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Detecting scaling in the period dynamics of multimodal signals:
Application to Parkinsonian tremor
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Patients with Parkinson’s disease exhibit tremor, involuntary movement of the limbs. The frequency spec-
trum of tremor typically has broad peaks at “harmonic” frequencies, much like that seen in other physical
processes. In general, this type of harmonic structure in the frequency domain may be due to two possible
mechanisms: a nonlinear oscillation or a superpositiofmafitiple) independent modes of oscillation. A broad
peak spectrum generally indicates that a signal is semiperiodic with a fluctuating period. These fluctuations
may posses intrinsic order that can be quantified using scaling analysis. We propose a method to extract the
correlation (scaling properties in the period dynamics of multimodal oscillations, in order to distinguish
between a nonlinear oscillation and a superposition of individual modes of oscillation. The method is based on
our finding that the information content of the temporal correlations in a fluctuating period of a single oscillator
is contained in a finite frequency band in the power spectrum, allowing for decomposition of modes by
bandpass filtering. Our simulations for a nonlinear oscillation show that harmonic modes possess the same
scaling properties. In contrast, when the method is applied to tremor records from patients with Parkinson’s
disease, the first two modes of oscillations yield different scaling patterns, suggesting that these modes may not
be simple harmonics, as might be initially assumed.
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I. INTRODUCTION cal tremor, a movement disorder that results from the invol-
untary fluctuations of a limb. This motion is neither strictly
The presence of scaling and long-range correlations in geriodic nor is it made up of only one oscillation modies-
wide variety of physica[1-3], biological [4—6], meteoro- quency bany a property common to many physical and
logical[7], and economi¢8,9] systems has recently attracted Physiological signals. Tremor can be quantified by measur-
much interest. The appearance of scaling laws is generallj?d the acceleration or muscle activity of the hand; both re-
associated with the complex, nonequilibrium nature of a sysveal a semiperiodic wave form with more than one typical
tem, especially where continuous flow, dissipation of energy{féduency(Fig. 1). There areat leas} two possible explana-
and feedback loops are pres¢h€]. Biological systems of- tions for the appearance of a multimodal spectrum in the

ten have these characteristics since they feature complex en- @ ®
a

vironments with a large number of units interacting locally — | | = : | | 0.1

and nonlinearly and include multiple, natural pacemakers as I Handtremor - [ Hand wemst 0.08 ¢
well as feedback mechanisnj$l]. Such interactions may CIY I o.os,‘é
lead to nonlinearity and higher harmonics. Recent studies 0.04T§<
have focused on identifying long-range temporal correlations™ 002

in phenomena that fluctuate with a certain rhythm or period- [ |
icity, but in which the frequency is not constant in time, e.g., (¢ 7 75 8 85
heartbeat dynamic§12,13, human gait[14], and neuron 2 ‘\ucleactivity
spiking [15]. In such systems, the semiperiodic sigfrabt P12
perfectly periodi¢ possesses long-range correlations inside st
its period dynamicgthe time series constructed by the evo- = [
lution of the instantaneous periodTo determine whether — “-osy W [\ W |V | I
long-range correlations exist in the nonconstant frequency of 7 75 8 85 0 4 8
a measured quantity, one first needs to decide what to con- ¢ (sec) f (Hz)
sider as the instantaneous period. When dgaling with rhyth- £15 1 Example of hand tremea) and muscle activityc) from

mic signals, one usually encounters a typical frequency of patient with Parkinson's disease, and corresponding power spectra

oscillation and therefore the time-dependent period camy) and (d). The spectra reveal several modes, apparently at har-
readily be defined as the time interval between successivigonic frequencies, which may rise from the nonlinear nature of the

peaks. The period in this manner, however, may be somesignal. Another option is that they may actually indicate different,

times ill defined, e.g., when the oscillation is the product ofperhaps independent modes of oscillation. Note that for both hand

several typical frequencies, and not just one. tremor and muscle activity, the peaks appear at the same frequen-
Many patients with Parkinson’s disease exhibit pathologi-cies.

