to spore
deposition. which is the probability density of finding the spore particle
at positionr and with velocityv at timet regardless of the
Il. TRANSPORT EQUATION AND DISPERSAL direction of the motion. After performing the angle average
FUNCTIONS over 6, and# in Eq. (2.2), we find thatP(r,t|v) satisfies the

. ] integral equation,
Consider an ensemble of spores released=dad with a

constant modulus of the velocity. Létbe the angle made by t ,

the unit vectoru of the direction in which a single spore P(r,t|v)=e*VtGO(r,t|v)+yfodt’f dr'e”?t"t)
particle moves along a fixed axis, say thexis, andr and

v(#)=vu denote the position and velocity of the spore. To X Go(r,t—=t'|r",v)P(r' t'|v). (2.9

describe the motion of the spore we consider that the spore

particle travels along straight line trajectories, with constanfNow Laplace-Fourier transforming this equation and solving
speed, which are interrupted by scattering that randomlghe resulting equation for the reduced probability distribu-
changes its direction. Scatterings are assumed to be statistion, we get
cally independent events of zero duration, and the time inter-

val between successive scatterifog the time spent moving

along any given straight line without changing directipiss

a random variable described e~ "', wherey is the scat-

tering frequency. After each single scattering, the probabilityyhere the Laplace-Fourier transform of any functidm, t)

density of changing the direction of the spore path from its . Y (o qr ek (Pt oSt
initial direction 6, to 6 is pey ), assumed to be independent 's defined ad (k,s)=fodre™ [odte f(r.t), and thus,

go(k,S‘l‘ ’}/|U)
1- 'yao(k,s+ ylv) ’

P(k,s|v)= (2.5

of (90. . % . o0 T
For this type of motion, the evolution of probability den- Go(k,s+ y|v)=f dre"”f dte (% W‘f dé,

sity, P(r,6,t|v), of finding the spore particle at moving 0 0 o
with constant speed in the directioné at timet can be -
modeled by the transport equation XJ doGy(r,6,t|0, 00,0)Ped 0o)

JP(r,0,t|v ™

(TH:—v(G).VP—yP-}—ypeq(ﬁ)f de’ :j” g Ped )

- —m (s+y)—ik-v(6)
XP(r,0' t|v), 2.1
o - :JW A p— L 2.6

where we assume the initial conditioR(r,0,t=0|v)= &(r —w  (s+vy)—ikvcog6)’ '

—ro)8(0— 6y). Mathematical framework for the derivation
of transport equation for dispersed objects in a fluid can béor isotropic scattering, i.epe( #) = 1/(27), the integration
found in Refs.[20,21]. The initial value problem for Eq. can be readily performed to give
(2.1) can be rewritten in integral form as
Go(k,st ylv)=[(s+7)%+(vk1)?] V2 (2.7)
P(r,0,t|r0,00,1)):e77’[60(r,0,t|r0,00,U)
where the scattering mean free pathv/y is the average
N ftd ,f ,f" o y(t—t) distance a spore travels before scattering, i.e., before chang-
y t' | dr do'e S T X ) )
0 —r ing its flight direction. For anisotropic scattering, however, a
fairly good approximation ofs, can be obtained from Eq.
X Go(r,0,t—t'[r",0",v)ped 0") (2.7 provided thatl is replaced by the transport mean free
- path I* =1/[1—(cos(@))], which is the length scale beyond
X j do"P(r',0",t'|ry,6p,v), which the scattering angles are randomized. In what follows,
e we will restrict ourselves to the isotropic case.
(2.2 Now, we consider that the spore particles are stopped and
deposited anywhere with a homogeneous probability
where the traveling wave,Gg(r,6,t|rq,0,0)=38(r—rq = u(v) per unit of time. It may be worthwhile to mention at
—v(6)t)8(0— 6p), is the solution of Eq(2.1) in the limit  this stage that the spore deposition rate is in general a func-
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tion of velocity asu=ustuvl/l;, where ug represents the 10° T T T
sedimentation rate constant ahd the compaction length
over which the deposition of spores increases as their veloc-
ity gets larger. Similarly, we define the mean deposition or
capture lengthy=v/u as the average distance a spore trav-
els before deposition. The object we are after to is the contact
density function or the spore-dispersal density function de-
fined as
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—CY 0 1 2 3
—,LLP(r,/.L|U) r/ld

_ zij e K TP(K, u|v)dk. 2.9 FIG. 1. Probabilities in Eq(3.4) (solid line and in Eq.(3.9)
™Jo (dashed linegsas a function of the reduced distancé, from the
focal for various values ofy/l as quoted in the figure.

