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We present an approach for the analysis of genome-wide expression data. Our method is designed to
overcome the limitations of traditional techniques, when applied to large-scale data. Rather than alloting each
gene to a single cluster, we assign both genes and conditions to context-dependent and potentially overlapping
transcription modulesWe provide a rigorous definition of a transcription module as the object to be retrieved
from the expression data. An efficient algorithm, which searches for the modules encoded in the data by
iteratively refining sets of genes and conditions until they match this definition, is established. Each iteration
involves a linear map, induced by the normalized expression matrix, followed by the application of a threshold
function. We argue that our method is in fact a generalization of singular value decomposition, which corre-
sponds to the special case where no threshold is applied. We show analytically that for noisy expression data
our approach leads to better classification due to the implementation of the threshold. This result is confirmed
by numerical analyses based imnsilico expression data. We discuss briefly results obtained by applying our
algorithm to expression data from the ye&stccharomyces cerevisiae
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[. INTRODUCTION subset of these conditions, such that most conditions do not
contribute relevant information but rather increase the level
DNA microarray experiments monitor the expression lev-of background noise.
els of thousands of genes simultaneoydly-4]. Using this In a recent papdr25] we introduced a new method for the
technology, large sets of genome-wide expression data hawnalysis of large-scale gene expression data that was de-
been accumulatel]. For example, the expression levels of signed to overcome the above-mentioned probleisee
the entire yeast genom@omprising ~6200 geneshave  Refs.[21-24 for other recent approache# central idea of
been measured for more than 1000 different experimentahis work was to integrate prior biological information, such
conditions[6]. A large number of DNA-chip experiments as the function or sequence of known genes, into the analysis
have also been carried out for higher eukaryotes, such as tl the gene expression data. In the present paper we present
nematodeC. elegansand the fruit flyDrosophila as well as  a complementary method for the analysis of large-scale data
for a variety of both normal and malignant human tissues. that does not require any prior knowledge beyond the expres-
While large-scale expression data have the potential tgion data. We start by providing a rigorous definition of the
reveal new insights into the transcriptional network that contype of information we aim to extract from the expression
trols gene expression, they also give rise to a major compudata by introducing the notion of &ranscription module
tational challenge: How can one make sense of the massi\@M). A TM contains both a set of genes and a set of experi-
expression data containing millions of numbers? The classimental conditions. The conditions of the TM induce a co-
fication of the genes and the experimental conditions is amegulated expression of the genes belonging to this TM. That
essential first step in reducing the complexity of such datais, the expression profiles of the genes in the TM are the
However, while standard tools, such as clustering algorithmsnost similar to each other when compared over the condi-
[7-14] (see Refs[15,16] for reviews and singular value tions of the TM. Conversely, the patterns of gene expression
decomposition(SVD) [17,18, provide interesting results obtained under the conditions of the TM are the most similar
when applied to relatively small data sets, typically contain-to each other when compared only over the genes of the TM.
ing tens of experimental conditions and at most several hurifhe degree of similarity is determined by a pair of threshold
dred genes, these methods are of limited use for the analysimrameters. The gene threshold constrains the gene set, while
of large data sets. In particular, a well-recognized drawbackhe condition threshold constrains the condition set. Impor-
of commonly used clustering algorithms is the fact that theytantly, distinct transcription modules may share common
assign each gene to a single cluster, while in fact genes thgenes and conditions.
participate in several functions should be included in mul- The precise definition of a TM as the object to be re-
tiple clusterd19—-24. Moreover, both in standard clustering trieved from the expression data allows us to establish an
methods and SVD, genes are analyzed based on their expresfficient algorithm that searches for the modules encoded in
sion underall experimental conditions. This is problematic, the data. Starting from a set of randomly selected géoes
since cellular processes are usually affected only by a smaflonditions one iteratively refines the genes and conditions
until they match the definition of a TM. Using a sufficiently
large number of initial sets it is possible to determine all the
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This paper is organized as follows. In Sec. Il we provideThe rows ofE; and the columns dE¢ are given in terms of
a mathematical definition of a transcription module. In Secthe normalized gene and condition vectors,
[l we introduce our algorithm that searches for such mod-
ules and compare our method with SVD. In Sec. IV we dis- ~_ G (Ge)geo d o= Cg—(Cg)cec
cuss the normalization of the expression data. In Sec. V we 9= |9c—(9e)geal and &= |cg—(Cg)cecl’
present analytical insight into the role of the threshold in our
algorithm. We show that for noisy expression data the applirespectively. These vectors have zero medc)f.c
cation of a threshold improves S|gnn_‘|cantly the.|dent|f|cat|on:<6Q>CEC:0) and unit length |@C| _ If:gl =1). This normal-
of transcription modules. We provide an estimate for the__ > "=~ 2cg_ Segn2 .
maximal amount of noise for which a successful identifica-221°" |mp||eAs thatgEq fo' 24(Eg)"=1 for each condi-
tion is still possible. In Sec. VI we compare our method withtion ¢ and = E¢?=0, 3 (E¢Y)*=1 for each geng. Center-
other standard tools usirig silico expression data. In Sec. ing and rescaling the rows i&g allows for a meaningful
VIl we discuss briefly results obtained by applying our algo-comparison between any two conditionsand ¢’ through
rithm to real expression data from the ye&siccharomyces their associated gene profilgsandg,, . Similarly, centering

®

cerevisiae We conclude in Sec. VIII. and rescaling the columns B¢ allows for the comparison
of any two geneg andg’ through their associated condition
Il. FORMALISM profiles ¢; and ¢, . Note that the normalized matricé;

A. The expression matrix andE in general are not equal.

We consider data from microarray experiments given in B. Transcription modules
terms of a gene expression matiix The matrix elemenE*®?
denotes the log-fold expression change of geneG
={1,... Ng} at the experimental conditionceC
={1,... N¢}, whereNg and N refer to the total number
of genes and conditions, respectively. The maEimay be
viewed as a collection dfl: row vectors:

Our goal is to find sets of coregulated ger8sCG,
together with the relevant experimental conditicdbgC C
that induce their coregulation. We refer to such a combined
set,M,,={G,,Cn}, as a TM. Here the inder ranges be-
tween one and the number of transcription moduleg,.
Biologically a TM may be associated with a particular cellu-
g} lar function. Ideally each TM would correspond to a tran-
scription factor that regulates the genesQ@p, and that is

T
_ % ) activated under the conditions @,,. Of course, a one-to-
: one correspondence between transcription modules and tran-
T scription factors is an over-simplification, but it can still pro-
One vide useful insight into the nature of the expression data.

. O o (Ne) _ First, the total number of transcription factolé;g, is much
Each vectorg=(g{" g%, ... g; ©) describes thegene  smaller than the number of gené$;-<N. Thus we ex-
profile for conditionc, containing the expression Ievejég) pect also the number of transcription modules, and therefore
=E®9 of all the genes that were monitored under this condithe effective dimensionality of the expression matrix to be
tion. Alternatively, the expression matrix can be viewed as aelatively small:Ny,<Ng. Second, the number of genes ac-
collection of Ng column vectors: tivated by a single transcription facthg“), is known to be
limited: N <N . Third, different transcription factors can

