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Tumbling of vesicles under shear flow within an advected-field approach
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We study dynamics of vesicles with a viscosity contrast between the interior and exterior, and subjected to
a linear shear flow. It is shown that the vesicle, which assumes a steady orientation with respect to the shear
flow for r= %, / 5o, <r. (Wheren,, and n,, are the internal and external viscosities, apds a critical value
which depends upon the swelling fadtoandergoes @&umbling bifurcation forr=r.. Tumbling occurs as a
saddle-node bifurcation. We present analytical and numerical results. We develop a powerful method, the
advected-field approach. This method allows one to treat several different phenomena with great flexibility.
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Problems in which a viscous fluid interacts with a deform-this analysis is that the tumbling occurs as a saddle-node
able entity are of paramount importance in the study ofbifurcation. We account for this bifurcation on the basis of
blood, polymer solutions, and suspension of liquid dropletsgeneral considerations.

For example, over the last decades considerable efforts have Recent approaches to vesicle dynaniigs7] have used a
been devoted to the understanding of circulation physiologypoundary integral formulation based on the Green'’s function
and suspension rheolo¥,2] with the aim of elucidating the technique. Due to the linearity of the Stokes equation, a free
mechanisms that govern the human red cell transport both igpace Green’'s function is easy to compute. For non-
vivo andvitro. Under shear flow red blood cells may align at Newtonian fluids, such a formalism is not available. In addi-
moderate shear rates. When the same blood is diluted enougjan, boundary integral methods do not allow for a topology
with plasma the same cells undergo a tumbling pro€gks change in a natural way. In order to handle this problac,

In this paper we deal with the tumbling process and dehocrules have been prescribgg. In this paper we develop
velop a powerful method, the advected-field approach. As &e advected-fieldapproach. This method, though it is di-
starting point for the modeling, we concentrate on the dy-rectly inspired by the phase-field approdske Ref[10] for
namics of a single vesicle made of pure phospholipidsa recent review poses a challenge, since one must impose a
Vesicles are closed membranes, which are suspended in &¢al incompressibility of the local area element of the mem-
aqueous solutiofd]. They constitute a model system of bio- brane. Thus, a difference with respect to traditional phase-
logical membranes. field approaches lies in the introduction of dynamics along

One of the major difficulties in studying the interaction the contour. Note that since the membrane is not a boundary
between a vesicle and an external hydrodynamic flow lies iletween “true” phases, but rather between the two domains
the free-boundary character of it vesicle shape. That is, thef the same phase, we have felt it more legitimate to call this
shape is not givem priori but it results from a compromise method the “advected field{the membrane is advected by
between flow, bending energy, and various physical conthe flow.
straints. This results in nonlocal and nonlinear equations. As is the case with phase-field approaches, the crux of the
Studies allowing for shape evolution of vesicles have beedvected-field(AF) approach is to introduce an auxiliary
made possible only recentfs—7] with the assumption that field ¢(r,t), which varies continuously, albeit abruptly, from
the same fluid is inside and outside the vesicle. The red cethe interior (#=—1) of the vesicle to the exteriorf(=1).
problem has several known theoeretical treatments, analytiFhus, instead of treating the membrane, as usual, as a geo-
cal works based on lubrication thedry] as well as numeri- metrical location on which boundary conditions are to be
cal studies(see Ref.[8] for a recent review The precise imposed(this is thesharp-boundarymethod, hereafter re-
analysis of tumbling has not been yet analyzed, either foferred to as SB the boundary is the location of a rapid
vesicles or for red cells. The first aim of the present paper ispatial variation of¢. The membrane is advected by the
to analyze the tumbling transition for vesicles, which is aflow. Appropriate evolution equations feF are
simpler system than red cellsvhich have a cytoskeleton,
and the rheology of which is still a matter of debat®ur L)
strategy is to have a full understanding of this system before ot —V-Vote,
including further complexity.

