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Nonequilibrium phase transition in a self-activated biological network

Hugues Berry
Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMEQwrtBrment de Biologie,
Universitede Cergy-Pontoise, B Postale 222, 2 Avenue A. Chauvin, 95302 Cergy-Pontoise Cedex, France
(Received 2 October 2002; revised manuscript received 16 December 2002; published 14 Majch 2003

We present a lattice model for a two-dimensional network of self-activated biological structures with a
diffusive activating agent. The model retains basic and simple properties shared by biological systems at
various observation scales, so that the structures can consist of individuals, tissues, cells, or enzymes. Upon
activation, a structure emits a new mobile activator and remains in a transient refractory state before it can be
activated again. Varying the activation probability, the system undergoes a nonequilibrium second-order phase
transition from an active state, where activators are present, to an absorbing, activator-free state, where each
structure remains in the deactivated state. We study the phase transition using Monte Carlo simulations and
evaluate the critical exponents. As they do not seem to correspond to known values, the results suggest the
possibility of a separate universality class.
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[. INTRODUCTION growth factors in the above-mentioned case of auto-paracrine
control of cell growth, extracellular cyclic adenosine mono-
Continuous nonequilibrium phase transitions have beeRhosphate(cAMP) diffuses betweerDictyostelium discoi-
studied in a number of biologically relevant models, includ-deum cells upon starvation and regulates their behavior
ing forest fire or epidemics spreadifit], biological evolu-  [10,11. This is also the case of several infection spreading
tion [2,3], population dynamic$4], or cell interactions in mechanisms where infected individuals can infect other dis-

immune systenfi5]. Close to the transition, such critical sys- tant individuals in the absence of body-to-body contact, via

tems are not very sensible to the detailed nature of the d>}_he emission of the infectious agent in the air. This infection

namical rules they rely on, but rather depend on more fun[nOde has, for example, been evidenced for the foot-and-

damental characteristics such as symmetries or Euclide [outh diseas¢12] or the influenza virugflu) transmission

dimensions. As a result, a qualitative glance on comple

auto-organized systems, such as biological ones, can be ofjre nder consideration switches to an activated state. Dur-
tained by studying even simple models. _ ing this activated state, a positive feedback loop leads to the
Self-organization in biological systems relies on func-formation and excretion of new mobile messengers. In
tional interactions between populations of structural unitsproduct-activated allosteric-enzyme networks, the diffusing
whether individuals, organs, tissues, cells, or moleculesproduct favors the initiation of the enzyme catalytic cycle,
Commonly, these interactions take the form of activating orthat ultimately leads to the formation of a new reaction prod-
infecting messages that act in a nonlocal and noninstantarct. Growth factor stimulation of eucaryotic cells, as well as
neous way. For instance, cell growth is mainly controlled bycAMP stimulation of D. discoideum triggers intracellular
extracellularly diffusing growth factors that act on the sourcesignalization cascades that increase the synthesis and excre-
cell that emitted it(autocrine signalingor on a neighboring tion rates of these factors by the cgli4,16. In the case of
cell (paracrine signaling[6]. Upon stimulation by growth epidemic air dissemination, infected individualsuch as
factors, the quiescent target cell enters @ig-S cell-cycle  pigs in the foot-and-mouth disea§g5]) often secrete vast
phase[ 7], eventually leading to cell proliferation as well as amounts of infectious agent and become sources of its air
synthesis(and excretion of new growth factors, as a result dissemination.
of a positive feedback loof8]. Strikingly, similar basic or- (iii) Another feature often displayed by these biological
ganization schemes are encountered at several observatispstems is the existence of a refractory or lag phase: after
scales. We illustrate here some shared basic design principlegtivation by the messenger, a time lapse must be waited
with the cases of allosteric-enzyme networks, cell populatiorbefore the target structure can be activated again. This fea-
organization (such asDictyostelium discoideumor virus ture is intrinsic to enzyme conformational cycles, that must
spreading through air dissemination. Although very dissimi-be completed before the enzyme finds itself in tfree
lar, these examples share common features. resting conformation. Such lag phases are also encountered
(i) The infecting or activating messenger acts remotelyin cell communication systems: once stimulated by growth
through diffusional (or nondirectional transport. For in-  factors, eucaryotic cells show a desensitized state because of
stance, the catalytic constants of many allosteric enzymegrowth-factor membrane receptor down regulafib#]. Fur-
from metabolic networks are controlled by the enzymethermore, once initiated, the cell cycle enters a growth-factor
reaction-product diffusing inside the c@dl]. Similarly to the  independent phase that must be completed before the cell
initiates a new cyclg¢7]. A similar lag phase is also observed
in D. Discoideum cells after cAMP stimulation, during
*Electronic address: hugues.berry@bio.u-cergy.fr which these cells are refractory to cAMPS]. In the case of