E=c1.c, ... Ong (2)  regulate the same gene and can be activated under the same
experimental conditions. Hence distinct modules may share
Here each vectocy=(c{",c{?, ... ,c(gNC))T describes the common genes and conditions.
condition profilefor geneg, containing the expression levels ~ Mathematically, a TM can be defined as follows:
(6) — peg i iti
cy'=E qf this gene und(_ar all the conqmons of_the data set. Cr(Gm)={Ce C:(EP®)goc >Tc},
We define two normalized expression matri¢es Sec. 3A(Te, Te): m 6)
V) Gm(Crm) ={0€G:(EP)ccc, > Tal,
o whereT: and T are two threshold parameters. The above
At definition states that for each conditiarin the TM the av-
Eg= % 3) erage expression level of the genes in the '(E%’}geem, is
: above a certain threshold: . Conversely, for each gerggin
ar the TM the average expression level over the conditions of
Ne the TM, (E¢%)ccc , is also above some threshdl@ . This
and reciprocal dependence between the genes and the conditions
associated with a TM implies that, considering only the
E—(d & - 4 genes of the module, the conditions of the module are ex-
c=(C1.C, - .. ’CNG)' (4) actly those for which the coexpression is the most stringent.
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Similarly, considering only the conditions of the module, theacts separately on each of tNg components; of the vector
genes of the module are the most tightly coregulated. Notg and yields the products of a weight functiern(x) and a
that our definition of a TM is symmetric with respect to step function®(x) as output. The arguments of the step
genes and conditions, such that no preference is given tRmction,’f(-=[x-—,u(x)]/o(x), have been centered and res-
either of them._ln particular, we use the expression mﬁa’x caled. Wel usel the mean as cenfetx) =(x), and the ex-
(normalized with respect to genem order to specify the pected or measured standard  deviationg(x)

conditions of the module(,,), given the genes of the mod- N, > i
ule (G,,). Similarly we useE. (normalized with respect to = VEP( = ())?IN,, as scale factor. The step function sets

conditions to specify the genes i6,,, given the conditions o zero all elements of the vectarthat do not exceegt(X)

in Cp,. by at leastto(x). [Down-regulation can be captured by re-
We would like to reformulate and somewhat generalizeplacingx;— |x;| in Eq. (9).] Usingw(x)=1 as weight func-

the definition of a TM in Eq.(6) by introducing vector tion all the significant elements are set to unity. This binary

notation. To this end we represent the genes and thtormulation corresponds to the consistency requirement in

conditons of a TM by a pair of a gene vector Eq. (6). [To capture down-regulation one uses sgn@s

o= (g @ ,gg“G))T and a condition vector Wweight function] It is straightforward to extend our formal-

cm=(c§) ,cg), o !C|(~:IC))T' A nonzero componentgf,?) ism using different weight funptions. In this case the gntries
N i . . _ _ of the gene vector and condition vector become continuous,
(cr’) implies that the geng (conditionc) is associated with 54 their value determines the significance of a particular
the modulem. Consider the linear transformations gene or condition, respectively. As we shall see, a particu-

- larly relevant choice isv(x) = x in which casef(x) is semi-

919m linear.

AT The compact definition of a TM in Eq8) can be under-

Proi=Eg. gn= gg'gm and stood as follows: Applying the threshold functiép to ci®

: results in a nonzero componecff) of the module’s condi-

éﬁcgm tion vectorc,,, if the corresponding gene profig is suffi-

ciently aligned with the gene vectgy, of the module. Bio-
logically this means that a significant fraction of the genes in

CiCn the module are coregulated under condit@rSimilarly, the
, CiCm application off;_ to gi/®’ results in a nonzero component
PO=EL- cn= E @) (9 in the module’s gene vectay,,, if the corresponding
~r condition proﬁlef:g is sufficiently aligned with the condition-
CngCm vectorc,, of the module. Biologically this implies that a sig-

nificant fraction of the conditions in the module induce a
The resulting vectors contain the projections of the vectorgoregulated expression of gege
Om andc,,, which specify the TM, onto the set of tlgor- It is important to note that the content of a particular
malized gene profiles(g.} and condition profile§c,}, de- ~ module M,={G,,Cr} depends on the pair of thresholds
fined in Eq.(5), that describe the expression data. For a(tg,tc). In many cases for slightly larger thresholds there
binary vectorg,, the components aff'® are just the expres- exists a related modul#!,?, such thatM PCM,. Simi-
sion levels summed over the genes of the TM for each conlarly, for somewhat smaller thresholds there usually exists a
dition in the data set. Likewise for a binary vectgy the ~ module M3°"", such thatM,CM{*"". Thus there are
components o2 are the expression levels summed overnested sets of modulesVi?PC - .- CMP2"™ that persist

the conditions of the module for each gene. over a finite range of the thresholds. This hierarchical struc-
The consistency requirement in E@) can then be writ- ture resembles the tree structures obtained from clustering.
ten as However, in our case distinct branches may share common

genes or conditions.
Cm=fe (™),
H(tc ’tG): = proj (8)
Im= te(gm ), Ill. THE ITERATIVE SIGNATURE ALGORITHM
wherete andtg are the condition threshold and the gene The rigorous definition of a transcription module, in prin-

threshold, related tdc andTg, respectively. The threshold CiPIe, allows us to determine the modules encoded in the

function expression matrix by testing all possible sé@,,,C,,} for

their compliance with Eq8). However, since the number of

O (%t such sets scales exponentially with the number of genes and
W(x1) O (X1~ 1) conditions, such an approach is completely infeasible com-

f(x)= i (9) putationally. We therefore suggest a different approach. Our

O —t principle idea is to search for solutions of the consistency

W(Xn,) O (Xn, —1) equation in Eq(8) through the map defined by
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" D=f (Eg-gM), (10) The computation time of any algorithm, designed for the
¢ analysis of large-scale expression data, is of crucial impor-
tance. For algorithms that require the full correlation matri-
ces(such as clustering or SVJDalready the computation of
these two matrices can be very intensive, since its computa-
The first equation assigns a condition veatdf V) to a given  tion time scales |ikaggr::pocN(23Nc+ NZNg. However, the
gene vectorg™. We refer to the componer{""?) of this  ISA is not based on this kind of information. Rather than
vector as aondition scoreThis score is nonzero only if the squaring the expression matrix, only multiplications of the
corresponding gene profilg,, defined in Eq.5), is suffi- ~ expression matrix witrsparsematrices(of size Ng XN, or
ciently aligned with the gene vectgf! . In the subsequent NcXN;), whereN, is the number of input sets, have to be
step in Eq.(11) the componentor gene scor}agg‘“’ ofthe Pperformed. Due to the sparseness, the computation time of

gene vectorg" V) is assigned a nonzero value only if the the ISA goes liketjon, #Nite:N;(NcNg + NgNc), whereNg

corresponding condition profilg, is sufficiently aligned with ~ andNc refer to the average number of genes and condition,
the condition vectoc"" ¥, In a recent work25] we have respectively, whose scores are above the thresholdNagd
applied the map in Eq$10) and(11) to a variety of biologi- is the number of iterations until convergence. Thus the com-
cally motivated input setg(®} assembled according to putation time of the ISA scales linearly witiig andNc¢ . In
prior knowledge of the regulatory sequence or function ofdeneral, only very few iteration;, are needed to find the
the genes. Sets of coregulated genes and coregulating confii¥€d points. A large number of input sef§ increases the
tions were constructed from recurrent realizations of the outchances to find the fixed points with a small convergence
put sets defined bg™® andcY). In this work we pursue a radius. However, for practlcall purposes it is useful to accu-
different strategy, namely, we apply the maps in EG€) mulate progrgsswely sets of fixed points by running th_e ISA
and (11) iteratively by reusing the gene vectg®) as input ~ epeatedly with a moderate value fdl, thus increasing
for Egs. (10) and (11) in order to obtain new output sets gradually~the accEracy of the fixed point decomposition. Im-
defined byc® andg(®. Repeating this procedure we obtain portantly, Ng andN¢ are much smaller thaNg andN¢ as
g®,c® from ¢g@ and so on. In general, the serieslong as the respective thresholds are high enough. Finally,

g(n+l):ftG(E'(|;'c(n+l))_ (11)

{g©,gW,g®,g®, ...} rapidly converges and we can de- we note thatgon, , can be further improved by choosing the
fine a “fixed point” gene vectog(”*) that satisfies input seeds_ not completely at r_andom, but using the informa-
tion of previous runge.g., starting from the sets obtained at
|g*) — g™ different thresholds

e (12
g™+ g o N
Comparison with singular value decomposition

for all n above a certain number of iterations. The parameter Forw(x) =X, in the absence of thresholds and neglecting
e determines the accuracy of the fixed poig®) depends the two different normalizations of the expression data, the
both on the “seed’y® and the threshold; andtc, which  iterative scheme reads
are fixed parameters. Together with the associated condition ~
vectorc*) it defines a TM, sinced™),c*)) by definition ) E-g" b
solve Eq.(8). We call this procedure thigerative signature ¢ :|E- é(n—1)| ' (13
algorithm (ISA).