12 160

1063-651X/2003/6(8)/0319038)/$20.00 67 031903-1 ©2003 The American Physical Society



SAPIRet al. PHYSICAL REVIEW E 67, 031903 (2003

frequency domain. One is that the oscillation has only ongange correlations, i.e., no characteristic time scale, its dy-
typical period, but it is of nonlinear nature. In this case, therenamical properties may be contained in a finite frequency
is only one statistical “origin” for the period dynamics. band located around the central frequency and not spread
Since the signal is semiperiodic, nonsinusoidal, it generategver the entire spectrum. Therefore, if several modes with a
harmonic structure in the power spectrum. The second is thatariety of dynamics are present, one can apply a filter in the
the oscillation is described by coexisting modes that mayrequency domain in a bandpass fashion to identify the long-
have different statistical origins. The individual modes mayrange temporal correlations inside the fluctuating period, for
possess statistically independent behavior, as expressed éach mode separately, disregarding any low-frequency com-
the period dynamics. The apparent “harmonic” relation be-ponents. Perhaps this idea is counterintuitive; long-term
tween the modes may not be a mere coincidence, but can meemory is typically associated with low-frequency contribu-
attributed to a certain system that allows only harmonictions. Here, however, we discuss memory in the period dy-
modes to exist, e.g., a chain of coupled oscillators withnamics and demonstrate that this memory is reflected only in
modes at ratios of 1:1, 1:2, or 1:4, for example, or a feedbackhe vicinity of the peak. Another point to be examined with
loop. Thus, the signal that produces the multimodal harmonicespect to bandpass filtering is the possible mixing of statis-
structure may be either a linear combination of oscillatortical properties at different times, which might therefore dis-
eigenmodes, or a single nonlinear oscillator. able the time ordering that is cruical for scaling. In the fol-
Previous studies have begun to investigate whether thiwswing, we demonstrate that this does not occur. When two
different frequencies indicate a single nonlinear oscillator odifferent filters are applied, similar scaling is observed.
superimposed, multiple biological oscillatgds®,17. For ex-
ample, they may represent multiple tremor mechanisms that A. Simulation procedure
may include central oscillations, peripheral feedback loops,
and mechanical resonanf8]. To gain insight into the ori-
gins of tremor and the mechanisms responsible for the ge
eration of different modes, we would like to quantitatively
characterize the time evolution of the fluctuating period us
ing scaling analysigsee the Appendjx Scaling usually ap-
pears in long-term memory processes, such as fractal brown- T—T4 1)
ian motion, and is associated withf Xioise. The harmonic or : K

quasiharmonic signals themselves do not posses scaling sinysoids with a fluctuating periof} are created one af-
properties, howeyer, the time serles_of the_|r qu_ctuatlng Periter another. As soon as one wave completes its period, an-
ods may(e.g., as in heart rate dynamicBut first, in orderto  gther js created. Thus we have a distribution of sinusoids
obtain the period series of tremor signals, we need t0 Sepgyith different periodsT;. The period dynamics of these
rate the different oscillation modes. Simple splines that ridsjnyspids are the same as that of the correlated noise series,

the signal from noise and other high frequencies cannot be, .\ The analytical representation of such a superposition of
used[19]. Therefore, in order to enable scaling analysis Ofdelayed finite-duration sinusoids can be written as
tremor, specifically, and signals consisting of several modes,

more generally, it is essential to develop a new method for N 20 i-1
identifying the period dynamics of individual modes in a y(t)=2 cos{T(t—Z T,
multimodal signal. As we show below, subsequent investiga- =1 i =0
tion of the scaling properties of the decomposed individual

modes will, in turn, provide important evidence regarding X 6
the question of whether the multiple modes are simply har-

monics that arise from a single, nonlinear oscillator or
whether they are likely to be the result of distinct oscillators.

To test our method, we first simulate a single-mode signal
hat has long-range correlations in its period dynamics, but
as a constant amplitude. We generate a Gaussian distributed
correlated noise seri€sy} [20] and determine the series of
the periods as

0

i—1
t—=> T,
i=o

> Tj—t), 2
]=0

whereN is the number of sinusoids in the signgk) (or the
length of the period seriefT;}), and

0, t<O
1, t=0.

