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Nonequilibrium phase transition in a self-activated biological network

Hugues Berry*
Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe), De´partement de Biologie,
Universitéde Cergy-Pontoise, Boıˆte Postale 222, 2 Avenue A. Chauvin, 95302 Cergy-Pontoise Cedex, France
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We present a lattice model for a two-dimensional network of self-activated biological structures with a
diffusive activating agent. The model retains basic and simple properties shared by biological systems at
various observation scales, so that the structures can consist of individuals, tissues, cells, or enzymes. Upon
activation, a structure emits a new mobile activator and remains in a transient refractory state before it can be
activated again. Varying the activation probability, the system undergoes a nonequilibrium second-order phase
transition from an active state, where activators are present, to an absorbing, activator-free state, where each
structure remains in the deactivated state. We study the phase transition using Monte Carlo simulations and
evaluate the critical exponents. As they do not seem to correspond to known values, the results suggest the
possibility of a separate universality class.
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I. INTRODUCTION

Continuous nonequilibrium phase transitions have b
studied in a number of biologically relevant models, inclu
ing forest fire or epidemics spreading@1#, biological evolu-
tion @2,3#, population dynamics@4#, or cell interactions in
immune system@5#. Close to the transition, such critical sy
tems are not very sensible to the detailed nature of the
namical rules they rely on, but rather depend on more f
damental characteristics such as symmetries or Euclid
dimensions. As a result, a qualitative glance on comp
auto-organized systems, such as biological ones, can be
tained by studying even simple models.

Self-organization in biological systems relies on fun
tional interactions between populations of structural un
whether individuals, organs, tissues, cells, or molecu
Commonly, these interactions take the form of activating
infecting messages that act in a nonlocal and noninsta
neous way. For instance, cell growth is mainly controlled
extracellularly diffusing growth factors that act on the sou
cell that emitted it~autocrine signaling! or on a neighboring
cell ~paracrine signaling! @6#. Upon stimulation by growth
factors, the quiescent target cell enters theG1-S cell-cycle
phase@7#, eventually leading to cell proliferation as well a
synthesis~and excretion! of new growth factors, as a resu
of a positive feedback loop@8#. Strikingly, similar basic or-
ganization schemes are encountered at several observ
scales. We illustrate here some shared basic design princ
with the cases of allosteric-enzyme networks, cell populat
organization ~such asDictyostelium discoideum! or virus
spreading through air dissemination. Although very dissim
lar, these examples share common features.

~i! The infecting or activating messenger acts remote
through diffusional ~or nondirectional! transport. For in-
stance, the catalytic constants of many allosteric enzy
from metabolic networks are controlled by the enzym
reaction-product diffusing inside the cell@9#. Similarly to the
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growth factors in the above-mentioned case of auto-parac
control of cell growth, extracellular cyclic adenosine mon
phosphate~cAMP! diffuses betweenDictyostelium discoi-
deum cells upon starvation and regulates their behav
@10,11#. This is also the case of several infection spread
mechanisms where infected individuals can infect other d
tant individuals in the absence of body-to-body contact,
the emission of the infectious agent in the air. This infecti
mode has, for example, been evidenced for the foot-a
mouth disease@12# or the influenza virus~flu! transmission
@13#.

~ii ! Upon encounter with the mobile messenger, the str
ture under consideration switches to an activated state. D
ing this activated state, a positive feedback loop leads to
formation and excretion of new mobile messengers.
product-activated allosteric-enzyme networks, the diffus
product favors the initiation of the enzyme catalytic cyc
that ultimately leads to the formation of a new reaction pro
uct. Growth factor stimulation of eucaryotic cells, as well
cAMP stimulation of D. discoideum, triggers intracellular
signalization cascades that increase the synthesis and e
tion rates of these factors by the cell@14,16#. In the case of
epidemic air dissemination, infected individuals~such as
pigs in the foot-and-mouth disease@15#! often secrete vas
amounts of infectious agent and become sources of its
dissemination.