Although the set of possible input seeds is huge, usually

there exist only a rather limited number of fixed points for a A ET.
given set of thresholdst§,tc). Therefore, in general the g(”)zT—A(n). (14
ISA is applied as follows(1) generate dsufficiently large [E"- ¢

sample of input seed$g™}, (2) find the fixed points

(g% ,c) corresponding to each seed through iterationsiThe fixed points of the above equations correspond to the

and(3) coIIe(_:t the dlst_lnct fixed points in order to decomposepairs of vectors (gm,(‘:m), where @ngm/|gm| and am

the expression data into modules.. The structure of this de- c./|c,| are the normalized eigenvectors & -E and

composition depends on the choice of thresholds,c). g ET respectively. Both eigenvectors are associated with

Scanning over different values ford,t¢c) reveals the modu- the common eigenvalug? = |E- §|2=|ET- &2 Itis inter-

lar structure at different resolutions: Lower thresholds yield™ . 9 Uem=|E Gml"=[E " Cml " o
esting to note that a SVD of the expression matrix yields

larger units whose coregulation is relatively loose, Wh“eexactly those eigenvectors and eigenvali&29 (see sec
higher thresholds | I ightl I - ) i LR -
igher thresholds lead to smaller, tightly coregulated mOdt|on 1 of the Appendix for a brief review of SV)D This

ules. Each fixed pointg{*’,ct*)) has its “basin of attrac- 4 = A . 4

tion,” i.e., the set of seeds that converge to it under the it- eco.mposmon 1S usuall){ perfgrmed n ‘3 s?quentlal .manner.
erative scheme in Eq§10) and(11). The size of this setis a N this case one .determmezs first the pagg €,) associated
measure of the “convergence radius,” while the averageVith the largest eigenvalyes. In fact, this pair emerges as a
number of iterations, which is needed until Eg2) is satis-  fixed point of the above equations for any sefdl that is

fied, characterizes the “depth” of this basin. not perpendicular t@;. It can be shown that the matrix

031902-4



ITERATIVE SIGNATURE ALGORITHM FOR THE . .. PHYSICAL REVIEW E 67, 031902 (2003

Ey=p1Gy- 01 (15) For SVD distinct eigenvectorg,, and g, as well asc,,
andc,, are orthogonal to each other, since they diagonalize
provides the best rank-1 approximation ®=E;+R; a symmetric matrix. The constraint of orthogonality is not
whereR, denotes the residual term. A subsequent diagonalPreSent in the ISA.

o . LA . SVD only reveals one single decomposition of the expres-
Ization ofR, yields the(ort.hogona) pair (92.’(\?? assqmated sion matrix into modules. As for the ISA, changing the val-
with the second largest eigenvalpg. Continuing this pro-

cedure eventually decomposes the expression matrix into ues of the_ thresholds allpws to a'nalyze. the modular structure
<um fcorded in the expression matrix at different reso'lunons..
For SVD the expression data have to be normalized either
according to genes or conditions. The choice of data normal-
ization, in general, follows from the interpretation of the
E=> En+ Rn,, (16)  data. Demanding maximal variance among the principal
" components, one is led to center the data either d&s;iror
L Ec (see section 1 of the Appendix on SVD for detgilBhus
of the rank-1 matricesE = umCmdh With wm=|cmllgml.  the symmetry between the genes and the conditions is explic-
These matrices can be viewed as a special kind of transcriftly broken when committing to eithét. or Eg . In contrast,
tion modules. the ISA avoids this bias by alternating between the two pos-
One of the advantages of SVD is that the significance ofible normalizations at each step of the iterative procedure in
each modular componefg,, can be determined simply ac- Egs.(10) and(11).
cording to the magnitude of the associated eigenvalue. The A connection between SVD and other algorithms for mul-
components associated with small eigenvalues are likely ttivariate analysis was pointed out in RE24]. “Semidiscrete
reveal no real information and to contain only noise. Thusdecomposition”[26], “non-negative matrix factorization,”
the spectrum of eigenvalues can give some indication of thE27] and k-means clustering can be viewed as SVD with
dimensionality of the data: The existenceNf; eigenvalues additional constraints on the eigenvalues and eigenvectors.
that are significantly larger than the remaining eigenvalue®ther algorithms, like the “Plaid model[24], extend SVD
suggests that there aly, dominant components. Similar to by introducing additional parameters that allow for an im-
SVD, the lengths of the fixed point vectors of the ISA pro- proved decomposition of the expression data into potentially
vide a measure of the relative importance of the associateaverlapping sets of genes and conditions. In “gene shaving”
TM. Specifically,|g{)|?= 4.6 _(g%))? reflects the size of [23]a cluster is formed by removing iteratively genes whose

the gene set anffor w(x)=x] the g:strength of its coregula- expression profiles are the least similar to the principal com-

tion, while [¢*)]2=3 c*))2 reflects the size of the Ponent. _The optim_al clusf[er is determinadpos'geriori by
| CECm( ¢ ) demanding both high-variance clusters and high coherence

condition set and the strength of the coregulation induced bl’)etween the genes in the cluster. Subsequently, a new cluster

this set. ; . .

i L L is obtained from the data orthogonal to the first cluster, and
. Whﬁle the S|m|Iar|tyIpetween thgfLSA and SVD is instruc- so on. Our approach differs from these algorithms in two
tive, there are several important differences. important aspects. First, our method relies on a formal defi-

_Applying the threshold functions in Eq¢10) and (11 nision of 4 module, which is independent of the features of
yields a different spectrum of fixed points. Sets of genes thale ey modules. In contrast, in all other approaches, indi-

are fixed points of the iterative scheme for a particular ChOiCF\’/iduaI clusters are defined only with respect to the other

Sgct:?()ersthg?f:gIgi;i)rr]eg(sainoir?:lgtcr)i;Ot correspond to the €igenysiers in the data. Second, our algorithm avoids the accu-
Lo ' . mulation of noise by applying the threshold function already
The thresholds affect the stability of the fixed points. i, aach step of the iterations in Eq&0) and(11) that would

While the iterat.ionsAinAEqs(_’Ls) and(.14) have only a single  0nyise lead to the principal component of the expression
stable fixed point @;,c;), the ISA in Egs.(10) and (11)  matrix.

usually possesses several stable fixed points. This is essen-

tially because the thresholds induce an “effective orthogo-

nality” by settin_g the small scalar products in E@) to zero. IV. THE PROPER DATA NORMALIZATION

Consequently input sets that are alm@zit not exactly or-

thogonal to the strongest fixed point, do not flow towards this  Given the “raw” expression data contained it is dif-

point under the iterations, but converge to a different fixedficult to compare two experimentg{andg.) or two genes

point. (cg andcy/). This is because different experiments may af-
SVD is very sensitive to théunavoidablg noise in the fect the expression levels at a different scale. For example

expression data. This noise induces mixing between modulesne condition may change the expression of many genes by

that would be orthogonal to each other in the absence o very large factor $1) while another condition affects

noise. In the ISA the threshold function provides an efficientmainly the same genes, but shifts their expression level by a

way to deal with such noise. Excluding the bulk of the genesmuch smaller amount. Although the two conditions are re-

and conditions from the expression data at each step of thated, this relation is not explicit in the expression data.

iterative procedure allows to pick up coregulated units thatMoreover, recording the expression levels with different mi-

would otherwise be masked by the noise. croarray techniques as well as variations in the sample prepa-

N
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FIG. 1. How to properly normalize the expression mat(@.An in silico expression matrix, corresponding to two overlapping modules
of equal size and strength, was generated according to the model described in the text. The elements of the original expresgiéh matrix
were scaled t&E = E®9sys., wheresye[0,1] ands.[0,1] are random scale factors selected from a uniform distribution for eachgyene
and conditionc. From Eg we calculated the normalized expression matriEgsand Ec according to Eqs(3) and (4). (b) From the vector
¢;, whose nonzero componemi%) specify the conditions of the upper-left modulg(@ we calculated the vectogg= Egcl, Oc= Eécl, and
ds=ELci. We plot their componentéhorizontal axesg'® (black), g (dark gray, andg!® (light gray) as functions of the gene index
(vertical axig. Only for g, obtained according to normalization used in the 18IAthe components associated with the genes of the module
are significantly larger than the othefs) From the vectog,, whose nonzero componerg%’) specify the genes of the upper-left module
in (a) we calculated the vectorss=Esg;, cc=Ecg;, andgs=Egc;. We plot their componentéhorizontal axescl® (black), c{¥ (dark
gray), andcgf) (light gray) as functions of the condition indexertical axig. Only for cg, obtained according to normalization used in the
ISA, all the components associated with the conditions of the module are significantly larger than the others.