Il. METHODS a(t)z[

Two assumptions lie at the basis of our method. The first
is that independent processes may be responsbile for differ- The Fourier transform of this function can be estimated

ent correlation(scaling properties inside the period dynam- ysing some basic properties. We define the transform pair of
ics of individual modes of oscillation. The second is that theyne functionh(t) as[21]

output signal is a superposition of modes, even if those arise

from a single nonlinear oscillation. A consequence of the two 1 (= ,

assumptions is that the period dynamics can be recovered h(t)‘:’H(“’):ﬁfﬁwh(t)exm‘“t)dt- ©)
independently for each of the modes. We propose to decom-

pose the multimode signal into its subsignals using a filtering  Then using “time shifting” and “modulation” we obtain
procedure, in order to extract scaling information about theggs. (4) and (5), respectively,

period dynamics of different modes. We hypothesize that

even if the period dynamics of each oscillator possess long- h(t—tg)eH(w)expioty), 4
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h(t)COS{wot)<:>%[H(w—wo)-i-H(w-l-wo)]. (5)

The transform pair of a square pulse with a widtlcen-
tered around=0,

sin(w—T) < 0.08[-

T\ [T T 2 Fo0er

(% t+§ 0<§_t)¢>ﬂT (6) 50_02:_ |
a5 00 2
2 (c)

It is more convenient to look only at the first term of the 05p
Fourier transform for Eq(2), because the second term is

simply the complex conjugate of the reflected first term. 03[ | | | 1 C | 1 | ]
Thus, y(t)< Y(w)=G(w)+G* (—w). Using Egs.(4)—(6), T s 1 15 2 oo 1 15 2
we obtain ¢ (sec) trisec)
T FIG. 2. Simulation for the validation of bandpass filtering de-
N sin (o — w,) = composition of a double-mode signéd) The linear combination of
1 Th . two single-mode signals, with altering periods; one sinusoid has a
Glw)= 2 ngl o T, exli(w—wn) 7], cycle centered around 0.25 sec and the second at 0.125 sec. The two
(0— wn)? sinusoids may have different scaling exponents describing the dy-
@) namics of the periodgb) Power spectrum of the simulated signal
presented in(a), showing two broad peaks at the corresponding
where central frequencies. We decompose the signal into the two modes
with a bandpass filter whose boundaries are indicated by dashed
20 n-1 lines for the first mode and by dot-dashed lines for the second
0= and T =T,/2+ 2 Tj . mode. The decomposed subsignals for the first mode and for the
Th 1=0 second mode are shown (o) and(d), respectively.

From Eq.(7), we can see that ifT;} is a series centered compose it into its subsignalfor the first and second moye
around a central period, then in the Fourier transform onlywe use a square pulse filter, which conserves the magnitude
values in the vicinity of that period are important; the func-and phase information inside a chosen bandwidth and dis-
tion decays without low-frequency contribution as d/( cards all information content outside the band. Afterwards,
—wy), even if long-range memory is present in the periodthe inverse Fourier transforms of the results are estimated to
series{T;}. Such memory is determined only in the ampli- switch back to the time domain for peak detectiéigs. Zc)
tude and phase distribution around the central period, so thend 2d)]. The period dynamics of the decomposed subsig-
signal, to some extent, is bandwidth limited. The power specnals for the two modes is determined from the peak-to-peak
trum of the simulated single-mode oscillator indeed reveals intervals (PPl series—the intervals between successive
broad peak located around the central freque(feg. 2). maxima. Similiar results were obtained when a Blackman
Although the phase is not zero outside the broad peak, thiiter, which decays more slowly, was applied instead of the
information content carried there is minimal, since the cor-square pulse filter. This consistency suggests that, at least to

responding amplitudes are effectively nil. some degree, the method is independent of the filter shape.
We chose to use the square pulse filter since its results can be
B. Robustness of the method more intuitively explained.

