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Tumbling of vesicles under shear flow within an advected-field approach
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We study dynamics of vesicles with a viscosity contrast between the interior and exterior, and subjected to
a linear shear flow. It is shown that the vesicle, which assumes a steady orientation with respect to the shear
flow for r[h in /hout,r c ~whereh in andhout are the internal and external viscosities, andr c is a critical value
which depends upon the swelling factor!, undergoes atumblingbifurcation for r>r c . Tumbling occurs as a
saddle-node bifurcation. We present analytical and numerical results. We develop a powerful method, the
advected-field approach. This method allows one to treat several different phenomena with great flexibility.
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Problems in which a viscous fluid interacts with a defor
able entity are of paramount importance in the study
blood, polymer solutions, and suspension of liquid drople
For example, over the last decades considerable efforts
been devoted to the understanding of circulation physiol
and suspension rheology@1,2# with the aim of elucidating the
mechanisms that govern the human red cell transport bo
vivo andvitro. Under shear flow red blood cells may align
moderate shear rates. When the same blood is diluted en
with plasma the same cells undergo a tumbling process@3#.

In this paper we deal with the tumbling process and
velop a powerful method, the advected-field approach. A
starting point for the modeling, we concentrate on the
namics of a single vesicle made of pure phospholipi
Vesicles are closed membranes, which are suspended
aqueous solution@4#. They constitute a model system of bio
logical membranes.

One of the major difficulties in studying the interactio
between a vesicle and an external hydrodynamic flow lie
the free-boundary character of it vesicle shape. That is,
shape is not givena priori but it results from a compromis
between flow, bending energy, and various physical c
straints. This results in nonlocal and nonlinear equatio
Studies allowing for shape evolution of vesicles have b
made possible only recently@5–7# with the assumption tha
the same fluid is inside and outside the vesicle. The red
problem has several known theoeretical treatments, ana
cal works based on lubrication theory@1# as well as numeri-
cal studies~see Ref.@8# for a recent review!. The precise
analysis of tumbling has not been yet analyzed, either
vesicles or for red cells. The first aim of the present pape
to analyze the tumbling transition for vesicles, which is
simpler system than red cells~which have a cytoskeleton
and the rheology of which is still a matter of debate!. Our
strategy is to have a full understanding of this system be
including further complexity.

We find that if the viscosity inside the vesicle,h in , is
different from that outside,hout , then the vesicle undergoe
a tumbling bifurcation atr[h in /hout5r c , where r c is a
dimensionless quantity which depends on the swelling fa
~defined below!. For r ,r c , the vesicle assumes a stea
state solution with its long axis making an angle with t
shear flow direction. One of the results that emerges fr
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this analysis is that the tumbling occurs as a saddle-n
bifurcation. We account for this bifurcation on the basis
general considerations.

Recent approaches to vesicle dynamics@5–7# have used a
boundary integral formulation based on the Green’s funct
technique. Due to the linearity of the Stokes equation, a f
space Green’s function is easy to compute. For n
Newtonian fluids, such a formalism is not available. In ad
tion, boundary integral methods do not allow for a topolo
change in a natural way. In order to handle this problem,ad
hoc rules have been prescribed@9#. In this paper we develop
the advected-fieldapproach. This method, though it is d
rectly inspired by the phase-field approach~see Ref.@10# for
a recent review!, poses a challenge, since one must impos
local incompressibility of the local area element of the me
brane. Thus, a difference with respect to traditional pha
field approaches lies in the introduction of dynamics alo
the contour. Note that since the membrane is not a bound
between ‘‘true’’ phases, but rather between the two doma
of the same phase, we have felt it more legitimate to call t
method the ‘‘advected field’’~the membrane is advected b
the flow!.

As is the case with phase-field approaches, the crux of
advected-field~AF! approach is to introduce an auxiliar
field f(r ,t), which varies continuously, albeit abruptly, from
the interior (f521) of the vesicle to the exterior (f51).
Thus, instead of treating the membrane, as usual, as a
metrical location on which boundary conditions are to
imposed~this is thesharp-boundarymethod, hereafter re
ferred to as SB!, the boundary is the location of a rapi
spatial variation off. The membrane is advected by th
flow. Appropriate evolution equations forf are

]f

]t
52v•“f1efS 2

dEintrinsic

df
1ce2U“fU D , ~1!