ration can change the scale of the results. Similarly the dynormalization leads to the “correct” conditions, given the
namic range of two distinct genes could differ greatly evengenes of the module. To answer this question we defined the
though the shape of their condition profiles might be similar.vectorsg; andc, by assigning nonzero components only for
To overcome this difficulty we have introduced the normal-the genes and conditions of one of the modules, respectively.

ized matricesEg andEc [cf. Egs.(3) and (4)]. Using these vectors we computeg=Es-0;, cc=E¢- 01,
In order to study the impact of the normalization on ourand cg=Eg-g; as well asgs=ES-¢;, gc=E& ¢y, andgg
algorithm we generated an silico expression matri cor- ~ =Eg-c,. The components of the resulting gene and condi-

responding to two overlapping modules of equal size andion vectors are plotted in Figs(d) and Xc), respectively.
strength[see Sec. VI for more details on the model used to  One can see that only fgg. andcg [corresponding to the
generate these ddtaWe selected random scale factors the “correct” normalizations as used in the ISA, cf. E¢B0)
Sq,Sc€[0,1] for each geng and conditiorc from a uniform  and(11)] all the components associated with the genes and
distribution and transformed the elements of the expressioponditions of the modulgspecified by ¢,,c,)] are signifi-
matrix according t&E“9— Eg?=Esys; . Unlike the original  cantly larger than the others. For missing or “wrong” nor-
expression matrixg, the rescaled expression matrs  malization there are large fluctuations among the vector com-
[shown in Fig. 1a)] corresponds to the realistic scenario ponents. Hence applying a threshold would only capture part
where the entities of the expression data have been recorded the relevant genes or conditions in this case. TBgss
at different scales. Fronkg we calculated the normalized best suited to identify the genes of a module from a set of
matricesEc andEg . conditions that is a good approximation @©f,, while Eg is

The question we ask is which normalization has to bethe proper normalization to obtain the conditions of a module
employed in order to reveal the “correct” genes from the from a set of genes close @®,,. Note that using these “cor-
conditions associated with the underlying module, and whichlrect” normalizations, it is even possible to distinguish the
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genes and conditions associated exclusively with the speci- ) ue, 9,9 €G;
fied module from those that belong also to the other module, (C99y=
because the latter obtain a somewhat lower score.

. 1
0, otherwise, (18)

and varianceV, for all g,g’ € G. In the absence of noise
V. ANALYSIS OF THE ISA (i.e.,V.=0) the matrixC possesses only a singeontrivial)
The fundamental issue is how well the ISA can revealeigenvectorg®, whose nonzero components specify the
relatively small, noisy, and possibly overlapping modulesdenes of the TM. However, fov>0 this is not true any-
from the expression matrix. In this section we address thi§"ore- _
question by considering a simple model where the expres- Assume that we knewghe eigenvector®for V=0 and
sion matrix corresponds tosingletranscription module. Our  USe€ it as &binary) seedg® for Eq. (17) with a noisy real-
idea is to consider the gene vector that undergoes iteratiort4ation ofc_(|.e.,vc>(g). The question is whether the fixed
as a stochastic entity and to study how its distributionPOint resulting fromg© still E:haracterlzes the genes of the
evolves under the iterations. This approach allows us tanodule. In general the vectof?) obtained by the first itera-
quantify how the efficiency of our algorithm depends on thetion does not coincide witlg(®). Due to the probabilistic
size of the module and the noise in the expression data. description ofC we can only determine the mean and the
variance of the components gf'’=C-g®. The mean of
A. Linear recursions ggl)zEglcgg'gg?) is equal to the number of genes in the
In the following we consider a slightly simplified iterative module,N{" , timesu. if ge G;, and zero otherwise. Simi-
scheme, where no threshold function is applied to the conditarly the variance o) is N{"V,. Here we only used the
tion vector. In this case one can write an iterative equatioradditivity of the mean and the variance. However, already for
that depends only on the gene vector. If, moreover, no geng{*) in the next iteration we need to deal with products of
threshold is applied the iterations are defined through th@andom variables. To this end, we note that for two indepen-
linear equatioricf. Eq. (A12) in the Appendix dent random variablea and b we have(see part 2 of the
Appendix for proof

g(n)_.—_ 17 (ab)y=(a)(b)

Here the matrixC=E'-E emerges from applying first Eq. and
(13) and then Eq(14). As we mentioned before, the fixed V(ab)=V(a)V(b)+V(a)(b)?+V(b){a)%. (19
points of this linear recursion are the eigenvector€of

Let us consider the simplest scenario corresponding to Ysing these results we find that the mean values of the com-
single set of coregulated genBsC G whose coregulation is Ponents of the vectog™=c-g"~" are given by
triggered by the conditions i€;CC. Specifically, we as- () — n(m) (n-1)
sume that all the genes @, are equally important, such that (g = pe =N pens . 9eGy
a noise-free measurement would result in identical condition 9 0, g¢ Gy,
profiles for these genes. In this ideal case the matrix elements
€99 would equal some constant if bothandg’ belong to  Where u{!"" denotes the mean of the componegf8™"
G, and be zero otherwise. In order to model the effect ofassociated with the modulg € G;). Only for the genes in
noisy data we consider the elements®fas random vari- G; there areN{” matrix elements irC that contribute con-
ables with mean value structively to(g{"). Similarly, the variances of{” are

(20

VE=ANGVVE D+NEIVVE D+ V(w2 +VE D], 9eGy

V(gi) =1 - - . h (2D
TV =ANGVVET NSV VE Y+ (uE ), 9¢Gy,
|
whereANg=Ng— N denotes the number of genes that do Vi ~ V)
not belong to the module. Note thvg‘) has an additional vg‘)z 2 and ug‘)z 2 (22
term with respect toVY, due to the contribution of the (g’ (ng)

nonzero mean values i@. -

In order to assess whether the iterations improve the sepalote thatrl’ andv’ are dimensionless and invariant under
rability between distributions of the genes withigG;)  the normalization of the gene vectorsy’<1 implies that
and outside ¢ £ G;) the module, we introduce the rescaled the distribution of the genes associated with the module is
variances well separated from the distribution of the genes that do not
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belong to the module. Using EqR0) and(21) we obtain the
following recursive equations:

_ ANG,UO..

~(n) (n-1), Y  (n-1)
v = vg Tt (vg ~+1), (23
(Ng”)? Ng"
() _~(n) vg "
n _~ n
UG —UG + N(m) y (24)
G

wherev =V,/u? is the (fixed) noise-to-signal ratio of the
expression matrix.
If N{">1 the second term in Eq24) is negligible and

we can ignore the small difference betweef andv{l.

Then, setting " =v{ in Eq. (23) leads to the approximate

recursive equation

Ngv v
(m__"6°C (n-1), “C
v = v —. (25
G (Ngﬂ))Z G NE;m)
This equation converges to
(m) 1
U(Gic)E(Ni_&) ’ (26)
ve N
provided that
. ( (Gﬁ‘l))Z
<Ug”t— N (27)
G

For further reference we state this result also for ghymal-
to-noise ratio

g

pd)= N@:(v&”))*”z. (28
The corresponding fixed-point value equals
P& ={NG e (pC™)°11™, (29
if
po= S p?"E%, (30)
o Ng

and is zero otherwise. _
The interpretation of the critical valugs™ for the noise

PHYSICAL REVIEW E 67, 031902 (2003

the extraction of biologically relevant modules through the
analysis of the eigenvectors ¢f (as in SVD.

B. Noise reduction by the threshold function

As discussed in the preceding section the noise in the
expression data may obstruct the identification of a TM. A
fundamental aspect of the threshold functions in the ISAis to
reduce the effect of such noise by excluding the bulk of the
genes and conditions that do not contribute information but
rather increase the level of background noise.