(ii) Upon encounter with the mobile messenger, the struc-
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epidemic spreading, this delay or lag phase is intrinsic to the 1

contamination process, since an infected individual must re-

cover before being infected again. 9: w4 —1> K1/ > L&
Seen from this angle, these systems can be compared t — A L

self-organized critical models of sandpiles, avalanches, ot ~

earthquakeg19]. However, self-organized critical systems Actvable Activated

are slowly driven systemf20]. In the biological systems  EiG. 1. Evolution of a structure stai. The activable state is
mentioned above, the time scale for messenger transport {9—0. A structure can be activated to the first step of the activated
the target structure is usually not shorter than the internadtate =1 with probability » if an activatorA is present on the
dynamics of the structure. They are thus not slowly driverstructure site. The structure then remains in the activated state dur-
and their dynamics must be separately addressed. ing K—1 time stepgrefractory phaseand releases a new mobile

In the present paper, we study a very simple two-activator upon transition from stat€,—1 to the next one. After
dimensional lattice model that displays these basic propeiK—1 refractory steps, the structure is back in the activable state
ties. Each activable structure is considered to be immobile=0.
with respect to the messenger which is assumed to move by
diffusion on the lattice. Upon encounter of a messenger witimolecules are allowed to diffuse over the lattigendom
an activable structure, the latter activates with probabiity =~ walk). The A molecules are assumed to have a finite lifetime
When activated, a structure emits a new messenger and rand are removed from the lattice with rate For simplicity,
mains in a refractory state before another messenger can aeo-this study, we fix the values of, K, andK,, so that the
tivate it again. We use Monte Carlo simulations to investi-model only depends on the activation probability In the
gate the behavior of this system in two dimensions, as théollowing, the model behavior is studied asis varied.
activation probabilityw is varied. The paper is organized as
follows. The following section describes the model, of which
a mean-field study is presented in Sec. Ill. In Sec. IV, results
of Monte Carlo simulations are shown and evidence The model can be described by the following set of reac-
absorbing-phase transition asis varied. Studies of the dy- tions:
namical critical behavior as well as finite-size scaling analy-

IIl. MEAN-FIELD ANALYSIS

sis allow to estimate the critical exponents. Finally, Sec. V ©
presents a short discussion concerning the universality class A+Sy—A+S,,
of the model.
1
Il. THE MODEL S—S1, 1= K =2K,, L K=2,

Our model is basically a two-dimensional version of the
zero-dimensional model for allosteric enzyme networks of

Mikhailov and Hesg21], without spontaneous activation. It SKr_l_)SKr+A'

consists ofN activable biological units regularly distributed

over a two-dimensional lattice dfinearn lengthL. Broadly 1

speaking, these units can represent individuals, tissues, cells, Sk-1—0,

or enzymes and will be designated in the following by the

general term ofstructures The distancel between two N

nearest-neighbor structures is constant, withL/\/N. To A—J,

model the activation as well as the refractory phase, we as-

sociate each structure= 1, A ,N with a dynamical variable Wheresi designates a structufin the Stated): i, Ais the

¢i(1) that takes integer values between O &dnd repre-  activating messenger, and superscripts on arrows designate
sents the structure state at timéFig. 1). The state; =0 is  reaction probabilities or rates. The classical mean-fisish-

the activable state. The transition frofj=0 to ¢;=1 rep- tially homogeneoysequations for these reactions are readily
resents the activation of the structure and occurs with probryund to be

ability o if an activating messengéris present on the struc-

ture site. The transitions from the stafg=j to ¢;=j+1 N K2
then occurs with rate 1, for=1, ... K—1. After K steps, dogy/dt=—wpoy+ —— 2, o, (1a)
the structure is back in the activable state, i.e., goes from L2 =0