. The correlation properties of the PPl series for both
To test Whethe”?‘f"te.“”g proce_dure can c_orrectly reCOVet,hdes are then investigated using detrended fluctuation
Iong-rapge correlat|ons' in the penoq dynamics of the Slrnu'analysis(DFA) [22,23. DFA calculates the fluctuation func-
lated signals, we superimpose two single-mode osc;:llatorst on of a time series, which in the case of long-range corre-
construct a double-mode oscillator. This double-mode signal,_.: ' .
i o . ations behaves as a power law of time scdl®4], F(n
a prototype for our decomposition triffFig. 2(a)], is then ons b es a b ] F(n)

ust the linear combination of the two sinale-mode si nalswna' When the scaling exponenit is larger, it indicates
ju ! inatl Wo sing 9 'stronger correlations in the signédbr more details see the

f(t)=y1(t) +y,(1), with different central period$, andT,,  Appendiy. The fluctuation functions of the PPI series of the
respectively, and different noise serieg, and 7,, charac-  decomposed subsignals are compared with the fluctuation
terized by different scaling exponentg anda,. We choose  fynction of the PPI series of the original single-mode signal
T,=2T, and denote/,(t) as the first mode ang,(t) as the to see whether the method is able to restore the correct, origi-
second mode, to produce a harmonic structure. To switch tonal scaling exponent. In Fig. 3, it is apparent that the corre-
the frequency domain, the Fourier transform of the doublefation properties of the decomposed first mode signal are
mode signal is calculatddFig. 2(b)]. Then a pair of bandpass identical to those of the original single-mode signal;t), in
filters are applied to the double-mode signal in order to dethe large time scales, but there is some deviation in the small
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n FIG. 4. A comparison between the scaling exponents of the

peak-to-peak interval series of the original single-mode signal with
the those of the decomposed first mode. Different symbols indicate
different input scaling exponents for the period dynamics of the
second mode. Note that the decomposition procedure succeeds in
series of (@) and (b), where “®” indicates DFA results of the restqring the scaling exponent of the single mode,'unrelated to the
scaling exponent of the second mode. The same picture appears for

single-mode signal, andA” indicates DFA results of the decom- th nd mode. with th lina exponent of the sinale mod
posed first mode signal, obtained by bandpass filtering of the € seco ode, € scaling exponent of the single mode

double-mode signald) Successive slopes of the fluctuation func- restored regardiess of the scaling exponent of the first mode.

tions from(c). The two curves overlap for almost all window sizes,

indicating that the decomposition restores the correlations in the

PPI series of the single-mode signal. Subtle deviations occur for It is also interesting to see how the method deals with a

smalln, perhaps to finite bandwidth effects. See the Appendix fornonlinear oscillation with long-range correlations in the pe-

details on DFA. riod. For this purpose, we generate a different oscillating
function, a pulse train formed as

time scales. The same is true for the decomposed second N i-1
mode signal. This effect may originate from the finite band- y(t)=>, 5( t— > TJ), T=T+mn, (8)
width. Thus, although the fluctuations of the period possess i=1 =0
scale-free behavior, the dynamics can be reconstructed by
selecting a finite scale of frequencies when analyzing th&vhere
signal.

We test the robustness of the decomposition method for a 6(t)={
variety of input scaling exponentd-ig. 4) for the period
series from Eq(1) for both the first and second modes. The . o )
scaling exponents for the modes are calculated outside tH8 €xamine the situation where there is only one source for
small scale range to prevent incorrect estimation as indicatel!® correlations in a nonlinear signgfig. 6@)]. As in a
by Fig. 3c). The decomposition method produces stable reperfectly periodic pulse train in time that produces a per-

sults regardless of the scaling exponent of the other mod%eCtIy periodic pulse train in the frequency domain, when

s : . L [uctuations are introduced to the period, a similar spectrum
The sensitivity of the technique to different band limits of the. . . )
square pulse filter is also testéfeig. 5). The correct scaling is produced but with widened pealiig. 8b)]. The frequen-

exponents that match the input values are consistentl recoC—ies at which the broad peaks are located are then integer
P P y ultiples of the basic one. Applying the decomposition

ered, as !ong as the band limits d.o not approach the OSC'”""t%ethod to these harmonic modes, we find that their fluctua-
frequencies. The calculated scaling exponent then acts as @By, functions perfectly overlagafter normalization by the
almost smooth function with small fluctuations, but no sharp,armonic number to fit the time scalgas]), showing that
deviations, and closely matches the input value. As the filyhe correlation properties of the modes are ident]&ad).
tering boundaries approach the actual peaks, the scaling eg¢c)]. This result can be explained by the fact that it is pos-
ponent changes drastically and no longer corresponds to thghle to express this nonlinear oscillation as a linear combi-
input value. nation of modes. Then in our case of long-range correlations,
Therefore, the filtering procedure indeed preserves theach of the modes that make up the sum has the same cor-
correlations and scaling properties of the periods and can belation properties as the nonlinear oscillation, since only one
used to extract the dynamical properties of single-mode sigsource of correlations exists. This implies that the scaling of
nals from double{or multimode signals. the PPI series of harmonic modes originates from the scaling