We find that if the viscosity inside the vesicle;,, is 1 )
different from that outsidey,;, then the vesicle undergoes o _ o202, & 2
a tumbling bifurcation atr= 7,/ 7, =r., Wherer, is a Eintrinsicl ¢] f jdxdv{4(1 )7+ 7 (Vo) ]
dimensionless quantity which depends on the swelling factor (2
(defined below. For r<r., the vesicle assumes a steady
state solution with its long axis making an angle with theMinimization of this function in a one-dimensional geometry
shear flow direction. One of the results that emerges fronwith the boundary conditiong(*=>)==*1 leads to the so-
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lution ¢(r)=tanh¢/ey2). The width of the boundary is
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the Reynolds number is never exactly equal to zero, but lies

. , - 2 ; ot
€72 For ease of presentation, we shall confine ourselves tiypically between 10% and 10 in most situations of

two dimensions. We have checké&ske belowthat this cap-
tures three-dimensional3D) physical features. The term
Eintrinsic Plays the role of a local restoring force to the de-
sired tanhlike shapeE;,iinsic 1S Similar to a Landau-

interest.
The pressure field must be adjusted to ensure incompress-
ibility:

V.v=0.

Ginzburg free energy with used coexistence between two

“phases” ¢=—1 and¢p=1. The|V ¢| term is used here to

In the presence of a viscosity contrast between the interior

cure a generic problem due to wall energy, which is nothing,q the exterior of the vesiclezA - v in the Stokes equation

but the surface energy. The quantitys the curvature in the
AF spirit, to be defined below. As a vesicle has no surfac
tension, this term is introduced precisely in order to canc
the wall free energy11,12,.

The next step is to specify the dynamics of the velocity

field in the whole domain. For that purpose one must deterﬁe|

mine the membrane forces. The Helfrigh] free energy in

the AF sense takes the form
K |V ¢
EconfigZEJ fdxdycz +J J dXdsz. (3

The curvature field can easily be expressed in terms¢oif

we define the normal vector fiell and the tangential onie
asn=V ¢/|V ¢|, t=nxz. This definition corresponds to the
choicedt/ds= +cn in curvilinear coordinates. One can eas-
ily check thatc=—V - n. « is the bending rigidity and(r,t)

is, in the SB sense, a Lagrange multiplier which enforce

vl
2

local incompressibility of the vesicle area in the course of o . : : .
P y d’apld variation of the fieldp. Besides this advantage, imple-

time. ¢ is a more complex field, which cannot be expresse
as a simple functional o (it is history dependent, as we
shall see beloyv The functional derivative 0E;qntig pro-
vides us with the membrane force,

3

2

V¢l

(4)

— K

Fconfig: +EV(EVC)}6+§CF1+EV§E}

which reduces to the two-dimensior{@D) expression in the
SB limit [6], whene— 0 [11]. Note that in that limi{ V ¢|/2
coincides with as function across the membrane. Once the
force is known, we are in a position to write the hydrody-
namical equation:

ov

€, E = 77AV_ VP+ Fconfiga

©)

A

has to be substituted b#[ 7(djv;+ d;v;)] since n is now
osition-dependent. Note that repeated indices are to be
ummed over. A simple prescription fay is 7= 7,1

+ )12+ in(1— ) /2.

Finally, the( field has to be determined. To date no phase-
d model has dealt with a field along the tangent of the
contour. We introduce the following dynamical law:

P V-V +Tt-(t-V)y,

(6

where T is a tensionlike constant ard(t- V)v represents

t-gv/as in the SB limit, which is nothing but the local ex-
tension rate of the membrane. With this prescriptignis
proportional to the local extension of the membrane. Impos-
ing a large enough enforces a vanishingly small extension.
The{ reaction is confined within the membrane thanks to the

Sz‘i—like function in Eq.(4).

The boundary position is automatically encoded in the

menting any new effect, such as viscosity contrast, requires
no special deal. Finally, any other hydrodynamical constitu-
tive law (e.g., for complex fluidscan be accounted for with
no additional conceptual complication.
It remains to be shown formally that in the limét—0,
the AF equations reduce to the SB ones used in [B¢fThis
is performed by gsingulay formal expansion of Eqq1)—
(6) [11]. We have checked that the relaxation towards equi-
librium shapeg13], as well as the orientation of the vesicle
in a shear flon[5] (in 2D and 3D obtained with the SB
method with»;,= 7., are captured by the AF approach.
We now address the tumbling problem. We consider that
the vesicle is subjected to a linear shear flow givenuy
=vy andv,=0 (x is the horizontal coordinate in Fig,),1
where v is the shear rate. We can form five independent
parameters. The first trivial one is the viscosity ratio. The
effective Reynolds number is defined Bs= €, YR?/ 7oyt
whereR is the effective radius obtained frogs/ =, whereS

wheree, is a density scale, which is related to the relaxationis the enclosed area. For most simulations we have chosen

time. €, will be chosen in such a way that inertia is small
(the Stokes limit. We could set the left-hand side of E&)