¢;=K—1 to ¢;=0 with rate 1. Thus, once activated, a given

structure must waik — 1 time units to find itself back in the doy/dt=wpoy— o, (1b)

activable state. Finally, the conformation state=K, (1

<K, <K) is the messenger-releasing step, i.e., the transition do/dt=0, 1—0;, i=2 K—2 (10
| | — 1 [ | 1

from ¢;=K,—1 to ¢;=K, is accompanied by the release of
an activating messengéron the structure site. do/di= 1
The structures are considered as immobile, whereaé the pldt=0y 1= \p, (1d)
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where o; represents the density of structures in conforma- 3.0 [T O [T T O [ TT T [T OoeT
tional state¢=i and p, the activator density. In Eq1a), o o ]
conservation of the total structure density has been used o5 - ]
ox-1=NIL>= 3 Fay. E .
Equations(1) have two steady states: o .
20 |- —
oo=N/L?, (2a n . .
15 —
. a o -
=0, i=1,... K—-1, (2b) C 3
= - |
1.0 — -
p=0; (20 C
05 -
and C
0.0 e m e e —
0'02)\/(1)1 (Sa) RIE, JRTRA ARTTARTIT AR AR AAR A RARARTITANTIT)
0.0 0.2 0.4 0.6 0.8 1.0
1 N A . o
O'i_m N i=1,... K-1, (3b)
L= @ FIG. 2. Numerical study of the steady-state stability for the
mean-field approximation as a function of the activation probability
1 N 1 . A transcritical bifurcation is observed for ak at w=w,
p=—7| —— _) (30 ~0.1111. Full lines represent stable steady states and dotted lines
K=1{\L? o unstable ones. The numbers above the curves indicate the corre-

sponding value ofK. For each curveK,=1+(K/2), =7, N

The first steady statiEgs. (2)] is an absorbing state: if the ~100. andh=1/441. Note that the absorbing steady state0
system reaches this configuration, it cannot escape from ifi0es not depend om. This continuation study was realized nu-
The second steady stdtEgs. (3)] will be referred to as the Merically using the programuTo [23].
active state. Note that, in both cases, the steady states do not |v. MONTE CARLO SIMULATIONS AND RESULTS
depend on the value of the activator-releasing state of the
structures K,). The stability of these two steady states can
be determined analytically fd{<4. The two steady states The model is studied by Monte Carlo simulations on two-
undergo a transcritical bifurcation at=w.=\L?/N, the ac-  dimensional square lattices with periodic boundaries. Mul-
tive state being stable fan> w. and the absorbing one for tiple occupancy of a site is allowed, so that a lattice site can
w<w,. be occupied by several activators at a given tifbesonic

In the case of the flpprosophiliaoogenesis, it was found Mode). The distance between two nearest-neighbor struc-
that growth factors excreted by a given cell can act over dures is exact_lyl lattice sites. The |mplemer_1tat|on of the
spatial range of three to four intercell distan§gg]. In the ~ a@bove dynamic rules on a computer is straightforward. At
present model, the spatial range of the diffusing messenger f2ch Monte Carlo step, the system is updated as follows. The
mainly dictated by its survival probability. Accordingly, ~SUucture conformation variables;, with i=1,... N are

the value ofx has been fixed so that the mean lifetime of aUPdated simultaneously for each structuran agreement
mobile messenger corresponds to the average time need&f h Fig. 1. Note that, as multiple occupancy of a site is
9 P g &ffowed for an activator molecule, the presencenalctiva-

for it to W(?Ik ovebr. a dlsialn/cgl czorrBespondlng to St|2£e7€}nter-t0rs on structure sité increases the transition probability:
structure distancki.e., A=1/(3l). Because we u N p(g=0-¢=1)=1—(1—w)". The positions of the acti-

the present study, = 1/441, and mean-field analysis predicts  4tor molecules are then updated: new activators are created
an absorbing-state phase transitionegt=1/9. ForK>4, ot each structure site for which the conformation variable
th_e stability can b_e studied numerlc_:ally. A_s can be seen fro%i: K, and each activator is removed from the lattice with
Fig. 2, the behavior of the system is qualitatively conservedpopapility x. Finally, the surviving activators are indepen-
The stability of the steady states does not depen&.cnd  genily and simultaneously moved to randomly chosen
the absorblng—phas_e transition is m_alntalned w_QIZ 1/9 nearest-neighbor site&/on Neumann neighborhopdThe
~0.1111. In the active phase, the activator density various probabilities are simulated using uniformly distrib-
uted random numbers generated with the combined generator

A. Description

1 /11 4 of Ref.[24].
P T\ o w2 e (4)
B. Dynamical behavior
which defines the critical exponept in the mean-field ap- Figure 3 shows and o time evolutions forlL=70 and
proximation, Bye=1. I=7. For low activation probabilitiessee w=0.12 in Fig.