~iii ! Another feature often displayed by these biologic
systems is the existence of a refractory or lag phase: a
activation by the messenger, a time lapse must be wa
before the target structure can be activated again. This
ture is intrinsic to enzyme conformational cycles, that m
be completed before the enzyme finds itself in the~free!
resting conformation. Such lag phases are also encount
in cell communication systems: once stimulated by grow
factors, eucaryotic cells show a desensitized state becau
growth-factor membrane receptor down regulation@17#. Fur-
thermore, once initiated, the cell cycle enters a growth-fac
independent phase that must be completed before the
initiates a new cycle@7#. A similar lag phase is also observe
in D. Discoideum cells after cAMP stimulation, durin
which these cells are refractory to cAMP@18#. In the case of
©2003 The American Physical Society07-1
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HUGUES BERRY PHYSICAL REVIEW E67, 031907 ~2003!
epidemic spreading, this delay or lag phase is intrinsic to
contamination process, since an infected individual must
cover before being infected again.

Seen from this angle, these systems can be compare
self-organized critical models of sandpiles, avalanches
earthquakes@19#. However, self-organized critical system
are slowly driven systems@20#. In the biological systems
mentioned above, the time scale for messenger transpo
the target structure is usually not shorter than the inte
dynamics of the structure. They are thus not slowly driv
and their dynamics must be separately addressed.

In the present paper, we study a very simple tw
dimensional lattice model that displays these basic pro
ties. Each activable structure is considered to be immo
with respect to the messenger which is assumed to mov
diffusion on the lattice. Upon encounter of a messenger w
an activable structure, the latter activates with probabilityv.
When activated, a structure emits a new messenger an
mains in a refractory state before another messenger ca
tivate it again. We use Monte Carlo simulations to inves
gate the behavior of this system in two dimensions, as
activation probabilityv is varied. The paper is organized a
follows. The following section describes the model, of whi
a mean-field study is presented in Sec. III. In Sec. IV, res
of Monte Carlo simulations are shown and eviden
absorbing-phase transition asv is varied. Studies of the dy
namical critical behavior as well as finite-size scaling ana
sis allow to estimate the critical exponents. Finally, Sec
presents a short discussion concerning the universality c
of the model.

II. THE MODEL

Our model is basically a two-dimensional version of t
zero-dimensional model for allosteric enzyme networks
Mikhailov and Hess@21#, without spontaneous activation.
consists ofN activable biological units regularly distribute
over a two-dimensional lattice of~linear! length L. Broadly
speaking, these units can represent individuals, tissues, c
or enzymes and will be designated in the following by t
general term ofstructures. The distancel between two
nearest-neighbor structures is constant, withl 5L/AN. To
model the activation as well as the refractory phase, we
sociate each structurei 51, . . . ,N with a dynamical variable
f i(t) that takes integer values between 0 andK and repre-
sents the structure state at timet ~Fig. 1!. The statef i50 is
the activable state. The transition fromf i50 to f i51 rep-
resents the activation of the structure and occurs with pr
ability v if an activating messengerA is present on the struc
ture site. The transitions from the statef i5 j to f i5 j 11
then occurs with rate 1, forj 51, . . . ,K21. After K steps,
the structure is back in the activable state, i.e., goes f
f i5K21 tof i50 with rate 1. Thus, once activated, a give
structure must waitK21 time units to find itself back in the
activable state. Finally, the conformation statef i5Kr (1
,Kr,K) is the messenger-releasing step, i.e., the transi
from f i5Kr21 to f i5Kr is accompanied by the release
an activating messengerA on the structurei site.

The structures are considered as immobile, whereas tA
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molecules are allowed to diffuse over the lattice~random
walk!. TheA molecules are assumed to have a finite lifetim
and are removed from the lattice with ratel. For simplicity,
in this study, we fix the values ofl, K, andKr , so that the
model only depends on the activation probabilityv. In the
following, the model behavior is studied asv is varied.