Re.~10 2 so that inertia is small. The second parameter is
the “capillary” number associated with the bending mode,

to zero. Then we should have been forced at each time steQ, = 7,,,yR%/ k, and this number is taken to be of order one

to solve a static equation by a Newton-Raphson schem
(since the equation is nonlinear due to the dependeneg of
on ¢; see below It is well known that this procedure does
not always lead to convergentaven if a solution does exist,
the Newton-Raphson scheme may fail to find limposing a
small enough value fog, allows us to treat the dynamics in

@neaning that the shape of the vesicle changes under flow on
the same time scale as that associated with the flow, as is
observed experimenta)lyThe tension field defines another
capillary numberC,= 7., yR/T, which is taken to be very
small (typically 10" %) in order to preserve local incompress-
ibility of the membrane on the time scale imposed by the

an iterative scheme, a straightforward procedure. In any cashear flow. Finally, the “transition” width of the advected
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FIG. 3. Critical viscosity ratia . as a function ofr. This figure

illustrates the disagreement between the theory of Ref] and

simulation data forr<<0.95. A 3D branch for a prolate shape is also

o . shown. Amazinglyf . reaches a plateau at low valuesfwhich
FIG. 1. The vesicldin gray) with r =0.75. Arrows represent the corresponds to.=7.

local velocity field. Shear flow is along theaxis.

field e is taken to be small enough in comparison to thethe tension field.. This sets serious limitations on the use of

vesicle size(typically less than 0)L The viscosity ratio and their results for deformable entities, such as erythrocytes, or

the swelling factor have been varied in a quite wide range aVGSiCIGS' In the present paper an arbitrary shape evolution,
1ing q g 8ompatible with forces entering into play, are allowed. Re-
shown in Figs. 2 and 3. As far as the other parameters a

r(‘?ently in Ref.[8] a boundary integral method for capsules

concerned, we have' hot yet scanned th_e Who'? parametﬁ([is been used. It was noted that tumbling may occur after a
space, but have confined ourselves to typical realistic value%

For example, the vesicle rigidity varies for most phospholip ertain value of the viscosity contrast. However, the precise
. o H - ) f li i ic ch h his i
ids within a limited range(typically between 28T and nature of tumbling and its generic character and how this is

. o . nnected with dissipation have remain nanswer -
40kgT, wherekgT is the thermal excitation energywithin connected with dissipation have remained unanswered ques

. : . . tions. These questions are analyzed in this paper.
this range the ove_rall_tumk_)lmg picture is unaffected, though We shall merely report on the physical results, leaving the
some minor quantitative differences are detected. A systenhu '

. ) “humerical scheme with various details for a future publica-
atic scan of the whole parameter space will be performed Bon [11]. Our notations together with the nature of the ve-
the future. :

The behavior of a particle in a shear flow is a long- locity fields are shown in Fig. 1. Under shear flow, dynamics

) ’_reveal the following behaviors. At a small enough viscosity
standing problenj14]. Several attempts have been made INcontrastr = i Dou<Te, the vesicle assume@fter tran-

the context of red blood celll5-18. These authors make sientg a steady-state orientation with angle Note that the

several important simplifications. For example, to date non ) . : )
of them took into consideration either the free—boundarﬁnembrane undergoestank-treadingmotion. The angle de

character, i.e., that the shape is not givenpriori (but pends both on the aspect rafiar swelling factorr, defined

evolves with hydrodynamical constraints the dynamics of as=4mS/P?, whereSis the internal ared? the perimeter
Y y y (2D); for a circle r=1] andr. For a givenr, the angled

decreases on increasingintil it reaches 0 at. (Fig. 2). The
same scenario holds for a giverwhen decreasing. Forr

0.21 — Theory i >r., the vesicle tumbles with a complex tank-treading mo-
tion. We have noted that the tumbling transition is sensitive

01k 7=0.987 - to the boundary effects: for a small box tumbling is delayed
S due to the increase of dissipation with the walls. We have

increased the size of the box in numerical simulations. So
far, when the size exceeds about three times the vesicle size,

stable

unstable 9,08\ ™ 10974 only minor changes are observed. This must be subject to
A/’ T=|0'908 . caution, however, since in 2D the wall effect might still be