031907-3



HUGUES BERRY PHYSICAL REVIEW BE57, 031907 (2003

25x10'3 0.5 PTTITTIT I T[T T [T T T T AT T T T T O
20x10° 04 3
15x10° _ osE 3
g E =
5> A C 3
°© \QI- = =
10x10° 02 =
5X10-:3 _ 0.1 E_ _E
9 a0 E E
0x10 3 3 3 3 3 3 (XN - - WTRU(e N1 FRRRTNNERIRRRTARTERI RN RRTANNTNANTEN. -
0x10 10x10 20x10 30x10 40x10 50x10 0.0 0.2 0.4 06 08 1.0
time (MCS)

®
0.25 LLRMLLLLY LALLILLLL) LLLLE RLAL LALLN RLALS LLLLI LY ShRRRIRLLL) LLERI LI L LLLL) LAY LLLRIRRLLY LLLL)
C ] 20x10° [T O mmm s mmmmmm s mmmm s mmnn e nn 3
0.20 = - = =
C 0.20 N = 2
C : 16x10° - 3
0.15 = - = 3
a C ] £ = 3
- . A 10t B 3
0.10 = - O = =
- 0.15 ] o F E
0.05 |~ 4 8x10”° = 3
0.12 . S :
0.00 T T T T T AT T P ITITT 410 - S
0x103 1Ox103 20x103 30x103 40)(103 50)(103 sITTYY T ITITIITITA NI I T IR FTTTTITITINT TN ITT0I:
time (MCS) 0.0 0.2 0.4 0.6 0.8 1.0

o
FIG. 3. Time evolution of the density of structures in the acti-

vable state ¢, top) and of the activator density( bottom) during FIG. 4. Dependance on probability of the average densities of

a single Monte Carlo simulation initiated without activator and with activating moleculegtop) and activable structurgdottom), in the
random structure states. The numbers on the curves are the val- active state. The dotted line indicates the total structure density. The
ues of the probabilitys. Time is expressed as Monte Carlo steps full lines are guides for the eyes. Other simulation parameters are as
(MCS). Parameters ard:=70, K=20, K,=11, I=7, A\=1/441, in Fig. 3.

andN=100. The total structure density is thus 0.0204.

Lt 1y,
3), the system rapidly tends to the absorbing steady state p(O)~ T (AL, )

[Egs. (2)]. With higher probabilities, the densities reach at ] ) ] ] ]

longer times a fluctuating active state, with average value¥heref is a universal scaling functiond =|w—w| is the

depending on the probability. distance f_rom the thre;holql, ang is thg correlation length
Figure 4 shows the dependance of the average densities §¥Ponent(in the time direction According to Eq.(5), p(t)

the active steady stafeo)c and(p)act, as a function ofy. ~ decreases as a power law at criticality

These simulations clearly confirm the occurrence of a

second-ordeKcontinuou phase transition from the active p()~t7%  o=wc. (6)

state to the absorbing state. The thresheldis seen from

Fig. 4 to be close to 0.13, slightly higher than the value Figure 5 shows a plot gé(t) for various values ofv. At

obtained from the mean-field approximation. criticality, one expects these curves to form straight lines,
To determine more precisely the critical probability andwhereas off-critical values should show curvatures at long

evaluate the critical exponents, we first present Monte Carléimes. Simulations withw=0.130 are clearly above the

simulations initiated with a lattice containing one activatorthreshold, while those witw<0.124 are subcritical. In order

molecule per lattice site and random structure states. In th® obtain more precise estimations, the local slopes of these

case of a continuous phase transition, the activator densityurves are also shown in the top right panel. Average local

p(t) is expected to scale §85] slopes are calculated 26,27

031907-4



NONEQUILIBRIUM PHASE TRANSITION INA . .. PHYSICAL REVIEW E67, 031907 (2003

- T T T T T T T 1T L -0.6 T
s .
5| - -
L . -0.7
1. -
- i -0.8
0.1 b= - m-0.9 —
& = ] 3
o . 1.0 -
A= -
3 T 11
2} -
40
0.01 = -
Eonl 1 3 L% O N T N T T T T I N I B A
I : ox10° 1x10° 2x10° 3x10° 4x10®
time (MCS) 1/time (1/MCS)
LI B B B B B I B | T
1000 |— -
3 o -
b
Q 8k -
7 -
k= -
sp -
4 Lo v vl 1
3 4 5 6 7 89 2 3 4 5
100
tAv"