Eintrinsic@f#5E E dxdyH 1

4
~12f2!21

e2

2
~“f!2J .

~2!

Minimization of this function in a one-dimensional geomet
with the boundary conditionsf(6`)561 leads to the so-
©2003 The American Physical Society08-1
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lution f(r )5tanh(r/eA2). The width of the boundary is
eA2. For ease of presentation, we shall confine ourselve
two dimensions. We have checked~see below! that this cap-
tures three-dimensional~3D! physical features. The term
Eintrinsic plays the role of a local restoring force to the d
sired tanhlike shape.Eintrinsic is similar to a Landau-
Ginzburg free energy with used coexistence between
‘‘phases’’f521 andf51. Theu“fu term is used here to
cure a generic problem due to wall energy, which is noth
but the surface energy. The quantityc is the curvature in the
AF spirit, to be defined below. As a vesicle has no surfa
tension, this term is introduced precisely in order to can
the wall free energy@11,12#.

The next step is to specify the dynamics of the veloc
field in the whole domain. For that purpose one must de
mine the membrane forces. The Helfrich@4# free energy in
the AF sense takes the form

Econ f ig5
k

2E E dxdyc2
u“fu

2
1E E dxdyz

u“fu
2

. ~3!

The curvature fieldc can easily be expressed in terms off if
we define the normal vector fieldn̂ and the tangential onet̂
asn̂5“f/u“fu, t̂5n̂3 ẑ. This definition corresponds to th
choicedt̂/ds51cn̂ in curvilinear coordinates. One can ea
ily check thatc52¹•n̂. k is the bending rigidity andz(r ,t)
is, in the SB sense, a Lagrange multiplier which enfor
local incompressibility of the vesicle area in the course
time. z is a more complex field, which cannot be express
as a simple functional off ~it is history dependent, as w
shall see below!. The functional derivative ofEcon f ig pro-
vides us with the membrane force,

Fcon f ig5F2kH c3

2
1 t̂•“~ t̂•“c!J n̂1zcn̂1 t̂•“z t̂G u“fu

2
,

~4!

which reduces to the two-dimensional~2D! expression in the
SB limit @6#, whene→0 @11#. Note that in that limitu“fu/2
coincides with ad function across the membrane. Once t
force is known, we are in a position to write the hydrod
namical equation:

ev

]v

]t
5hDv2“P1Fcon f ig , ~5!

whereev is a density scale, which is related to the relaxat
time. ev will be chosen in such a way that inertia is sm
~the Stokes limit!. We could set the left-hand side of Eq.~5!
to zero. Then we should have been forced at each time
to solve a static equation by a Newton-Raphson sche
~since the equation is nonlinear due to the dependenceh
on f; see below!. It is well known that this procedure doe
not always lead to convergence~even if a solution does exist
the Newton-Raphson scheme may fail to find it!. Imposing a
small enough value forev allows us to treat the dynamics i
an iterative scheme, a straightforward procedure. In any c
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the Reynolds number is never exactly equal to zero, but
typically between 1022 and 1024 in most situations of
interest.

The pressure field must be adjusted to ensure incompr
ibility:

¹•v50.

In the presence of a viscosity contrast between the inte
and the exterior of the vesicle,hD•v in the Stokes equation
has to be substituted by] i@h(] iv j1] jv i)# sinceh is now
position-dependent. Note that repeated indices are to
summed over. A simple prescription forh is h5hout(1
1f)/21h in(12f)/2.

Finally, thez field has to be determined. To date no pha
field model has dealt with a field along the tangent of t
contour. We introduce the following dynamical law:

]z

]t
52v•“z1Tt̂•~ t̂•“ !v, ~6!

where T is a tensionlike constant andt̂•( t̂•“)v represents
t̂•]v/]s in the SB limit, which is nothing but the local ex
tension rate of the membrane. With this prescription,z is
proportional to the local extension of the membrane. Imp
ing a large enoughT enforces a vanishingly small extensio
Thez reaction is confined within the membrane thanks to
d-like function in Eq.~4!.

The boundary position is automatically encoded in t
rapid variation of the fieldf. Besides this advantage, imple
menting any new effect, such as viscosity contrast, requ
no special deal. Finally, any other hydrodynamical const
tive law ~e.g., for complex fluids! can be accounted for with
no additional conceptual complication.