FIG. 3. Detrended fluctuation analysipFA) of the peak-to-
peak intervalgPP)) for the simulation shown in Fig. Za) The PPI
series of the single-modgnput) signal. (b) The PPI series of the
decomposed first mode signét) Fluctuation functions of the PPI

C. Nonlinear oscillation

1, t=0
0, t+#0,
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(@) (b)

L L TR |
10 100

FIG. 6. () A pulse train signal with a time-dependent period
that has scaling propertiesb) The respective power spectrum
shows harmonic modes that are the effect of the nonlinearity of the
signal. These modes were then filtered for peak detect@rilhe
fluctuation functions of the period dynamics of the first two modes.
The two curves coalesce, indicating that indeed no new information
is hidden in the harmonics.

IIl. APPLICATION

We apply the technique to physiological data from pa-
tients with tremor from Parkinson’s disease, a common,
rhythmic movement disordd26]. Patients were diagnosed
according to United Kingdom Brain Bank criterf27] by
movement disorders experts at Tel-Aviv Sourasky Medical
Center. Subjects were seated comfortably in a reclined chair
with arms at rest, while combined registration of movement
and muscle activity were performed. Surface electromyo-
graphic (EMG) recordings[28] were made from forearm
flexor (EMG;e,) and extensor (EMgG,) muscles, and
movement was recorded on triaxial acceleromet&GC)
‘affixed to the dorsum of each hand. Data were recorded for
multiple epochs of 10 min, and a total of 28 time series from

. L - ten patients were studied. We analyze the ACC measure-
band, set with a lower limiff,,;, and an upper limitf,,x. The : .
double-mode oscillator is comprised of an oscillator with a centralments from the _tremor predo_mlngnt hand, and consider only
frequency at 4 Hz and a scaling exponent 0.7 and a second thg movement in the two directions transverse to the arm
oscillator with a central frequency at 8 Hz and a scaling exponenfﬂxIS (thex ax's)’_ denoted a_s ACpand ACC_;' The anatomy
a=1. For each lower limit and upper limit of the filtering band, the @1d pathophysiology of this movement disorder causes hand
decomposed subsignal is obtained. The scaling exponents of botRéMor to be typically observed in theandz directions, but
oscillators are systematically restor@te flat plain, as long as the Nt along the axis of the arm.

filtering boundaries are not too close to the oscillator frequencies AS already observed in previous studj@s,30], the main '
themselves. oscillation in parkinsonian tremor is around the frequencies

of 4-5 Hz. The spectrum also shows peaks at roughly inte-
of the PPI series of the basic frequency. As can be expecte eirg'mll;.ltlglfviec\)/fetrhﬁgucnodnasr%i?t{ar: grgggggﬁﬁ’yf% a?';ﬁﬁgﬁgths
no additional scaling information exists in the harmonics an he peaks appear, at the same frequencies as if they were pure
the full scaling properties can be extracted by study of thg,5:monics of the basic frequency, rising from the nonlinear-
first mode alone. _ ity of the signal, they may in fact represent independent

Before moving on to demonstrate how this method can bgnoges of oscillation(i.e., perhaps independent oscillators

applied, we note that while the simulation results |nd|categive rise to these multiple frequencieSVe analyze the first
that one can use this method to distinguish between apparefifo modes, to see if it is possible to distinguish between
harmonics and distinct oscillators, it will be important in the them, based on their scaling exponents. Accordingly, the fil-
future to derive an analytical proof. An analytical derivation tering band was taken to be 2.00—6.45 Hz for the first mode,
can help to identify any limitations of the method andand 6.67—10.00 Hz for the second md&gy. 7). To estimate
complement the present findings. the error of the applied filter, we calculated the ratio of the