FIG. 5. Results of Monte Carlo simulations initiated with one activator per lattice site and random structureb dtafedeft). Time
evolution of the activator density. Probabilities aréfrom bottom to top w=0.122, 0.124, 0.126, 0.128, 0.129, 0.130, 0.132, 0.134. Results
are averages of 100or w=0.126) or 50(for the other probabilitiesindependent rungop righy. Plots of the corresponding local slope
—a(t). Probabilities are as in left panébottom). Scaling ofp(t) aspt® versustX A"l with ©.=0.127, a=1.1, andy=0.75. Other
simulation parameters are as in Fig. 3.

logyd p(t)/p(t/m)] Hence, in a plot of the local slopes versus, lthe critical
= (7)  exponent is the intercept of the curve for= w, with they
axis, and the curves for off-critical values are expected to
show notable curvatures. Inspection of the corresponding
curve in Fig. 5 shows that 0.126w,<0.128. Furthermore,
we evaluate from this figuree=1.1(1), where the uncer-

) tainty in the last digit is shown in parentheses.

+ .

—a(t)

log;pm

The valuem=8 is used here. Generally, one expects correc
tions to the power law Eq6) of the type

(8) According to Eq.(5), plots of pt* versustA”l should
collapse on a single curve with upward curvature tor
>w, and another one with downward curvature o w.

The local slope thus behaves according to [25]. The best collapse for the data of Fig. 5 is obtained with

v=0.75(Fig. 5, bottom pangl With these estimations, an-

, other critical exponent can be evaluat@d: av|~0.82. 3 is

a a'b e . . e

a)=a+—+—+---. (99  the critical exponent relating the activator density in the ac-

t e tive state to the distance from the threshold

p()~t=*

1+ 24
t

e’
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FIG. 6. Plot of the data of Fig. 4 for probabilities close to the  FIG. 7. Steady-state fluctuations of the density of structures in
threshold as a function of the distande=|w—w|, for o, the activable state; as a function of the distance to the threshold
=0.127. The full line has a slope of 0.80. A=|o— o, for w,=0.127. The full line has a slope of 0.64. Other

simulation parameters are as in Fig. 3.

<p>act~A'B- (10 ) ) o ) )
simulations were initiated with a unique product molecule at

As a consistency check, Fig. 6 shows the data of Fig. 4for a random position, and all structures in the activable state
close to the threshold as a function ®f in log-log coordi- ¢=0. The surviving probability and the number of product
nates. From the slope of the data, we estinfat0.80, in  molecules were recorded during<20* Monte Carlo steps,
good agreement with the value deduced frerandv. This  and averaged overx210° realizations.
value is significantly lower than predicted by the mean-field Figure 8 shows the results of these simulationsN¢t)
approximation Bye=1). andP(t). The local slopes are evaluated as already described

It can be observed from Fig. 3 that fluctuations around thdor «. From the results for effective exponent(Fig. 8, left
average steady-state values are higherofer0.20 than for  pane), we estimateo,~0.128, whereas its value from effec-
®w=0.15. This is particularly obvious fot,. The density tive exponentd (Fig. 8, right panel is lower: w,~0.126.
fluctuations in the active statg=L>({03)—(0o)?) are ex- Thus, the critical probability can be evaluated from these

pected to scale close to the critical point as results tow,=0.12711). The twocritical exponents can be
estimated from the long-time behavior of the local slopes to
X~A77. (1)  =0.18(5) ands=0.828). Finally, another critical expo-

_ _ nent can be estimated from these valyés:= 5v~0.62.
In the model studied here, fluctuations around the steady-

state value in the active state increase as the distance to the
threshold increases, implying a negative value forFigure
7 shows thaty increase satisfies E@ll), with y=—0.64. Because of the finite size of the lattice in the simulations,
Note that a similar value0.66) is obtained witlp fluc-  the activator density is expected to depend on the lattice size
tuations, albeit with poorer statistics. L at criticality as[25]