~lg 5 . 10 . 15 20 detectable even at long distances and thus some quantitative
viscosity ratio » “drift” of the results may be revealed. Extensive quantitative

FIG. 2. Stationary angl@ vs the viscosity ratio for several studies a_re currently under |nvest|gat|on._ . .
swelling factors7. The full lines correspond to the fixed shape Tumbling occurs as a saddle-node bifurcation. That is,

theory[16], while the symbols are the simulation data. A finite size Cl0S€ tor the steady-state branat{r) (corresponding to a
scaling analysis has been performed to cope with finite size effect$addle in the terminology of bifurcationseases to exist for
The dashed line corresponds to the unstable branch=@.908 in >, whereby it merges with an unstable brarfobde as

the AF approach. Agreement is good only for 0.9, while below ~ shown in Fig. 2. In contrast to usual instabilities, for which
more than 100% disagreement is visible. This is may be due to athe stable branch turns into an unstable or metastable branch
improper account of tank treading. abover., no steady-state solution exists in the present case
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abover.. Tumbling is thus not an instability in the usual an ellipsoidal droplet is obtained, aligned in the flow direc-

sense. tion, that cannot be broken at any shear rate. In any of these
Given these results, it is important that one understandases, tumbling occurs. Tumbling is present within vesicles

this behavior on the basis of general considerationsnibe ~ not only due to viscosity contrast, but also due to the fact that

a unit vector, pointing along the main axis of the vesicle, andhe contour of the vesicle cannot be stretckiedcontrast to

let us treat the vesicle as a local “dipole” in a fluidith no droplets. Thus the local incompressibility dealt with here is

extent on scales of the systenFrom Newton's law and essential for tumbling.

kinematics, one can write an evolution equafibt] for m as Finally, inspection of the dissipation
follows: -
e Ehydro: J 5(

W=rﬁ-m+arﬁ-1\+ﬁrﬁ. (7)

&Ui (9()1'
-t —

2
(9Xj X ) dv (9)

generated by the AF dynamics reveals several interesting fea-

The left-hand side is the rate of rotatiom=(V-v—V tures that are briefly presented. The global dissipation de-
-vT)/2 is the vorticity tensor. This term describes the rigid C€@S€S as is increasedat constantr). So far, we have

body rotation in the velocity field. The last two terms are thefound that dissipation exhibits a minimuiil] for r=rc. A
viscous forceA, the symmetric part of the stress tengre  Prior there is no reason that the general Rayleigh principle

first contribution to the force is linear in the velocity gradi- _applies, as boundaries are not fi{dd]. It may be noted that

: . : in the blood, red cells under shear become elongated and
end, and ’BA 's a Lagrange multiplier enforcmg a Aconstant oriented in the flow, conferring on the blood a shear thinning
length form.AAfAter a scalar product of Eq7) with m one property[3] (collapse of the actual viscosity on increasing
getsg=—am-m:A. a is a parameter specifying the geom- the shear rate When the cell concentration is low, cells
etry of the body, and for an ellipsoid it should coincide with tumble precisely in order to reduce the dissipation. Thus
a=[(a/b)*~1]/[(a/b)*+1] (a andb are the length of the tumbling is an alternative way for cells to lower the dissipa-
long and short axes of the ellipsas found from a direct tjon. We have found that the dissipation inside the vesicle is
calculation by Jeffery14] for a rigid body. The most serious negligible in comparison with that outside. This result can
point is to determine the stress tensor, which is a formidabl@asny be understood since for a circular shéggherical in
task in general. Neglecting backflow, we can simply write3p) tank treading corresponds to a global rotation of the
v=yyX. Writing m=[cos(),sin(f)], one obtains vesicle and the sphere moves as a rigid body inside. Thus no
dissipation occurs. The only internal dissipation results from
a deviation from sphericity. From these considerations and
Eq. (9), one expects the following scaling law for the dissi-
pation inside the vesicle to hold:

90
y E=—1+§cos{20). (8)