FIG. 5. Scaling exponent of the period dynamics of the decom
posed first mod€a) and second modéb), as a function of the
filtering boundaries. The double-mode oscillator is filtered by a
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ACC (g)

ogbi L 11T
08 2725 273 2735 274

t (sec) t (sec)

7725 273 2735 204 FIG. 8. (a) A typical example of an acceleration signal in tremor,
and(b) its respective power spectruift) The fluctuation functions

FIG. 7. Decomposition employed on tremor da@. A typical of the period dynamics of the twp modes do not overlap, s_ugge_sting
example of acceleration measurements from a patient with Parkif'at they are not simply harmonics generated by the nonlinearity of
son's disease(b) The respective power spectrum displays the twothe Signal(in contrast with Fig. &

modes, around 4 Hz and 8 Hz) The first mode signal obtained by . . ) )
filtering in the range 2.00-6.45 Hzd) The second mode signal Single oscillator and harmonics. The fluctuation functions of

obtained by filtering in the range 6.67—-10.00 Hz. different modes from both ACC and EMG data form distinct
curves, suggesting that they are not simple harmonics of the
areas under the filtered spectrum and the total spectrum. Wendamental frequenciFig. 8), generated by one nonlinear
found that for the simulated signal, 99.9% of the total area obscillator (in contrast with Fig. & Therefore, the different
the power spectrum was located inside the filter boundariegatterns of the fluctuation function suggest that some tremor
indicating that any errors imposed by the method are quiténechanisrs) generates more than one independent mode of

small and are likely to have a negligible effect. oscillation that happens to appear in harmonic frequencies.
The scaling exponents from ACC and EMG data were
A. Results then compared to determine the degree of the associations

N _ ) between thenfusing linear correlation coefficieh83]), both

After fllterlng, the PPI series are derived, and s_,econd Olamong the different moving directions—the transverse
d_er DFA_[31] is performe(_j to produce the ﬂuctyanon func- 1 odes—and among the antagonistic muscle gradpsle
tion which shows consistent long-term scaling at 1argey) ¢ js notable that although the mean valueofs similar

scales. The scaling exponentis estimated in the range of o hoth modes, there are also significant differences between
time scales between 44 and 23{25], to avoid small scale e two modes.

errors, as observed in the simulatidifg. 3(c)], and finite-
size effectd32]. We find that the periods in tremulous mo-
tion and muscle activity do not change randomly, but there
exist long-range correlations. All measurements produce We relate the association between AC&hd ACG, in
roughly the same mean value effor the two modegTable  both modes, to mechanical coupling. As a result of the inter-

).
Interestingly, there is, however, a dissimilarity between TABLE Il. Comparison of the linear correlation coefficierits
the supposedly harmonic modes. This finding raises the podor a’s from different measurements in the same mode. The upper

sibility that there are several distinct oscillators, instead of driangular above the diagonal in bold shows the correlation coeffi-
cients for the first mode, while the lower triangular below the diag-

TABLE I. Mean values and standard deviation of the scalingonal shows the correlation coefficients for the second mode. A good
exponenta for the period dynamics of the first two modes in hand correlation between the twd. denotes significant linear associa-
acceleration and muscle activity patterns in patients with tremotion. Note that the two modes are distinct from each other: whereas
predominant Parkinson’s disease. AC&hd ACG columns show in the first mode there is no correlation betwaes from muscle
the results for the oscillations in theand z-axis acceleration, re- activity and the actual movement, in the second mode there is good
spectively, while EMGe, and EMG,, columns show the results correlation between the two.
for the flexor and extensor muscles activity, respectively. Note that