To obtain other exponents, so-called “dynamic” Monte etz B
Carlo simulationd26-28 have also been performed. They p(LH)~g(t™/L), w=oc, (13
consist in initiating the simulations with a configuration very
close to the absorbing state, and measuring the time evolithereg is a universal scaling functioz= v /v, is the dy-
tion of the number of activating molecules present at ttme hamic exponent, and, is the correlation length exponent in
N(t), and the probability that the system has not entered théhe space direction. To determine the dynamic exponent,
absorbing state at this tim@(t), averaged over many real- Monte Carlo simulations were carried out at criticality with
izations. These quantities scale at criticality in the long-timevariable lattice sizek, but keeping the interstructure lendth

C. Finite-size scaling

limit as [26,27] constant(Fig. 9). As predicted by Eq(13), the data for vari-
ousL plotted aspt® versust/L* should collapse on the same
N(t)~t7, P(t)~t° w=o.. (12 curve. The inset in Fig. 9 show the best collapse of these

data, obtained for=1.62.
The main advantage of these simulations is their absence of As a consistency check, the characteristic time of the sys-
dependence on the system sj2&]. Dynamic Monte Carlo tem, 7, was also estimated during these simulations. As a
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FIG. 8. Local slopesgeffective exponenjsfor the number of activating molecul®égt) (left) and the survival probability?(t) (right) in
dynamic Monte Carlo simulations. Probabilities &em bottom to top w=0.122, 0.124, 0.126, 0.127, 0.128, 0.129, 0.130, 0.132. Results
are averages of 2 10° independent runs for each probability. Other simulation parameters are as in Fig. 3.

characteristic time, the time for the system to reach the ab-

sorbing state was chosen. At criticalityjs expected to scale Ts(L)= Zt tp(t)/ Z p(t), (15)

for finite systems as

7(L) is the ensemble average over 50 samples at a given
lattice size,r(L) = (). Figure 10 shows a plot of(L) as a
function ofL, indicating the value of=1.59, in good agree-
ment with the previously estimated value. Finally, the value

Following Ref.[30], we evaluate for each sample the mo-©f ¥, can be estimated fromand v to v, =v/z=0.47.

7(L)~L?% 0= w. (14

ment
V. DISCUSSION
° o o S s We have presented Monte Carlo simulations for a lattice
[ i model of self-activation in a network of biological structures
10" - Py L L | T T T ™7 T T T 1]
3 3 F ! o ]
[ i s -
B T s -
10® 3 3 a4 -
. F ] o+ -
10° 3 3 sl -
- . ] o
L ]
3 . 3 10° - -
F I B 31 I B 7+ :
- 10 . 100 + 4 sk n
10.5_I lIlIlII L L IIIIIII L L IIIIIII 1 1 1T 5= -
16 10* 10° 4 .
time (MGS) oL i
FIG. 9. p(L,t) versus time at criticality, for various lattice sizes, 1 L L 1 I
L=35 (O), 70 (X), 84 (), or 119 (+). Simulations initiated L 100
with one activator per lattice site and random structure states.
Shown are averages of 50 independent runs for each size. FIG. 10. Characteristic timez(L), as a function of the lattice
=0.127,1=7, and other simulation parameters as in Figin3et size L at criticality. Simulation parameters are as in Fig. 9. The
Scaling ofp(L,t) aspt® versust/L? with «=1.10 andz=1.62. straight line has a slope of 1.59.
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TABLE |. Critical exponents for the system studied dx2 universality class of second-order phase transitions to a
(present work, PW compared with directed percolati@BP) and  unique absorbing state. It has proven to be very robust with
coupled nondiffusive conserved fie{tIDCF) classes iM=2 and  regpect to the microscopic dynamic rules and is thus the uni-
d=3. Numbers in parentheses indicate uncertainty in the last d'g”versality class of a wide range of models, including many
reaction-diffusion onesfor a review, see Ref25]). One of

d P;N Dj NDng ND:S,:FC the hallmarks of DP is a time-reversal symmetry that yields

6=« (or, equivalentlyB=B’). It can be seen from Table |

Y 1.1(1) 0.451 0.481) 1.9 that this relation fails in the model studied in the present

B 0.822) 0.5844) 0.6379) 0.8412) paper. Other scaling relations relate critical exponents to-

By 0.828) 0.4511) 0.49 0.763) gether. For instance, DP exponents verfy dv, +v|—2p

B’ 0.6Z 0.5844) 0.583 0.85 and n+ 5+ a=d/z [31]. These relations are not fulfilled for