It remains to be shown formally that in the limite→0,
the AF equations reduce to the SB ones used in Ref.@6#. This
is performed by a~singular! formal expansion of Eqs.~1!–
~6! @11#. We have checked that the relaxation towards eq
librium shapes@13#, as well as the orientation of the vesic
in a shear flow@5# ~in 2D and 3D! obtained with the SB
method withh in5hout, are captured by the AF approach.

We now address the tumbling problem. We consider t
the vesicle is subjected to a linear shear flow given byvx
5gy and vy50 (x is the horizontal coordinate in Fig. 1!,
where g is the shear rate. We can form five independe
parameters. The first trivial one is the viscosity ratio. T
effective Reynolds number is defined asRe5evgR2/hout ,
whereR is the effective radius obtained fromAS/p, whereS
is the enclosed area. For most simulations we have cho
Re;1022 so that inertia is small. The second parameter
the ‘‘capillary’’ number associated with the bending mod
Cb5houtgR3/k, and this number is taken to be of order o
~meaning that the shape of the vesicle changes under flow
the same time scale as that associated with the flow, a
observed experimentally!. The tension fieldT defines another
capillary numberCt5houtgR/T, which is taken to be very
small ~typically 1024) in order to preserve local incompres
ibility of the membrane on the time scale imposed by t
shear flow. Finally, the ‘‘transition’’ width of the advecte
8-2
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field e is taken to be small enough in comparison to t
vesicle size~typically less than 0.1!. The viscosity ratio and
the swelling factor have been varied in a quite wide range
shown in Figs. 2 and 3. As far as the other parameters
concerned, we have not yet scanned the whole param
space, but have confined ourselves to typical realistic val
For example, the vesicle rigidity varies for most phosphol
ids within a limited range~typically between 20kBT and
40kBT, wherekBT is the thermal excitation energy!. Within
this range the overall tumbling picture is unaffected, thou
some minor quantitative differences are detected. A syst
atic scan of the whole parameter space will be performe
the future.

The behavior of a particle in a shear flow is a lon
standing problem@14#. Several attempts have been made
the context of red blood cells@15–18#. These authors mak
several important simplifications. For example, to date n
of them took into consideration either the free-bound
character, i.e., that the shape is not givena priori ~but
evolves with hydrodynamical constraints! or the dynamics of

FIG. 1. The vesicle~in gray! with r 50.75. Arrows represent the
local velocity field. Shear flow is along thex axis.

FIG. 2. Stationary angleu vs the viscosity ratio for severa
swelling factorst. The full lines correspond to the fixed shap
theory@16#, while the symbols are the simulation data. A finite si
scaling analysis has been performed to cope with finite size effe
The dashed line corresponds to the unstable branch fort50.908 in
the AF approach. Agreement is good only forr .0.9, while below
more than 100% disagreement is visible. This is may be due to
improper account of tank treading.
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the tension fieldz. This sets serious limitations on the use
their results for deformable entities, such as erythrocytes
vesicles. In the present paper an arbitrary shape evolu
compatible with forces entering into play, are allowed. R
cently in Ref. @8# a boundary integral method for capsul
has been used. It was noted that tumbling may occur aft
certain value of the viscosity contrast. However, the prec
nature of tumbling and its generic character and how thi
connected with dissipation have remained unanswered q
tions. These questions are analyzed in this paper.

We shall merely report on the physical results, leaving
numerical scheme with various details for a future public
tion @11#. Our notations together with the nature of the v
locity fields are shown in Fig. 1. Under shear flow, dynam
reveal the following behaviors. At a small enough viscos
contrastr[h in /hout,r c , the vesicle assumes~after tran-
sients! a steady-state orientation with angleu. Note that the
membrane undergoes atank-treadingmotion. The angle de-
pends both on the aspect ratio@or swelling factort, defined
ast54pS/P2, whereS is the internal area,P the perimeter
~2D!; for a circle t51] and r. For a givent, the angleu
decreases on increasingr until it reaches 0 atr c ~Fig. 2!. The
same scenario holds for a givenr when decreasingt. For r
.r c , the vesicle tumbles with a complex tank-treading m
tion. We have noted that the tumbling transition is sensit
to the boundary effects: for a small box tumbling is delay
due to the increase of dissipation with the walls. We ha
increased the size of the box in numerical simulations.
far, when the size exceeds about three times the vesicle
only minor changes are observed. This must be subjec
caution, however, since in 2D the wall effect might still b
detectable even at long distances and thus some quantit
‘‘drift’’ of the results may be revealed. Extensive quantitativ
studies are currently under investigation.