III. MEAN-FIELD ANALYSIS

The model can be described by the following set of re
tions:

A1S0→
v

A1S1 ,

Si→
1

Si 11 , i 51, . . . ,Kr22,Kr , . . . ,K22,

SKr21→
1

SKr
1A,

SK21→
1

S0 ,

A→
l

B,

whereSi designates a structureS in the statef5 i , A is the
activating messenger, and superscripts on arrows desig
reaction probabilities or rates. The classical mean-field~spa-
tially homogeneous! equations for these reactions are read
found to be

ds0 /dt52vrs01
N

L2
2 (

i 50

K22

s i , ~1a!

ds1 /dt5vrs02s1 , ~1b!

ds i /dt5s i 212s i , i 52, . . . ,K22, ~1c!

dr/dt5sKr212lr, ~1d!

FIG. 1. Evolution of a structure statef. The activable state is
f50. A structure can be activated to the first step of the activa
statef51 with probability v if an activatorA is present on the
structure site. The structure then remains in the activated state
ing K21 time steps~refractory phase! and releases a new mobil
activator upon transition from stateKr21 to the next one. After
K21 refractory steps, the structure is back in the activable s
f50.
7-2
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where s i represents the density of structures in conform
tional statef5 i and r, the activator density. In Eq.~1a!,
conservation of the total structure density has been u
sK215N/L22( i 50

K22s i .
Equations~1! have two steady states:

s05N/L2, ~2a!

s i50, i 51, . . . ,K21, ~2b!

r50; ~2c!

and

s05l/v, ~3a!

s i5
1

K21 S N

L2
2

l

v D , i 51, . . . ,K21, ~3b!

r5
1

K21 S N

lL2
2

1

v D . ~3c!

The first steady state@Eqs. ~2!# is an absorbing state: if th
system reaches this configuration, it cannot escape from
The second steady state@Eqs.~3!# will be referred to as the
active state. Note that, in both cases, the steady states d
depend on the value of the activator-releasing state of
structures (Kr). The stability of these two steady states c
be determined analytically forK<4. The two steady state
undergo a transcritical bifurcation atv5vc5lL2/N, the ac-
tive state being stable forv.vc and the absorbing one fo
v,vc .

In the case of the flyDrosophilia oogenesis, it was found
that growth factors excreted by a given cell can act ove
spatial range of three to four intercell distances@22#. In the
present model, the spatial range of the diffusing messeng
mainly dictated by its survival probabilityl. Accordingly,
the value ofl has been fixed so that the mean lifetime o
mobile messenger corresponds to the average time ne
for it to walk over a distance corresponding to three int
structure distancel i.e., l51/(3l )2. Because we usel 57 in
the present study,l51/441, and mean-field analysis predic
an absorbing-state phase transition atvc51/9. For K.4,
the stability can be studied numerically. As can be seen fr
Fig. 2, the behavior of the system is qualitatively conserv
The stability of the steady states does not depend onK, and
the absorbing-phase transition is maintained atvc51/9
'0.1111. In the active phase, the activator density

r5
1

K21 S 1

vc
2

1

v D;v2vc , ~4!

which defines the critical exponentb in the mean-field ap-
proximation,bMF51.
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IV. MONTE CARLO SIMULATIONS AND RESULTS

A. Description

The model is studied by Monte Carlo simulations on tw
dimensional square lattices with periodic boundaries. M
tiple occupancy of a site is allowed, so that a lattice site c
be occupied by several activators at a given time~bosonic
model!. The distance between two nearest-neighbor str
tures is exactlyl lattice sites. The implementation of th
above dynamic rules on a computer is straightforward.
each Monte Carlo step, the system is updated as follows.
structure conformation variablesf i , with i 51, . . . ,N are
updated simultaneously for each structurei, in agreement
with Fig. 1. Note that, as multiple occupancy of a site
allowed for an activator molecule, the presence ofn activa-
tors on structure sitei increases the transition probability
P(f i50→f i51)512(12v)n. The positions of the acti-
vator molecules are then updated: new activators are cre
at each structure site for which the conformation varia
f i5Kr and each activator is removed from the lattice w
probability l. Finally, the surviving activators are indepe
dently and simultaneously moved to randomly chos
nearest-neighbor sites~Von Neumann neighborhood!. The
various probabilities are simulated using uniformly distri
uted random numbers generated with the combined gene
of Ref. @24#.