To illustrate this point, let us repeat the study of noise
propagation presented above for the simplified iterative
scheme like in Eq(17), but with the linear map followed by
a threshold function:

gW=f(Cc-g" M), (3D)
where f, is defined in Eq.(9) and we use a linear weight
function w(x)=x. Let us assume that the gene scores are
distributed according to normal distribution&(x;u,o),
whereu ando refer to the mean and the standard deviation
of the random variable. As a result of the threshold func-
tion only

NEY=NEY ft Mp;p§ ™, 1)dp (32

genes from the module contribute constructively to the mean
in Eq. (20). Similarly, only N&™ genes from the module and

ANG:ANGJmMP§0,1)dP (33
t

genes outside the module contribute to the variancgig’Bﬁn

Eq. (21). Nd" is the expected number of genes in the mod-
ule, whose score has not been set to zero by the threshold
function. Similarly, ANg is the expected number of genes
that do not belong to the module, but have a nonzero score.
The crucial point is that, because of the different mean val-
ues of the two distributions, the threshold function excludes
more genes that do not belong to the module than genes that
do belong to the module. For example,df’=3 for the
initial (norma) distribution, then a threshold=2 would re-

move almost 98% of the genes outside the modulél§
=0.023x ANg), but less than 16% of the genes associated

with the module N =0.841x N{™). We note that the pre-

in the expression data is straightforward: Only sets of genegise shape of the distribution function is in fact not crucial,
that are sufficiently large and whose coregulation is recordedince our derivation relies only on the additivity of the mean
in the expression matrix with relatively low noigee., v, ~ vValues and variances, and E@9). .

<v(°;”t) can be captured by the iterative procedure without It follows that the mean valpes and variances of the com-
threshold in Eq(17). Actually Eq. (30) is only a necessary Ponents of the vectay™ are given by the same expression
condition for the identification of a module, since for a reli- @ in Eqs(20) and(21), respectively, except that we have to
able separation of the distributions of the gene scores asseeplaceN{" by N{” and ANg by ANg. Substituting the
ciated with the module, we negd}’>0. As we mentioned effective number§l{™ andAN into Egs.(20) and(21) the
before, the number of genes associated with cellular funcargument leading to the expression for the fixed-point signal-
tions is expected to be rather Iimiteksig“)< Ng. Therefore to-noise ratio in Eq(29) is essentially unchanged, and we
we conclude that Eq30) presents a serious limitation for have
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FIG. 2. Finding the fixed point value of the signal-to-noise ra@The fixed point value of the signal-to-noise rapi@)(t) is found by
solving Eq.(34) (cf. Sec. \J. We plot its right-hand side RHSpg ,t) =[N pZ— (N + ANg)/NE™ ]2 as a function ofpg for several
values of the thresholtlas indicated in the legen@ettingNg=6000, N =60, p.=1). RHS (og,t) depends omg andt through the
effective number&{"(t,pc) andANg(t) [defined in Eqs(32) and(33)] that denote the expected number of genes inside and outside the
module that passed the threshold. Each curve increases monotonically from zero to its maximafl¥4l)e For pg>t, the effective
number N&” approachesN{" . In this limit p£®{t) depends ort only through ANy, which goes to zero fot>1. Thus pZt)
—n/NG(mijZ—l asymptotically. According to Eq34) the fixed-point solutions for the signal-to-noise raﬁé*)(t) are given bypg
=RHS(pg ,t) and therefore correspond to the intersectifndicated by the big doiof these curves with the diagon@hown as a dashed
line). (b) The solutions ina) are plotted as a function of the threshaldror a relatively small threshold£2) p(*)(pG t) increases rapidly
as a function of, saturates tpg > for t=2, and suddenly falls off to zero at a certain threstiglgi(~6). This behavior can be understood
from (&): For a low threshold the intersection of curves for Rp§(t) with the diagonal appears at small valuespef. For largert the
intersections occur in the saturated regime of Rt#S(), such thaps=pZ*{(t). However, ift is too large the curves do not intersect with
the diagonal and there is no solutiofr) N (t)/NE™ (dark gray as well asANg(t)/ANg (light gray) and e (t)=N&"(t)/[NIV(t)
+ANg(t)] (black are shown as functions of o(t)=1 for 3<t<6, indicating the optimal regime for the threshold.

4 (*)_ { [Pc (pcrlt 2p12 (34) identification of the_ module_. Moreoyer, one can see from
Fig. 3(a) that there is an optimal regime for the threshgld
with where p{)(t,p) is (nearly maximal. Within this regime
pg (t,pc) depends only weakly ohy so the convergence is
) \/M robust with respect to the exact choice of the threshold. The
crit—

(35  size of this regime increases wifly .
In order to quantify the relative increase of the fixed point
value of the signal-to-noise ratje)(t, p.) due to the appli-
Note that unlike Eq(29), the right-hand side of E434) still  cation of the threshold function we define the ratio
depends o) throughNU™ . Therefore Eq(34) is an in-

pc = N(Gm)

tegral equation fop{) which can be solved numerically. A . P& (t.pe) =& (pe) 36
graphical solution of this equation is provided in Fig. 2 for F(tpe)= pg)(t,pc) ' (36)
different thresholds and a specific choice of the parameters

N, N, andv (see caption for details where p&)(p,) refers to the value to which the signal-to-

As can be seen in Fig(8, applying a threshold function noise ratio converges when no threshold is applied. For
improves significantly the identification of the module. We (*)(t pe)=0 we setr(t,p.) to zero. We show (t,p.) as a
show the fixed point value of the signal-to-noise rafif),  function oft andp, in Fig. 3(b). The figure shows that there
as a function of both the threshotdand the(fixed) signal-  exists a large region in the parameter spacet ahd p
to-noise ratiop, of the expression data. In the absence of a crlt, where the iterations only converge to a positive
threshold functionp?” converges to zero i is below some value due to the threshold. Moreover, even Wpcrlt
critical valuep¢™ . Applying a thresholdp{’ converges toa here the iterative schemes converges to a positive value
finite value, even ifo,<pS"™ (but po>pg™), indicating the  also without a threshold, there exists a large region, where
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FIG. 3. Properties of the fixed point value of the signal-to-noise r&ioT he fixed point value of the signal-to-noise ratﬁg‘)(t,pc),
characterizes the separability between the gene score distributions for the genes inside and outside the singtd.r8edulé for details
The plot shOWSp(G*)(t,pc) as a function of both the threshaldand the(fixed) signal-to-noise ratio in the expression matpix. For very

small thresholds % (t,p.) vanishes ifp. is below some critical valupS'~1.3. However, increasing the threshold the iterations converge

to a finite fixed pointp{)(t,pc) >0, even ifpe<p&™ (but p.>pS"'=0.5). There is an optimal regime for the threshpldherepl)(t,p.)

is (near tg maximal. Within this regime;&*)(t,pc) depends only weakly o so the convergence is robust with respect to the exact choice
of the threshold. The size of this regime increases with (b) The ratior (t,pc)=(p&(t,p0) — p& [ p) 1/p&)(t,p0) characterizes the
improvement in the identification of transcription modules that is achieved by the application of the threshold fgpg‘t?c()pe) denotes the
fixed-point value of the signal-to-noise ratio in the absence of a threshold(&pg) is set to zero fopg‘)(t,pc) =0.] We showr (t,pc) as
function oft andp.. The regime, wherp < pg“‘ is subdivided into a white regidrr (t,pc) = 1], where the iterative scheme only converges
to a positive valuep(g)(t,pc)>0, due to the threshold and a black afeét,p.) =0], where the iterative schemes does not converge to a
positive value implying that the module cannot be identified in this regime. Note that ammg”‘, where the iterative scheme
converges to a positive value even without a threshold, there exists a large region in the parametertspatg dthe light gray area for

r(t,pc)], wherep&)(t,p,) is significantly larger thap{(t).

p)(t,pe) is significantly larger thap{)(t). Thus we con- transcribed if the transcription facton is active, while the

clude that the threshold function improves significaripd ~ nonzero componentsy’ of the condition vector,, specify
in certain cases makes at all possjlilee convergence of a the conditions that activate this transcription factor. Then for
noisy input set to a gene vector that specifies the TM. Ny modules the log expression of gegeat conditionc is