Tumbling occurs as a saddle-node bifurcation. That
close tor c the steady-state branchu(r ) ~corresponding to a
saddle in the terminology of bifurcations! ceases to exist for
r .r c , whereby it merges with an unstable branch~node! as
shown in Fig. 2. In contrast to usual instabilities, for whic
the stable branch turns into an unstable or metastable br
abover c , no steady-state solution exists in the present c

ts.

n

FIG. 3. Critical viscosity ratior c as a function oft. This figure
illustrates the disagreement between the theory of Ref.@16# and
simulation data fort,0.95. A 3D branch for a prolate shape is al
shown. Amazingly,r c reaches a plateau at low values oft, which
corresponds tor c.7.
8-3
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abover c . Tumbling is thus not an instability in the usu
sense.

Given these results, it is important that one underst
this behavior on the basis of general considerations. Letm̂ be
a unit vector, pointing along the main axis of the vesicle, a
let us treat the vesicle as a local ‘‘dipole’’ in a fluid~with no
extent on scales of the system!. From Newton’s law and
kinematics, one can write an evolution equation@11# for m̂ as
follows:

]m̂

]t
5m̂•v1am̂•L1bm̂. ~7!

The left-hand side is the rate of rotation.v5(“•v2“

•vT)/2 is the vorticity tensor. This term describes the rig
body rotation in the velocity field. The last two terms are t
viscous forceL, the symmetric part of the stress tensor~the
first contribution to the force is linear in the velocity grad
ent!, and b is a Lagrange multiplier enforcing a consta
length for m̂. After a scalar product of Eq.~7! with m̂ one
getsb52am̂•m̂:L. a is a parameter specifying the geom
etry of the body, and for an ellipsoid it should coincide wi
a5@(a/b)221#/@(a/b)211# (a andb are the length of the
long and short axes of the ellipse! as found from a direct
calculation by Jeffery@14# for a rigid body. The most seriou
point is to determine the stress tensor, which is a formida
task in general. Neglecting backflow, we can simply wr
v5gyx̂. Writing m̂5@cos(u),sin(u)#, one obtains

g21
]u

]t
5211j cos~2u!. ~8!

From this expression, a steady angle can exist ifj.1; a
value of 1 would correspond tou50, the critical angle. For
a rigid ellipse, we havej5@(a/b)221#/@(a/b)211#,1
and, therefore, no steady-state solution exists; tumbling t
always occurs. If the tank-treading flow@11# motion is taken
into account~which depends onh in and hout), j is now a
function of the viscosity ratior @18# and it may be either
greater or smaller than unity. There is then a critical valuer c
for which j51. After @18# it happens that the steady solutio
exists for r<r c . Close tor c , but below,j21;A(r c2r ),
where the constantA.0 since j.1 ~steady regime!. We
thus haveg21]u/]t5A(r c2r )2u2/2, where two steady-
state branchesu6;6Ar c2r are found. Forr .r c , these
branches cease to exist. Linear stability analysis around
steady-state solutions easily shows thatu1 is stable whileu2

is unstable.
As stated above, a rigid body would tumble witho

threshold. For vesicles we have demonstrated the exist
of a threshold value: the viscosity inside must be greater t
that outside~a ratio, which depends on the swelling facto!.
Liquid droplets @9# with a viscosity is approximately fou
times smaller than that of the ambient fluid either assum
steady-state shape with the long axis making a certain a
with the flow ~if the shear rate is small enough! or break up
into smaller droplets~if the shear rate exceeds a certa
value!. For a viscosity contrast larger than about
03190
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an ellipsoidal droplet is obtained, aligned in the flow dire
tion, that cannot be broken at any shear rate. In any of th
cases, tumbling occurs. Tumbling is present within vesic
not only due to viscosity contrast, but also due to the fact t
the contour of the vesicle cannot be stretched~in contrast to
droplets!. Thus the local incompressibility dealt with here
essential for tumbling.