B. Dynamical behavior

Figure 3 showsr ands0 time evolutions forL570 and
l 57. For low activation probabilities~seev50.12 in Fig.

FIG. 2. Numerical study of the steady-state stability for t
mean-field approximation as a function of the activation probabi
v. A transcritical bifurcation is observed for allK at v5vc

'0.1111. Full lines represent stable steady states and dotted
unstable ones. The numbers above the curves indicate the c
sponding value ofK. For each curveKr511(K/2), l 57, N
5100, andl51/441. Note that the absorbing steady stater50
does not depend onv. This continuation study was realized nu
merically using the programAUTO @23#.
7-3
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HUGUES BERRY PHYSICAL REVIEW E67, 031907 ~2003!
3!, the system rapidly tends to the absorbing steady s
@Eqs. ~2!#. With higher probabilities, the densities reach
longer times a fluctuating active state, with average val
depending on the probabilityv.

Figure 4 shows the dependance of the average densiti
the active steady state^s0&act and^r&act , as a function ofv.
These simulations clearly confirm the occurrence of
second-order~continuous! phase transition from the activ
state to the absorbing state. The thresholdvc is seen from
Fig. 4 to be close to 0.13, slightly higher than the val
obtained from the mean-field approximation.

To determine more precisely the critical probability a
evaluate the critical exponents, we first present Monte C
simulations initiated with a lattice containing one activa
molecule per lattice site and random structure states. In
case of a continuous phase transition, the activator den
r(t) is expected to scale as@25#

FIG. 3. Time evolution of the density of structures in the ac
vable state (s0, top! and of the activator density (r, bottom! during
a single Monte Carlo simulation initiated without activator and w
random structure statesf. The numbers on the curves are the v
ues of the probabilityv. Time is expressed as Monte Carlo ste
~MCS!. Parameters are:L570, K520, Kr511, l 57, l51/441,
andN5100. The total structure density is thus 0.0204.
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r~ t !;t2a f ~Dt1/n i!, ~5!

where f is a universal scaling function,D5uv2vcu is the
distance from the threshold, andn i is the correlation length
exponent~in the time direction!. According to Eq.~5!, r(t)
decreases as a power law at criticality

r~ t !;t2a, v5vc . ~6!

Figure 5 shows a plot ofr(t) for various values ofv. At
criticality, one expects these curves to form straight lin
whereas off-critical values should show curvatures at lo
times. Simulations withv>0.130 are clearly above th
threshold, while those withv<0.124 are subcritical. In orde
to obtain more precise estimations, the local slopes of th
curves are also shown in the top right panel. Average lo
slopes are calculated as@26,27#

FIG. 4. Dependance on probabilityv of the average densities o
activating molecules~top! and activable structures~bottom!, in the
active state. The dotted line indicates the total structure density.
full lines are guides for the eyes. Other simulation parameters ar
in Fig. 3.
7-4
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FIG. 5. Results of Monte Carlo simulations initiated with one activator per lattice site and random structure statesf ~top left!. Time
evolution of the activator densityr. Probabilities are~from bottom to top! v50.122, 0.124, 0.126, 0.128, 0.129, 0.130, 0.132, 0.134. Res
are averages of 100~for v50.126) or 50~for the other probabilities! independent runs~top right!. Plots of the corresponding local slop
2a(t). Probabilities are as in left panel~bottom!. Scaling ofr(t) as rta versust3Dn i with vc50.127, a51.1, andn i50.75. Other
simulation parameters are as in Fig. 3.
ec

to
ing

ith
-

ac-
2a~ t !5
log10@r~ t !/r~ t/m!#

log10m
. ~7!

The valuem58 is used here. Generally, one expects corr
tions to the power law Eq.~6! of the type

r~ t !;t2aS 11
a

t
1

b

ta8
1••• D . ~8!