We have also performed numerical simulations of the it-defined asE®9=3" g(@c(©) . The final expression matrix
erative scheme in E431). To this end we employei silico s obtained by adding noise to these matrix elements.
expression data that were generated according to(E).
and superimposed with a certain level of noise. The initial A. Expression data corresponding to two modules
gene sets were composed such that only the distribution of o o )
the genes scores associated with the module had a nonzero”S initial example we considen silico expression data
mean value, while the distribution of the remaining gened’@s€d o two 'Eginscnptmn factors. We defined the compo-
was centered around zero. The simulation allowed us to tradé®NtSCr’ andgy,” for m=1,2 such that there are two over-
the evolution of the two distributions under the iterations.lapping transcription moduled; and M, (see Fig. 5 for
The results indicate a good agreement between the numeric@@tails. We applied the ISA to a collection of input sets
and the analytical results. Details of this analysis are precomposed of randomly chosen genes. We found that the
ample where only the application of a proper threshold lead§resholdts . Figure 8b) shows the corresponding output

to a separation between the two distributions. sets for a discrete choice of thresholds. For a very low
threshold {=—2) the output sets contain essentially all the
V1. BEYOND THE SINGLE MODULE genes. Applying a somewhat higher threshold= 1)

yields output sets containing all the genes that are associated

In order to study the ISA in a more realistic scenario, wewith either of the two modules. For a moderate threshold
have performed further numerical simulations basediron (t=0) there are two types of output sets, comprising either
silico expression data encoding several, possibly overlappinghe genes oM, or M,. For a high thresholdt& 1) all the
transcription modules. These data were generated accordin@itput sets contain only those genes that belong to both mod-
to the following simple model. Each modulé,, is governed ules. Finally, for a very high threshold=2) the output sets
by a single(virtual) transcription factor whose activity is are empty. For intermediate values of the threshold value one
described by a pair of vectofs),,,C,}. The nonzero compo- observes relatively sharp transitions between these well-
nentsgﬁr?) of the gene vectog,, specify the genes that are defined fixed point$Fig. 5(c)]. At these transitions the cor-
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FIG. 4. Evolution of the score distributions under the 1%#.The distributions of the gene scores of 100 input sets which serve as seeds
for the iterations of our algorithm: The distribution of the genes that are not part of thdigivl gray) has a vanishing mean value. The
genes belonging to the modulklack) are distributed with a positive mean value. Note that the two initial distributions cannot be distin-
guished from each other accuratelly), (c) Evolution of the two distributions under the iterative scheme defined by . (b) Without
applying a threshold, the mean of the signal distribution decreases in each iteration and the separability of the two distributions does not
improve.(c) When a thresholdt& 1) is applied the mean of the signal distribution increases in each step until it saturates at a value where
the two distributions are well separatéd) The signal-to-noise ratipg‘) characterizes the separability between the gene score distributions
for the genes within and outside the mod(é Sec. V for details We plotp(G”) as a function of the number of iterationsThe evolution
of p{ under the iteration schemes wisquaresand without(circles a threshold obtained from the numerical simulatigray) are in good
agreement with the theoretical predictiofidack according to Eq(25). We usedNg= 1700, N(Gm):40, andp.=1 for this figure.

respondence between the output sets and the modular strutany transcription modules. We investigated to what extend
ture of the data is less precise. the ISA, as well as hierarchical clustering and SVD, were

We have also varied the condition threshtdd Interest- able to reconstruct these modules from the respedtive
ingly, for not too large a threshold{=2) the resulting gene silico expression data.
output sets are almost independent of the choide oHow- In the first numerical experiment we studied how the dif-
ever, the condition output sets depend critically on the valugerent algorithms handle noisy data. To this end we generated
of tc and exhibit a similar behavior as the gene output sets ixpression matrices corresponding to 1050 genes and 1000
terms of structureénot shown. This is not surprising, since experimental conditions that belong to 25 modules of differ-
the ISA is symmetric with respect to genes and conditionsept sizes, each associated with a transcription factor. In order
We conclude that scanning over different valuescoandtc ¢4 focus on the effect of noise we considered only nonover-
reveals the“ modular stru::ture of the expression data, _startlr]gpping modules that do not share any genes or conditions.
from the *supermodule”M,UM,, over its overlapping  onq the binary expression data we superimposed noise from
componentsv; andM,, to the “submodule’™ ;MM a random distribution. We varied the width of this distri-
bution, simulating different levels of noise.

In order to quantify how well the modules were identified

The above example shows that the ISA can identify overby the different methods we proceeded as follows: For SVD
lapping modules. However, faky, =2 there exist only 2  we collected the 25 eigenvectors of the gene gene correlation
=4 possible transcriptional states, so the 100 conditions afnatrix that were associated with the largest eigenvalues. For
the expression data are highly redundant. For real data theach of the 25 modules we selected the eigenvector that had
situation is reverse: The number of experimental conditionghe largest overlap with the gene vector characterizing the
is much smaller than the possible number of transcriptionamnodule, and in Fig. 6 we show the average Pearson coeffi-
states. In order to study how the ISA deals with such a scecient between these two vectdtsiangles. For hierarchical
nario, we considered a set of more realistic models based arlustering we used theATLAB implementation for average

B. Expression data corresponding to many modules
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FIG. 5. Identification of overlapping modules. Am silico expression matrix describing 500 genes under 100 experimental conditions
was generated according to the model introduced in the text. The data correspond to two overlapping transcriptioVmaahadlsk,, each
containing 250 genes and 50 conditio(@.The expression matrix is shown for comparison on the left of each(lmw(c) Using this matrix
we applied the ISA to 1000 input sets composed of randomly chosen genes. Iterations were performed using different choices of the
thresholdt¢ . (b) The boxes in each row represent ten of the resulting converged gene sets that were obtained fiodicated on the left.

Each boxi=1, ...,10 is corposed of 500 lines that specify the genes that appear in the corresponding fixed point. Genes that belong to the
converged set are represented by a dark gray line, while the remaining genes are shown in light ggay-Fdithe output sets contain all

the genestz=—1 yields output sets containing the genes that are associated with either of the two modulgs,0fahere are two types

of output sets, comprising either the gened/gfor of M, fortg=1 all the output sets contain only those genes that belong to both modules
and fortg=2 the output sets are essentially emgty. The number of sets that convergexithin 95% accuracyto M,;UM (solid line),

M (dotted ling, M, (dashed ling or M;N M, (dash-dotted lingare plotted as functions @ . Scanning over different thresholds reveals

the modular structure of the expression daiy UM;—M{,M,—M NMy).

linkage to compute the complete hierarchical cluster tree. A second numerical experiment was designed to study
Using this cluster tree we partitioned the expression matrixjuantitatively the ability to identify overlapping modules.
using different cutoffs such that the resultant partitions conWe specify the regulatory complexity by the the number of
tained at least 15 and at most 40 clusters. From all theswanscription factors per gener. Only if each gendand
partitions we selected the one whose clusters had the highesondition is associated with exactly one transcription factor
average overlap with the gene content of the modules. Thiéntg=1) the expression matrix can be written in block-
overlap is shown in Fig. 6squares Finally, for the ISAwe  diagonal form. For larger values of;g distinct modules
reconstructed the modules from the fixed points that ocshare common genes and conditions and the expression ma-
curred repeatedly. Namely, in order to avoid artifacts due tdrix cannot be reorganized into in block-diagonal shape. We
distinct, but very similar, fixed points, we “fused” these so- applied the SVD, hierarchical clustering, and the ISA to the
lutions using a procedure that resembles agglomerative clugxpression matrices generated fa=1, . .. ,6 andevalu-
tering, albeit for modules rather than gerisse Ref[25] for ated the outputs in the same manner as described dbege
detailg. The fraction of correctly identified genes per module Ref.[25] for related resulfs The results are shown in Fig. 7.
(circles as well as the fraction of correctly identified mod- One can see that the ISA could successfully identify all the
ules(asteriskgis shown in Fig. 6. We conclude that for noisy transcription modules even in the case of highly overlapping
data the identification capability of the ISA is superior to thatmodules. In contrast, fon>1 the identification capabili-