7 0.185) 0.2301) 0.291) 0.162) the model studied in this paper. Furthermore, as can be seen

y —0.64(2) 1.60 0.823) 0.186) from Table I, the values of most of the individual exponents

v 0.7505) 1.2956) 1.21) 1.128) disagree with two-dimensional DP. Taken toghethef, these

v 0.47 0.7344) 0.833) 0.623) r?Tharks strongly sduglgest that DP is not the universality class

of the present model.

z 1602) 1769 1526) 1809 Besides DP, other absorbing-phase-transition classes have
*From Ref.[25]. been identified in the last decafi&2]. They usually emerge
bFrom Refs[35—37. as a result of additional properties, such as symmetric or
°Erom Refs]35] and[37]. infinitely many absorbing stat¢83], particle diffusion[34],

or parity conservation in the number of partic[@¥,28. To
our knowledge, the model which is most closely related to
the present work is the reaction-diffusion model of R&g].
It describes the reaction between two bosonic particles, one
(organs, tissues, cells, or enzymeBixing all other param- of which being immobile. Varying the total particle density,
eters, the system displays a nonequilibrium continuous phagepresented as a nondiffusive conserved fiBlDCF), it ex-
transition from an active to an absorbing state as the activaibits an absorbing-phase transition, and is believed to define
tion probability is varied. One of the main assumptions of thea separate universality class, to which some conserved lattice
model is that it does not consider spontaneous structure agas models also belori$6,37. A major difference with the
tivation, i.e., the activation probability of a given structure in present work is that, in the NDCF model, the total particle
the absence of activator is zero. This could be an unrealistidensity is conserved. Conservation properties are usually
approximation for product-activated allosteric enzyme netvery important for the universality classes of absorbing-
works [21], where the product usually increases the transiphase transitions, as exemplified by the branching-
tion probability to the active state from a nonzero spontaneannihilating random walk model$27,28. Surprisingly,
ous probability in the absence of product. Indeed, in thewhereas the exponents for the present model are unambigu-
presence of spontaneous activation, mean-field study shovasisly different from the two-dimensional NDCF cla3able
that the absorbing-phase transition occurs for a negativ®, they are close to those of the three-dimensiof&b)
value of the activation probabilitw. Thus, our model can NDCF model. Major discrepancies are nevertheless ob-
only describe self-activated networks where spontaneous aserved, especially concerning, v, and 8’, so that the
tivation does not occur. This is, for example, realistic in thesimilarity with the 3 NDCF class could be accidental. Fi-
case of cell communications via diffusive molecules, such agally, one of the most intriguing features of this model is the
the growth factors auto-paracrine system, because the ceiegative value fory. This is, to our knowledge, the first
response to the activating molecule go through intracellulapbservation of a negative value for this exponent, further
signal transmission pathways that do not activate in the atbsustaining the hypothesis of a separate universality class.
sence of ligand-receptor complexgs. This seems also a Note, however, that negative values have already been re-
reasonable assumption in the case of virus spreading, whep®rted for other exponents. For instance, in a model for qua-
a healthy individual cannot be infected in the absence ofispecies dynamics of RNA replication, field theoretical ar-
contact with the infectious agent. We note, however, that ouguments have recently evidenced a negative valuefi8].
model implies in this case that an infected individual even- To conclude, the present model could not be unambigu-
tually recovers with probability1 after an infection event. ously categorized in a previously described absorbing-phase-
Thus, our model neglects individuals removing upon infec-transition universality class. On one hand, this could origi-
tion, and is to be considered as a susceptible-infectedrate from the large uncertainty in the estimates of the critical
susceptible model as far as epidemics spreading is concernedponents. On the other hand, however, the data seems to
[29]. This appears a reasonable choice for influenza spreagiead in favor of a distinct set of critical exponents, which
ing, because this infection is not lethal for nonimmunode-would imply a new universality class. Alternatively, in the
pressed individuals. case of the contact process for epidemics spreading, the val-
We summarize in Table | the estimated values of the criti-ues of the the critical exponents change continuously as the
cal exponents, as well as their values in other models, showslistance range of the epidemic process is continuously varied
for comparison. Directed percolatigbP) is the best-known from long range to short rang@8]. In the present model,

“Deduced froma= /v .
“Deduced fromg’ = 6v;.
"Deduced fromw, = v /z.
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