The local slope thus behaves according to

a~ t !5a1
a

t
1

a8b

ta8
1•••. ~9!
03190
-

Hence, in a plot of the local slopes versus 1/t, the critical
exponent is the intercept of the curve forv5vc with the y
axis, and the curves for off-critical values are expected
show notable curvatures. Inspection of the correspond
curve in Fig. 5 shows that 0.126<vc<0.128. Furthermore,
we evaluate from this figurea51.1(1), where the uncer-
tainty in the last digit is shown in parentheses.

According to Eq.~5!, plots of rta versus tDn i should
collapse on a single curve with upward curvature forv
.vc and another one with downward curvature forv,vc
@25#. The best collapse for the data of Fig. 5 is obtained w
n i50.75 ~Fig. 5, bottom panel!. With these estimations, an
other critical exponent can be evaluated:b5an i'0.82.b is
the critical exponent relating the activator density in the
tive state to the distance from the threshold
7-5
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HUGUES BERRY PHYSICAL REVIEW E67, 031907 ~2003!
^r&act;Db. ~10!

As a consistency check, Fig. 6 shows the data of Fig. 4 fov
close to the threshold as a function ofD, in log-log coordi-
nates. From the slope of the data, we estimateb50.80, in
good agreement with the value deduced froma andn i . This
value is significantly lower than predicted by the mean-fi
approximation (bMF51).

It can be observed from Fig. 3 that fluctuations around
average steady-state values are higher forv50.20 than for
v50.15. This is particularly obvious fors0. The density
fluctuations in the active statex5L2(^s0

2&2^s0&
2) are ex-

pected to scale close to the critical point as

x;D2g. ~11!

In the model studied here, fluctuations around the stea
state value in the active state increase as the distance t
threshold increases, implying a negative value forg. Figure
7 shows thatx increase satisfies Eq.~11!, with g520.64.
Note that a similar value (20.66) is obtained withr fluc-
tuations, albeit with poorer statistics.

To obtain other exponents, so-called ‘‘dynamic’’ Mon
Carlo simulations@26–28# have also been performed. The
consist in initiating the simulations with a configuration ve
close to the absorbing state, and measuring the time ev
tion of the number of activating molecules present at timt,
N(t), and the probability that the system has not entered
absorbing state at this time,P(t), averaged over many rea
izations. These quantities scale at criticality in the long-ti
limit as @26,27#

N~ t !;th, P~ t !;t2d, v5vc . ~12!

The main advantage of these simulations is their absenc
dependence on the system size@25#. Dynamic Monte Carlo

FIG. 6. Plot of the data of Fig. 4 for probabilities close to t
threshold as a function of the distanceD5uv2vcu, for vc

50.127. The full line has a slope of 0.80.
03190
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simulations were initiated with a unique product molecule
a random position, and all structures in the activable s
f50. The surviving probability and the number of produ
molecules were recorded during 23104 Monte Carlo steps,
and averaged over 23103 realizations.

Figure 8 shows the results of these simulations forN(t)
andP(t). The local slopes are evaluated as already descr
for a. From the results for effective exponenth ~Fig. 8, left
panel!, we estimatevc'0.128, whereas its value from effec
tive exponentd ~Fig. 8, right panel! is lower: vc'0.126.
Thus, the critical probability can be evaluated from the
results tovc50.127(1). The twocritical exponents can be
estimated from the long-time behavior of the local slopes
h50.18(5) andd50.82(8). Finally, another critical expo-
nent can be estimated from these values:b85dn i'0.62.

C. Finite-size scaling

Because of the finite size of the lattice in the simulatio
the activator density is expected to depend on the lattice
L at criticality as@25#

r~L,t !;t2ag~ t1/z/L !, v5vc , ~13!

whereg is a universal scaling function,z5n i /n' is the dy-
namic exponent, andn' is the correlation length exponent i
the space direction. To determine the dynamic expon
Monte Carlo simulations were carried out at criticality wi
variable lattice sizesL, but keeping the interstructure lengthl
constant~Fig. 9!. As predicted by Eq.~13!, the data for vari-
ousL plotted asrta versust/Lz should collapse on the sam
curve. The inset in Fig. 9 show the best collapse of th
data, obtained forz51.62.