Finally, inspection of the dissipation

Ėhydro5E h

2 S ]v i

]xj
1

]v j

]xi
D 2

dV ~9!

generated by the AF dynamics reveals several interesting
tures that are briefly presented. The global dissipation
creases asr is increased~at constantt). So far, we have
found that dissipation exhibits a minimum@11# for r .r c . A
priori there is no reason that the general Rayleigh princi
applies, as boundaries are not fixed@19#. It may be noted that
in the blood, red cells under shear become elongated
oriented in the flow, conferring on the blood a shear thinn
property @3# ~collapse of the actual viscosity on increasin
the shear rate!. When the cell concentration is low, cel
tumble precisely in order to reduce the dissipation. Th
tumbling is an alternative way for cells to lower the dissip
tion. We have found that the dissipation inside the vesicle
negligible in comparison with that outside. This result c
easily be understood since for a circular shape~spherical in
3D! tank treading corresponds to a global rotation of t
vesicle and the sphere moves as a rigid body inside. Thu
dissipation occurs. The only internal dissipation results fr
a deviation from sphericity. From these considerations a
Eq. ~9!, one expects the following scaling law for the diss
pation inside the vesicle to hold:

Ėin}h inv tank
2 ~12t!a, ~10!

where v tank is the tank-treading velocity. The exponenta
must be equal to one since we expect no critical behavior~in
the sense of instabilities! whent→1. Numerical evaluation
of a confirms this result within good accuracy~actually,a
.0.9).

In summary, we have developed an advected-field
proach, which opens an avenue of promising powerful ap
cations for the study of the interaction of deformable entit
with flows. In light of this work, matters such as drople
droplet collision and fusion, bud emission in vesicles, a
breakup of droplets under shear, in both Newtonian and n
Newtonian fluids, become quite accessible. Besides the p
lem of vesicles, where boundary integral methods have b
used@5–7#, several works on droplet breakup have been p
formed under shear~for a review, see Ref.@9#!. In order to
allow for a topology change, a quite natural problem duri
droplet shearing, some rules must be invented within
integral formulation, and often in anad hocmanner@9# ~not
to mention the fact that the increase of the number of in
faces occurring, for example, after breakup, must be d
with explicitly; see Ref.@20# and Refs. therein!. These are
front-tracking methods, contrary to our method, which tre
very naturally the change of topology, and does n
8-4
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need to follow any interface. In addition, the proliferation
interfaces does not add new complexity within the AF a
proach. Note that volume-of-fluid interface tracking@21#, or
level set methods@22# could also be alternatively used, but
date none of these methods has been used for vesicles
only qualitative results on droplet breakup are available.

In conclusion, we have demonstrated the power of
advected-field method in the context of tumbling. Our resu
differ from those obtained with nondeformable entitie
Erythrocytes have the ability to undergo large deformatio
due to their membrane elasticity. This effect will be incorp
rated in the near future in the full 3D treatment. In order
shed light on the importance of membrane elasticity, t
work should also stimulate more experiments on vesic
filled with a more viscous fluid. Another point is that a
though our method allows naturally for vesicle budding,
example, the mechanism that leads to this process is
included within the energy given here. In addition, duri
breaking, microscopic considerations~such as phospholipid
interactions! should play a decisive role, and must thus
included in order to treat a budding process. Another imp
tant point is that our membrane energy is taken here to be
simplest one possible, and has thus disregarded severa
tures that may become important in more realistic situatio
d

v.

.
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For example, we neglected the spontaneous curvature ef
as well as the area difference between the two monola
@23#. The presence of a spontaneous curvature in the m
is equivalent to an effective surface tension~such as our field
z) plus a term*cds wherec is the curvature. In 2D this is
irrelevant, while in 3D it plays a role, and it can be includ
straightforwardly, since in our model integrals on curvatu
are already evaluated. Another important effect is the a
difference between the two monolayers@23#. As shown in
Ref. @23#, the contribution of the area difference can be wr
ten as an integral over the curvature, and for the same
sons evoked above, this can be included quite naturally in
AF method. A more serious point to be emphasized is
incorporation of the fact that the two monolayers forming t
membrane may slide with respect to each other, induc
thus a velocity discontinuity at the membrane, resulting
dissipation within the membrane@24,25#. This question re-
quires further investigation.
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