This function gives the density of spores deposited at dis-

tancer from the source when released with the initial veloc- _ o(rll—yt) _ t
) ) . . Po(r,tjv)=—F5———¢€77
ity v. However, it may be more convenient for practical 27lr
purposes to deal with the probabilig(r) that a spore is 5 5
deposited at distance greater than or equat tilom the ex — yt+V(yt) = (r/1)%]

+ H(yt—r/l),
source, 2712\ (yt) 2= (r/1)?

(3.2

s(rlv)=fer(r’|v)dr’. (2.9

whereH(z) is the Heaviside step function defined ld$z)
=1 for z>0 andH(z)=0 for z<0. The spore-dispersal

, _density and the deposition or captured probability are readily
In the absence of any absorbing obstacles, the conservati§ytained from integrations of E¢3.2) as follows:

of the probability implies that(0jv)=1 and &(r—o=|v)

=0. However, when there is a loss of probability due to

absorbing boundaries, for instane¢p|v) = u7<1, wherer c exd —(1+1g/Dr/lg]

is the lifetime of the spore particle in the field before either olrfv)= 2l yr

deposition or escape from the area under observation. In- . | |

deed, the spore lifetime- in the presence of absorbing - )y, ld o
boundaries is smaller than the lifetimeulin the absence of * exp{ Id[<1+ [ )X VX 1“
absorb@ng boundar_ies be(_:ause of additional loss of spore at + J; dx (ZW”d)m d
absorbing boundaries. This results in less spores deposited in
the field. These features will be illustrated in the following 3.9
sections.

and

Ill. DISPERSAL IN FREE SPACE

° I I r\?
As an application of the above formula, we consider the 80(r|v)=f dxex;{— 1+ 4 X+ 4 x2—<—> }
isotropic dispersion of spores in an infinite homogeneous g ' ' lg
field. In this case, the probability density of spores is 3.4

Figure 1 shows that this functiosolid line9 decays expo-
1 (3.2) nentially as a function of/1 4 with a rate depending ol /1.
(st 7)2+ (yk) 2=y ' That is to saygo~e~"'d for |4<I| andey~e " \d for |4
>,
This behavior can also be understood by considering the
Laplace-Fourier inversion of this expression is given in Ref.ballistic and diffusion regimes of the spore motions. Indeed,
[22] as, the mean square displacement of a spore patrticle is

Po(k,slv)=
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o B where the eigenfunctiony,(r)=v2Jg(anr/R)/[RI(ay)]

(r3)= fo 2mr®P(r,ydr=217[e" "'+ yt—1] andJ;(- - -) is a Bessel function of first kind of ordérand
a, are zeros ofly(- - -) [23]. The eigenfunctiong,(r) are

(Iyt)2, <1 normalized such tha,tgr Un(r) n(r)dr=34,,. Thus, it fol-

2[ 4Dt p>1, (3.5  lows that

l/ln(o)ﬁo(k=an/R,s|v),

. R —
where D=11%/2 is the diffusion constant. It follows from An(s|v)=f rgo(r)P(r,slv)dr= 5
this expression that the spore motion can be approximated by 0 m
a ballistic motion for times<<1/y and by a diffusive motion (4.2

for timest>1/y. This is the equivalent of writing wherePy(k.s|v) is given in Eq.(3.1). This gives

Papd F:t[v) =H(1—yt)Py(r,tlv) + H(yt—1)Py(r,t|v), B %

(3.6 P(rslv)=2 [V(s+ 9+ (an//R?=y] "
n=1

where  Py(r,tlv)=48(r—vt)/(2mr) and  Py(r,tjv)

—e "“MP/(47Dt) are the probability densities for ballistic

Jo( Oan/R)