From this expression, a steady angle can exisf>fl; a
value of 1 would correspond t6=0, the critical angle. For Ein® 7inv 21— 1), (10)
a rigid ellipse, we havet=[(a/b)?>—1]/[(a/b)?+1]<1
and, therefore, no steady-state solution exists; tumbling the@where v,,,,, is the tank-treading velocity. The exponemt
always occurs. If the tank-treading fld@1] motion is taken  must be equal to one since we expect no critical behdirior
into account(which depends om;, and 7., £ is NOW a  the sense of instabiliti¢svhen r— 1. Numerical evaluation
function of the viscosity ratia [18] and it may be either of o confirms this result within good accuraégctually, a
greater or smaller than unity. There is then a critical value =0.9).
for which £&=1. After[18] it happens that the steady solution  |n summary, we have developed an advected-field ap-
exists forr<r.. Close tor., but below,é—1~A(r.—r),  proach, which opens an avenue of promising powerful appli-
where the constanA>0 since {>1 (steady regime We  cations for the study of the interaction of deformable entities
thus havey '96/dt=A(r.—r)— 6%2, where two steady- with flows. In light of this work, matters such as droplet-
state branche®.~ *\r.—r are found. Forr>r., these droplet collision and fusion, bud emission in vesicles, and
branches cease to exist. Linear stability analysis around thiereakup of droplets under shear, in both Newtonian and non-
steady-state solutions easily shows thatis stable whiled_ Newtonian fluids, become quite accessible. Besides the prob-
is unstable. lem of vesicles, where boundary integral methods have been
As stated above, a rigid body would tumble without used[5-7], several works on droplet breakup have been per-
threshold. For vesicles we have demonstrated the existenéermed under sheaifor a review, see Ref.9]). In order to
of a threshold value: the viscosity inside must be greater thaallow for a topology change, a quite natural problem during
that outside(a ratio, which depends on the swelling fagtor droplet shearing, some rules must be invented within the
Liquid droplets[9] with a viscosity is approximately four integral formulation, and often in aad hocmanner{9] (not
times smaller than that of the ambient fluid either assume & mention the fact that the increase of the number of inter-
steady-state shape with the long axis making a certain angfaces occurring, for example, after breakup, must be dealt
with the flow (if the shear rate is small enougbr break up  with explicitly; see Ref[20] and Refs. therejn These are
into smaller droplets(if the shear rate exceeds a certain front-tracking methods, contrary to our method, which treats
valug. For a viscosity contrast larger than about 4,very naturally the change of topology, and does not
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need to follow any interface. In addition, the proliferation of For example, we neglected the spontaneous curvature effect,
interfaces does not add new complexity within the AF ap-as well as the area difference between the two monolayers
proach. Note that volume-of-fluid interface trackiffl], or  [23]. The presence of a spontaneous curvature in the model
level set methodg22] could also be alternatively used, but to is equivalent to an effective surface tensisnch as our field
date none of these methods has been used for vesicles, apfplus a termfcds wherec is the curvature. In 2D this is
only qualitative results on droplet breakup are available. jrrelevant, while in 3D it plays a role, and it can be included
In conclusion, we have demonstrated the power of thetraightforwardly, since in our model integrals on curvature
advected-field method in the context of tumbling. Our reSU't%re a|ready evaluated. Another important effect is the area
differ from those obtained with nondeformable entities. gifference between the two monolayd3]. As shown in
Erythrocytes have the ability to undergo large deformationRef.[23], the contribution of the area difference can be writ-
due to their membrane elaStiCity. This effect will be inCOpr-ten as an integrai over the curvature, and for the same rea-
rated in the near future in the full 3D treatment. In order tOSonS evoked above, this can be included quite natura”y in the
shed light on the importance of membrane elasticity, thissAF method. A more serious point to be emphasized is the
work should also stimulate more experiments on vesiclesncorporation of the fact that the two monolayers forming the
filled with a more viscous fluid. Another point is that al- membrane may slide with respect to each Other, inducing
though our method allows naturally for vesicle budding, forthus a velocity discontinuity at the membrane, resulting in
example, the mechanism that leads to this process is nefissipation within the membran@4,25. This question re-
included within the energy given here. In addition, duringquires further investigation.
breaking, microscopic consideratiofsich as phospholipids
interaction$ should play a decisive role, and must thus be
included in order to treat a budding process. Another impor- ACKNOWLEDGMENT
tant point is that our membrane energy is taken here to be the
simplest one possible, and has thus disregarded several fea- This work was supported by the Centre National d’Etude
tures that may become important in more realistic situationsSpatiale, France.
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