B. Discussion

the mean value of is similar in both modes for all measurements. ACC, ACC, EMGyex EMGey,
ACCy 0.8 0.14 0.13
AC ACC EMG EMG
S 2 flex ext ACC, 0.64 0.12 0.38
First mode 0.&0.11 0.8%0.12 0.72:0.13 0.75:0.13 EMGy) ey 0.87 0.66* 0.02
Second mode 0.790.1 0.78:-0.08 0.74-0.13 0.76:0.11 EMGg,; 0.76° 0.54 0.77
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action, the oscillations in both directions can become “modamethod to parkinsonian tremor illustrates how our decompo-
locked,” and thus become correlated with one another. Onlsition technique can be used to analyze the long-term scaling
in the second mode, however, there is a strong associatiqeroperties of semiperiodic signals with multiple dominant
betweena’s of the antagonistic muscle groups, and also befrequencies. Finally, we conclude that scaling analysis of the
tweena’s of EMG and ACC. In contrast, in the first mode, period dynamics of tremor suggests that the harmonic struc-
the association is very weak. It is reasonable to assume thaire of tremor is likely the product of multimodal oscillations
the association between the acceleration and the muscle a@ther than simple harmonics of a nonlinear oscillation.

tivity originates from the coordination of flexor and extensor
muscles. Since movement is determined by the joint activity
of flexor and extensor muscles, if there is a cross correlation
between the muscles, there will also be a cross correlation we thank Y. Ashkenazy, N. Giladi, C. K. Peng, H. Berg-

between individual transverse mode accelerations and the ifnan, and A. L. Goldberger for helpful discussions. This work

dividual muscle activities. was supported in part by NIH Grant No. P41-RR13622.
Evidently, although the mean valuesmfare very close in

both modes, they are described by separate sets of behavior.
Thus, it is likely that there exists more than one mode of APPENDIX: SCALING

?hs(:'l;at'Oenérgﬁg;rﬂfog’ﬁf'g?gr?tn?_n'g dt:s ck))fr ac')gcrﬁ'l?{[g;]ciﬂg for The dynamics of a stochastic serteg} can be explored

S nch[:gnized activity of cortical motor areas ma determinethrough its correlation properties, or in other words, the time
y y S may ordering of the series. When there exist long-range temporal

the correspondence between the antagonistic muf8igs

Further work is needed to determine why apparently indeporrelatlons, the autocorrelation functi€®(n) =(; 7;n),

pendent tremor oscillations occur at integer multiplesy and the power spectrui(f) both exhibit a scaling behavior,
" _n"Y ~f B i
1:2 ratig. It is important to note, however, that this type of C(n)~n"7andS(f)~f , where the scaling exponens

behavior is not so uncommon in physiology. For example, i and y are related bys=1~ y. Scaling can also be found in
- - In pny gy aMPIE, Mpe fluctuation function of the series. DFF22] is a technique
primitive neural circuitry, e.g., in the lamprey, coupléuafje-

: ; that has been widely used to calculate the fluctuation func-
pendentoscillators have been shown to be responsible for. . . . .
oscillations at integer multiple§.e., at harmonic frequen- tion and avoid spurious Qetectlon of correlations that may be
. artifacts of nonstationarity. The DFA method consists of the

cies. . o ;

following steps. We first integrate tHey;} series to construct
the profileY(k)==¥_,(7,— (7)) where(») denotes the se-
ries average. Next, we divide the integrated signglk),

To summarize, we suggest that filtering in the frequencyinto equal nonoverlapping windows of sizeand find the
domain of multimodal signals with long-range memory in local trend in each window using a least-squares polynomial
the period dynamics can preserve the long-range correlatiofit. The order of the polynomial fit specifies the order of the
properties of the period series. The validity of the filtering DFA. We then calculate the average of the square distances
method is systematically tested on simulated signals witteround the local trend. This procedure is repeated to obtain
two modes of oscillation, with different configurations of the root mean square fluctuation functibgn) for different
generated correlated noise. We change the boundaries of tiéndow sizesn. A power-law relationF(n)~n®, indicates
filtering range and show that the method is robust. Théhe presence of scaling in the series. The scaling expanent
method can be used to distinguish between two possiblis related to the other scaling exponentsdoy 1— y/2= (8
mechanisms that generate an apparent harmonic structuretal)/2 [24]. The valuea=0.5 indicates that there are or
nonlinear signal and multimod#@independentoscillations.  finite-rangé correlations in the data. In contrast, the case of
The first has only a single statistical origin, while the secondx>0.5 indicates the existence of long-term memory and
may have multiple driving processes. Application of thisscaling in the time series.
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