—_—. 4.3
and diffusion motions, respectively. Now, using this approxi- szJi(an) 43
mate expression d®(r,t|v) into Eq.(2.8), and carrying out ) ) o
the integration, we obtain the approximate spore-dispersa#sing this expression in E¢2.8) leads to
density function as |-
— 2 2_ -1
] ey C(rlv) Idg,l[\/(lﬂlld) +(ayl/R)Z—1]
app(r|v)—T|dr (I=r)
Jo( anr/R)
= dx r lg . X—szJz(a 3 (4.9
”r—zﬂ_”dxex —E X+m . ( 7) 1\ &n

and, after integration of this latter expression with respect to
It is an easy matter to show that when<l we have r we obtain
Capd)=[1/(2ml4r)]e~""d like for wave propagation in .
ballistic  motion, while for r>1 it is Cyp{r) _|_ 5 7 4a-1
=[1/(27l 4) 1Ko((2r?/11 ))¥?) like for the diffusion [16]. 8(r|v)—|d n; [N(1+1/1g)%+ (el /R)?—1]
Similarly, the probabilitysapp(rlv) is given by

« 2 rdi(a,r/R) 4
eapdrlv)=[e Mda—e dIH(I-1) andy(ap) RJ(ay) | @9
r(= r lg This function is displayed in Fig. 2. It is clear from the
* Ef.,,dxeXp[ TV 21 ] (3.8 figures that due to the additional absorbing edge the spore

lifetime 7 in the disk is smaller than &/ as e(0|v)=pur

This function(dashed lingis compared ta(r|v) in Fig. 1.~ <1. Three different regimes can be drawn.
It is clear that the approximate formula describes very well Absorbing regimeR<ly. This case is dominated by the
the exact probabilityso(r|v) in the limit of 14<I and |4 loss of spores escaping from the disk. The lifetime of spores

>|. As a check, we have,,~exp(~r/l) whenr<I| (bal- in the disk increases with the ratlg/l indicating that the
listic regime and &g~ (2r2/11 g) 2K, ((2r%/11 ) %) ~exp ~ More the spore motion is diffusivé.e., R>I) the more
(—2r/\2Ily) whenr > (diffusion regime. spores are deposited in the field.

Intermediate regimeR=14. As a result of equal length
scales for the absorptiofor escaping and deposition, the
lifetime of spores in the disk is enhanced and the deposition

In this section, we investigate the effect of boundaries orProbability has the same general trends as a functidg /bf
the spore-dispersal density function and the deposition prodike in the absorbing regime, i.e., large(r|v) corresponds
ability. To this end, we consider the isotropic dispersion ofto spore diffusive motions.
spores within a disk bounded by an absorbing edge. This Deposition regimeR>14. In this case, the depletion of
latter mimics the escape of spores leaving the disk. To detefiPores is dominated by the deposition in the field rather than

mine the expression dP(r,s) for the disk with absorbing py the escape or absorpt_ion. AS. above, Fhe Iifeti.me of Spores
boundary, we consider thé expansion in the disk is larger than in the intermediate regime but with

different general behavior. Almost all spores are deposited in

% the field for diffusive =1 andl ;>1) spore motions while a

P(r.slv)= A (s r, 4.1 small fraction is absorbed when spores undergo ballistic mo-
(r.slv)= 2, An(slo)ga(r) 4D fons R=I andl <).

IV. DISPERSAL INSIDE A DISK WITH ABSORBING EDGE
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FIG. 2. Probability in Eq.(4.5 as a function of the reduced
distancer/R from the focal for various values ¢f /I as quoted on
the figure. Panel&), (b), and(c) correspond tdR/14=0.5, 1, and
2, respectivelyn=50 values ofa,, have been used to compute
e(r|v).
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FIG. 3. Fraction in percentage of deposited spores in(E®)
as a function ofr/R for various values of 4/l as quoted in the
figure.

To gain some insight in the discrimination between depo-
sition and absorption to the total spore depletion, one can
estimate the fraction of deposited spores from the relation

g(rlv)
go(rlv)’

Ae(rlv)= (4.9

wheree(r|v) ande(r|v) are given in Eqs(3.4) and(4.5),
respectivelyAe(r|v) is the fraction of spores which are de-
posited at the distance from the source out of 100% of
spores reaching that distance; the corresponding fraction of
absorbed spore is simply-1Ae(r|v). Figure 3 shows that
the fractionAe(r|v) decreases withi approachingR and
when the spore motion goes from diffusive to ballistic one.
Combination of Figs. 2 and 3 indicates that the fraction of
deposited spores at a given distancdecreases on going
from deposition to absorbing regimes.