As a consistency check, the characteristic time of the s
tem, t, was also estimated during these simulations. A

FIG. 7. Steady-state fluctuations of the density of structures
the activable states0 as a function of the distance to the thresho
D5uv2vcu, for vc50.127. The full line has a slope of 0.64. Oth
simulation parameters are as in Fig. 3.
7-6
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FIG. 8. Local slopes~effective exponents! for the number of activating moleculesN(t) ~left! and the survival probabilityP(t) ~right! in
dynamic Monte Carlo simulations. Probabilities are~from bottom to top! v50.122, 0.124, 0.126, 0.127, 0.128, 0.129, 0.130, 0.132. Res
are averages of 23103 independent runs for each probability. Other simulation parameters are as in Fig. 3.
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characteristic time, the time for the system to reach the
sorbing state was chosen. At criticality,t is expected to scale
for finite systems as

t~L !;Lz, v5vc . ~14!

Following Ref. @30#, we evaluate for each sample the m
ment

FIG. 9. r(L,t) versus time at criticality, for various lattice size
L535 (s), 70 (3), 84 (h), or 119 (1). Simulations initiated
with one activator per lattice site and random structure sta
Shown are averages of 50 independent runs for each sizev
50.127, l 57, and other simulation parameters as in Fig. 3.Inset:
Scaling ofr(L,t) asrta versust/Lz, with a51.10 andz51.62.
03190
b-
ts~L !5(

t
tr~ t !Y (

t
r~ t !, ~15!

t(L) is the ensemble average over 50 samples at a g
lattice size,t(L)5^ts&. Figure 10 shows a plot oft(L) as a
function ofL, indicating the value ofz51.59, in good agree-
ment with the previously estimated value. Finally, the va
of n' can be estimated fromz andn i to n'5n i /z50.47.

V. DISCUSSION

We have presented Monte Carlo simulations for a latt
model of self-activation in a network of biological structur

s.
FIG. 10. Characteristic time,t(L), as a function of the lattice

size L at criticality. Simulation parameters are as in Fig. 9. T
straight line has a slope of 1.59.
7-7
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HUGUES BERRY PHYSICAL REVIEW E67, 031907 ~2003!
~organs, tissues, cells, or enzymes!. Fixing all other param-
eters, the system displays a nonequilibrium continuous ph
transition from an active to an absorbing state as the act
tion probability is varied. One of the main assumptions of
model is that it does not consider spontaneous structure
tivation, i.e., the activation probability of a given structure
the absence of activator is zero. This could be an unreal
approximation for product-activated allosteric enzyme n
works @21#, where the product usually increases the tran
tion probability to the active state from a nonzero sponta
ous probability in the absence of product. Indeed, in
presence of spontaneous activation, mean-field study sh
that the absorbing-phase transition occurs for a nega
value of the activation probabilityv. Thus, our model can
only describe self-activated networks where spontaneous
tivation does not occur. This is, for example, realistic in t
case of cell communications via diffusive molecules, such
the growth factors auto-paracrine system, because the
response to the activating molecule go through intracellu
signal transmission pathways that do not activate in the
sence of ligand-receptor complexes@6#. This seems also a
reasonable assumption in the case of virus spreading, w
a healthy individual cannot be infected in the absence
contact with the infectious agent. We note, however, that
model implies in this case that an infected individual eve
tually recovers with probability51 after an infection event
Thus, our model neglects individuals removing upon infe
tion, and is to be considered as a susceptible-infec
susceptible model as far as epidemics spreading is conce
@29#. This appears a reasonable choice for influenza spr
ing, because this infection is not lethal for nonimmunod
pressed individuals.