of SVD and clustering. In particular, SVD is very sensitive to ties of SVD and clustering rapidly decrease. This is because
the addition of noise and fails to identify the modules accu-the clustering algorithm does not allow for multiple assign-
rately, even for a small level of noise. Clustering can handlanents of one gene to different modules and therefore usually
a moderate amount of noise, but not as much as the ISA. captures only small, incomplete fractions of the overlapping
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FIG. 6. Module identification from noisy expression dalta.
silico expression matrices for 1050 genes under 1000 conditions, FIG- 7. Module identification in the presence of combinatorial
corresponding to 25 nonoverlapping transcription modules of dif-"égulation.in silico expression matrices corresponding to 25 over-
ferent sizes, were generated according to the model described in thi@°Ping modules were generated according to a model that allows
text. Noise from a uniform distribution was superimposed ontofor combinatorial regulatiorisee text for details The degree of
these expression data. The widthof this noise distribution was ©verlap between the modules is specified by the average number of
varied, simulating different levels of noise. We quantified the effi- transcription factors involved in the regulation of each gemg:).
ciency of different algorithms to retrieve the modules from the ex-Only fornre=1 each gene is associated with exactly one transcrip-
pression data as described in the text. We show the fraction dfon factor. For larger values ofre distinct modules share common
correctly identified genes for the IS@ircles, hierarchical cluster- 9enes. We applied the SVD, hierarchical clusterisge Ref[25]
ing (squarel and SVD(triangles. For the ISA also the fraction of for related results and the ISA to the expression matrices gener-
correctly identified modules is indicatedsterisks SVD is very ~ atedfomre=1,...,6 ancevaluated the outputs as described in the
sensitive to the addition of noise and fails to identify the modulesteXt- The ISA could successfully identify all the transcription mod-
accurately, even for a small level of noise. Clustering can handle 4l€s even in the case of highly overlapping modutesterisk The
moderate amount of noise, but not as much as the ISA. fraction of correctly identified genes per module only decreases
slightly as a function oh¢ (circles. In contrast, fomg>1 the
modules. Similarly, if the expression matrix cannot be reor-dentification capabilities of clusteringsquares and crosgeand
ganized into block-diagonal shape due to the overlap beSvD (triangles rapidly decrease. This is because the clustering
tween the modules, the eigenvectors identified by SVD faiklgorithm does not allow for multiple assignments of one gene to

to characterize the modules properly. different modules and therefore usually captures only small, incom-
plete fractions of the overlapping modules. Similarly, if the expres-
VII. APPLYING THE ISA TO YEAST EXPRESSION DATA sion matrix cannot be reorganized into block-diagonal shape due to

the overlap between the modules, the eigenvectors identified by
The analytical and numerical studies presented above irSVD fail to characterize the modules properly.

dicate that the ISA is well suited for the analysis of expres- ) )
sion data. In this section we give a brief presentation of th&ielogically correspond to the same coregulated unit.
biological insight that can be obtained from applying our ~1he number of modules increases wit, ranging be-
method to real data. We analyzed a diverse set of more thdieen five at the lowest levet{=1.8) to~100 at the high-
1000 DNA-chip experiments that were obtained by different€St resolution {g=4). In contrast, the typical module size
groups[6]. The yeastSaccharomyces cereviside an ideal declines rapidly as a func_tlon of . The stepwise increasing
model organism to test our algorithm, due to the wealth ofof tc €xposed many chains of closely related modules that
expression data and the large amount of additional biologica?ersist for finite rangess e [t&°"°™,t$P]. Increasing, the

knowledge that exists for this organism. number of genes assigned to each element of the chain de-
We have applied the ISA to the yeast expression datgreases until the size of the module declines sharplat
using different values for the gene thresholty =t2P and either disappears completely or splits into two or

=1.8,1.9. .. 4.0, while the condition threshold was fixed to more submodules. Likewise decreastggeyondt2°"°™ de-
tc=2.0. (As we pointed out previously, the gene content ofstabilizes the fixed point, since many unrelated genes are
the modules depends only weakly on the exact choice foadded to the module that pull the module towards a different
tc.) For each value of; we employed~ 20000 randomly fixed point. In this case the module may either “merge” with
composed initial gene sets of various sizes in the search fanother module or flow into a completely different fixed
fixed points. The modules were reconstructed from the recurpoint.

rent fixed points using a similar algorithm as for ihesilico The five stable fixed points identified fog=1.8 corre-
expression data. Indeed, such a processing of the “rawspond to the central functions of the yeast organism: protein
fixed points is needed to avoid many similar modules thasynthesis, cell cycléG1), mating, amino-acid biosynthesis,
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(a)

@ Protein synthesis O OO O
. Cell cycle (G1) . . . . O
‘ Mating . ' .. b
@ Amino acid synthesis Q @ O O
@ Stress O O
tG=1.8 tG=2.1 tG=2.4

(b)

FIG. 8. Modular organization of yeast expression data. The iterative signature algorithm was applied to genome wide yeast expression

data gathered by more than 1000 DNA-chip experimef@sThe figure shows the identified modules at three different gene thresholds

tg={1.8,2.1,2.4. For each threshold the corresponding modules are displayed in a plane, such that their distance reflects their correlation
with respect to conditions. Moving to a higher threshold, corresponding modules are kept in the same position in each plane, while the
“new” modules are placed such that their position reflects best their correlation with the other modules. The leftmost plane corresponds to

the lowest thresholdtg = 1.8), where only five fixed points exist. The corresponding modules can be associated with central functions of the
yeast organism: protein synthesis, cell cy@®&l), mating, amino-acid biosynthesis, and stress response. We use different gray scales to
indicate which of the fixed points that emerge at higher thresholds are related to these five central fhedulesy would converge to the
respective module at the lowest thresholth) The pie charts show the number of random input sets that converged to the respective fixed
point. The gray scales are as(ia).

and stress response. Each module contains between 100 agehes, and reconstructed the modules from recurrent realiza-
300 genes. Protein synthesis and stress are the most dontins of the output sets defined k") andcY). Remarkably,
nant modules and comprise most of the experimental condihe ISA (which requires no information beyond the expres-
tions of the data set. In fact, these modules remain fixedion data whatsoeverevealed essentially all the coregulated
points throughout the entire range of thresholds considerednits that we found in this analysis, as well as several new
here, and therefore can be considered the backbone of thenscription modules that had not been identified previously.
transcriptional network. Moreover, the ISA provides additional insight into the modu-

A visualization of this network is presented in FigaB lar organization through the evolution of the modules over
For each threshold the corresponding modules are displayetdifferent threshold values. Studying the functional annota-
in a plane, such that their distance reflects their correlatiomtions of the genes assigned to the modules, we observed a
with respect to conditions. Moving to a higher threshold,strong coherence for the genes that have been annotated in
nested sets of modules are kept in the same position in eachost of these modules. This suggests that the ISA provides a
plane, while the “new” modules are placed such that theirbiologically meaningful decomposition into coregulated
position reflects best their correlation with the other modulesunits. A comprehensive discussion of the biological implica-
This organization of the chains of nested modules is sometions of this analysis is beyond the scope of this work and
what similar to the data presentation by hierarchical treesvill be pursued elsewher&0].
commonly produced by cluster algorithms. However, in our
case, chains of modules may extend over a finite rangg of
and distinct chains can contain common genes. Additional
information, such as the number of input seeds that con- We have presented a method for the analysis of gene ex-
verged to the same fixed poifghown as pie charts in Fig. pression data. The innovation of our approach is twofold. On
8(b)], provides further inside into the transcriptional net-the conceptual level we provide a rigorous definition of what
work. we want to extract from the expression data by introducing

In a previous analysis of the same d§2s] we applied  the notion of a TM. Our definition in Eq6) assigns to a TM
the map in Egs(10) and (11) to a variety of biologically both a set of coregulated genes and the set of experimental
motivated input sets{gi(o)} assembled according to prior conditions under which this coregulation is the most strin-
knowledge of the regulatory sequence or function of thegent. The size of a TM depends critically on the associated