V. CONCLUDING REMARKS

The model we developed in this paper describes the depo-
sition probability of airborne spores according to the distance
from the spore source. Although it is known that source ge-
ometry (height and area of diseased part of a ¢gropght
dramatically shape spore-dispersal gradiddfs we have
considered only the transport and deposition subprocesses
involved in the overall spore-dispersal process. Biophysical
mechanisms affecting spore dispergat., removal, trans-
port, and deposition of the spojeBave been extensively
characterized: removal of wind-borne spores has been shown
to occur mostly during short wind gusts causing high turbu-
lence [24], which have been characterized in various crop
and weather situatiorf25,26. Explicit models of spore dis-
persal in relation to turbulence have been validated and ap-
plied to practical phytosanitary problemi7—-29. In our
model, we do not characterize explicitly the biophysical en-
vironment within which spores are traveling. Though, we
develop in a first approximation a simple model of transport
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for description of complex processes occurring in real situaeled before deposition depends on several other factors. For
tions. Our goal is to establish simple relations between probinstance, occurrence of rain will cause an increase in spore
ability of spore dispersal and a few parameters of biologicatleposition by washing off the afi3], and therefore a de-
significance(Figs. 1 and 2 As far as we are aware, the crease inly. Experimental assessment of spore scattering
present model is the first attempt to apply concepts of statiscould anyway be attempted, at least in controlled conditions,
tical physics to phytopathology and to consider airborneysing flow visualization technolog}31]. This model dis-
spores as particles submitted to swift changes in flight direczssed above considers both ballistig<1) and diffusive

tion and random deposition, without any explicit descr|pt|on(|d>|) spore motions. Most models of passive dispersal of

of weather factors. . . :
. . spores by winde.g., Refs[6,13,15) consider spore motions
Among the parameters used in the model, those with th?o be a diffusive process. Ballistic motion would be more

most straightforward biological interpretation dReand| 4, . . . o i
the radius of the field and the average distance traveled by %azpr;)féﬁfgg:)rscft:)c:ﬁjsn:;r:gs{ayllligltzzgirr%eg;Sovmvr:circ?rlwtlr?gvt;()d

spore before deposition, respectively. The latter parameter : .
can be estimated for several pathosystems by fitting a simp@ very restngte_d d|sper§al range. . .
function, such as a negative exponential function, to experi- Although initially designed for studying spore dispersal,
mental plant disease or spore-dispersal gradjér]. As  OU' quel could. be already yseful for a broader range of
shown in Fig. 2, the simulated pattern of spore deposition i§Préading organisms. Scattering is a component of random
dramatically affected by the rati/l,. This ratio can also be Walk models used for insects, but occurs in this case on
related to the two opposed mechanisms of autodepositiofiuch larger time and space scalgg3]. In the case of
and allodeposition by which spores produced in a given aregMmaller, wind-borne propagules, such as spores, pollen grains
whatever its unit and size, are deposited on the very samé4], or small seed$35], dispersal was supposed in most
area and outside the area, respectively. The frequency of atases to be driven by the main wind direction, and changes
lodeposition¢ is one of the most important parameters inin the flight direction before deposition were not addressed.
models of plant disease spread within genetically heterogeSuch changes might be of relevance when considering long-
neous crop$30]. When restricting for instance the “field” to distance dispers@B6—38 and contribute to the difficulty of
a single plant, autodeposition on the source plant should oassessing correctly the tails of dispersal gradients.
cur for R<l4, while allodeposition occurs for a field with However, this work can be extended in number of direc-
several plants wheR>14. The biophysical determinism of tions. Indeed, we have assumed up to now that the spore
autodeposition vs allodeposition, which would help to evalu-particles travel with a constant velocity. The next improve-
ate the parametap, is still not fully understood. ment of the model will be to include the velocity dynamics in
The ratiol4/1 (Figs. 1 and 2 of the average distance a assuming, for instance, that the spore velocity undergoes a
spore traveled before deposition to the average distance diffusion process. This leads to a spore-dispersal process
spore traveled before scattering would be more difficult towith fluctuating mean free path. Another issue is to deal with
evaluate in field conditions. Increased turbulence may inthe turbulence by using the appropriate distribution function
crease scattering and therefore decréabat its effect oy of time interval between successive scattering. Such extend-
might be more complex. The average distance a spore traig works are underway.
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