We summarize in Table I the estimated values of the c
cal exponents, as well as their values in other models, sh
for comparison. Directed percolation~DP! is the best-known

TABLE I. Critical exponents for the system studied ind52
~present work, PW!, compared with directed percolation~DP! and
coupled nondiffusive conserved field~NDCF! classes ind52 and
d53. Numbers in parentheses indicate uncertainty in the last d

PW DPa NDCFb NDCFc

d 2 2 2 3

a 1.1~1! 0.451 0.43~1! 1.3d

b 0.82~2! 0.584~4! 0.637~9! 0.84~2!

d 0.82~8! 0.451~1! 0.49 0.76~3!

b8 0.62e 0.584~4! 0.583 0.85e

h 0.18~5! 0.230~1! 0.29~1! 0.16~2!

g 20.64(2) 1.60 0.84~23! 0.18~6!

n i 0.75~5! 1.295~6! 1.2~1! 1.12~8!

n' 0.47f 0.734~4! 0.83~3! 0.62~3!

z 1.60~2! 1.76~3! 1.52~6! 1.80~5!

aFrom Ref.@25#.
bFrom Refs.@35–37#.
cFrom Refs.@35# and @37#.
dDeduced froma5b/n i .
eDeduced fromb85dn i .
fDeduced fromn'5n i /z.
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universality class of second-order phase transitions t
unique absorbing state. It has proven to be very robust w
respect to the microscopic dynamic rules and is thus the
versality class of a wide range of models, including ma
reaction-diffusion ones~for a review, see Ref.@25#!. One of
the hallmarks of DP is a time-reversal symmetry that yie
d5a ~or, equivalentlyb5b8). It can be seen from Table
that this relation fails in the model studied in the prese
paper. Other scaling relations relate critical exponents
gether. For instance, DP exponents verifyg5dn'1n i22b
andh1d1a5d/z @31#. These relations are not fulfilled fo
the model studied in this paper. Furthermore, as can be
from Table I, the values of most of the individual exponen
disagree with two-dimensional DP. Taken toghether, th
remarks strongly suggest that DP is not the universality c
of the present model.

Besides DP, other absorbing-phase-transition classes
been identified in the last decade@32#. They usually emerge
as a result of additional properties, such as symmetric
infinitely many absorbing states@33#, particle diffusion@34#,
or parity conservation in the number of particles@27,28#. To
our knowledge, the model which is most closely related
the present work is the reaction-diffusion model of Ref.@35#.
It describes the reaction between two bosonic particles,
of which being immobile. Varying the total particle densit
represented as a nondiffusive conserved field~NDCF!, it ex-
hibits an absorbing-phase transition, and is believed to de
a separate universality class, to which some conserved la
gas models also belong@36,37#. A major difference with the
present work is that, in the NDCF model, the total partic
density is conserved. Conservation properties are usu
very important for the universality classes of absorbin
phase transitions, as exemplified by the branchi
annihilating random walk models@27,28#. Surprisingly,
whereas the exponents for the present model are unamb
ously different from the two-dimensional NDCF class~Table
I!, they are close to those of the three-dimensional~3D!
NDCF model. Major discrepancies are nevertheless
served, especially concerningg, n i , and b8, so that the
similarity with the 3D NDCF class could be accidental. F
nally, one of the most intriguing features of this model is t
negative value forg. This is, to our knowledge, the firs
observation of a negative value for this exponent, furth
sustaining the hypothesis of a separate universality cl
Note, however, that negative values have already been
ported for other exponents. For instance, in a model for q
sispecies dynamics of RNA replication, field theoretical
guments have recently evidenced a negative value forh @3#.

To conclude, the present model could not be unambi
ously categorized in a previously described absorbing-ph
transition universality class. On one hand, this could ori
nate from the large uncertainty in the estimates of the crit
exponents. On the other hand, however, the data seem
plead in favor of a distinct set of critical exponents, whi
would imply a new universality class. Alternatively, in th
case of the contact process for epidemics spreading, the
ues of the the critical exponents change continuously as
distance range of the epidemic process is continuously va
from long range to short range@38#. In the present model

it.
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this range is mainly imposed by the product life time, ind
cating that the exponent values could depend onl. To ascer-
tain these hypotheses will need further and more inten
simulations. Studies of the one-dimensional version of
model, although of poor biological relevance, would perm
more precise estimations, as well as easier comparisons
other classes.
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