VIIl. CONCLUSIONS
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set of two thresholds that determine the similarity betweerscription modules that correspond to the central functions of
the genes and conditions of the module, respectively. Théhe yeast organism. Increasing the threshold the number of
genes and conditions of a TM are mutually consistent imply-nodules increases while their size decreases. The functional
ing that the latter can be obtained from the former and vicecoherence of these modules indicates both the reliability of
versa. The notion of a TM is well motivated biologically. our approach and the strong correlation between cofunction
Ideally the genes and conditions can be associated with @d coregulation at the transcriptional level in yeast. A com-

transcription factor or @fraction off a pathway. Importantly, Prehensive discussion of the biological implications of this

distinct modules may share both common genes and cond@nalysis will be presented elsewh¢8s)]. _
tions. Finally we note that our formalism can be applied to ana-

On the computational level our definition of a TM pro- lyze any dgta set that consists of multi_component measure-
vides the basis for a simple but efficient algorithm to obtainMents. While we presented our method in the context of gene
the modules encoded in the expression data. Starting from &Pression data, it is clear that our approach is well suited to
set of randomly selected genésr conditions one refines revegl the modular orgamzaupn encoded in any datq matrlx.
iteratively the genes and conditions until they are mutuallyPPlications of the ISA could include the analysis of biologi-
consistent and match the definition of a TM. The importantc@! data on protein-protein interactions or cell growth assays,
point is that at each step of the iterations we apply a thresH2S Well as other large-scale data, where a meaningful reduc-
old function, thus maintaining only significantly coregulated 10" Of complexity is needed.
genes and the associated coregulating conditions. The thresh-
old stabilizes compact sets of coregulated genes and prevents ACKNOWLEDGMENTS
the introduction of noise from unrelated genes and condi-
tions. Using a sufficiently large number of initial random sets
it is possible to determine all the fixed points of the iterative
scheme for a given pair of thresholds. Scanning through
range of values for these thresholds decomposes the data i
modules at different resolutions. Since the computation tim
for each iteration of our algorithm scales only linearly with
the total number of genes it is particularly well suited for the
analysis of large-scale expression data.

Considering a simplified scenario of a single transcription APPENDIX
module embedded in a noisy background of unrelated genes,
we showed analytically that the application of a threshold
improves the convergence properties of the iterative scheme. This appendix reviews SVD, which is a common tool for
Specifically, we considered the gene vector that undergode analysis of expression data. We use notations that make
iterations as a stochastic entity and studied the evolution dhe similarities with the ISA the most apparent. SVD is used
its distribution under the iterations for a given threshold. Thisto reduce the dimensionality of the data by projecting them
allowed us to quantify how the successful identification ofonto a subspace in such a way that as little information is lost
the module depends on the size of the module and the noisks possible. To this end, consider the following matrix:
in the expression data. -

Our analytical insights were confirmed numerically using Em=Cm" Om> (A1)
computer-generated expression data. More complex gene
regulation was also simulatéd silico. Considering a model whose eIementE°m9=g§ng) cfﬁ) are simply the products of the
with two overlapping transcription modules, we showed thatcomponents of a given gene vectyy and condition vectors
applying the ISA using a range of threshold values reveals,,. For two binary vectors,, andc,, (whose elements are
the structure of the expression data at different resolutionsither 0 or 3 Ef is unity if the modulem contains the gene
Depending on the value of the threshold our algorithm carg and the conditiorc (i.e., the relevant vector components
reveal each of the two modules, as well as their union andreg{¥=1 andc(®=1). For real vectorg,e RNe andc,,
intersection. Using large computer-generated expression ma: RNc it is useful to rewrite the matrix in EqA1) as
trices we studied the capability of the ISA to reveal a large
number of overlapping transcription modules from noisy ex- E= ot O (A2)
pression data. We find that our method is significantly more mmEmeSme
efficient at this task than standard tools, such as SVD and . - -
clustering. in terms of the normalized vector§m=gm/|gm|' and ¢y,

The threshold functions as a resolution parameter in ouf Cm/|Cm|- This normalization removes the ambiguity in the
analysis of real expression data. Using genome-wide expre§hoice ofgy, andcy, due to the invariance dE,, under the
sion data gathered in more than 1000 experimental condfransformationg,— ¢gn andcyn—cp/¢, where¢+0 is an
tions, we decomposed the yeast genome into sets of trafubitrary real number. The prefactr, = |gn||Cy| is just the
scription modules at different resolutions. The modularProduct of the lengths of, and ¢,,. Then each module is
decomposition reveals a hierarchical structure of the regulaassociated with a triple,9,Cy) Of a real number and
tory network. At the lowest resolution we identified five tran- two normalized vectors. Comparing the magnitude of any

We thank J. Doyle for bringing our attention to the simi-
larity between SVD and the ISA. We thank E. Domany, Y.
afri, and S. Shnider for discussions and comments on the
nuscript. This work was supported by the NIH Grant No.
%@50562, the Israeli Science Ministry and the Y. Leon
enoziyo Institute for Molecular Medicine. S.B. is supported
by a Koshland grant.

1. Singular value decomposition
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two matrix elementES? andES ® reveals the relative im- mensions a& whose nonzero elements are giveny and
portance between the gene condition pagsf and @’,c’) ordered such thaytiz ,u,gz- . ~>,u,r2. r<min(Ng,N¢) is the

for modulem. rank of the expression matrik. Combining Eqs(A9) and
Multiplying E,, with an arbitrary gene vectay gives (A10), one finds
_ .. ; _, AT R R
Emg=a- ¢y with a=pungy g (A3) ET-E. Om= Mzgm , (A12)
while multiplication of E = umgm- ¢1. with any condition A A
vectorc gives E-E"-cp=pu?C,, (A13)
T Al pA ; _ a7 ~
Em-C=B0m With  B=unCy-C. (A4) " implying that G is composed of the eigenvectogs, of

T . . ~ T
Thus E,, and E|, are projection operators onto the one- E *E andC consist of the eigenvectors, of E-E". One
. . - A . way to solve the above equations is to start with some initial
dimensional spaces spanned by and c,,, respectively.

Consequently, theses matrices have rank 1 gene vecto®, obtain the corresponding condition vector

Now the basic idea of SVD is to reduce the complexity ofvia c=E-g©| E- g according to Eq(A9), and use the
the data by expressirig in terms of a relatively small num- result to computey®=E"-c/|ET-cV)| using Eq.(A10).

ber Ny (<Ng,N¢) of such rank 1 matrices, Iterating this alternating procedure as in E¢K3) and (14)
Ny converges to the painj{,&l) associated with largest eigen-
E=> E, +Ry.. (A5)  value uf=|E-g;|* provided that the initial vectog® was
M
m

not orthogonal tay;. Thus the predominant module emerges

Here R denotes the residual term whose Euclidean nornf*® Iihe “fl)éed Tém,_' OI tITe abor\]/e cguzpleg eq;egozns. 5
|R|=\/EQ,C(R°9)2 has to be minimized in order to optimize rom Eq. (_ ) it follows that [R| W g.c(E™) K-
the decomposition into modules in the above equation.  Hence forNy=1 the norm of the residual termR*, is
It is instructive to consider first the minimization for the Minimized exactly by the triple;,0:,¢;). It is straightfor-
caseNy=1. We have ward to extend this approach to the expansion of the expres-
sion matrix in terms of several modules as in E&5). To
. - ~ "T .
RI2= EC9_ ECOY2— EC9— , (0592 A6 this end one first computds, = x4 ¢, - 9; as described above
IR ;: ( m) ;; ( HamCm'Om’) (A6) and applies the same scheme to the residual tfmE
—E;. This yieldsE,= u,C,- g5 associated with the second
_ EC9)2_ 2, EC9ROGO) 4 ,2 (30§02 (A7 largest eigenvalug,. Repeating this procedusequentially
gzc (B 2unE e on™ + il C'Gm )" (A7) yields eventually the complete SVD of the matfx How-
ever, for practical purposes it is usually sufficient to compute

. . . 2 . ~ ~
Setting the derivative ofR|* with respect to the component only a limited numbers of triples i,,0m.Cq) With m

ciy, =1,... Ny until the norm of the residual terr]‘RNMl2
3R i i =29’C(E°9)2—22']'21M2m is below a certain threshold. Thus,
G =, —2umE®999+2u2(9'9)2c©  (A8)  approximating the expression matrix in terms of a relatively
Cm 9 small number of moduledyy,<r reduces the complexity of
- the data.
to zero we find thagmc(y) = =4E°9g(P/= (') or, recall- There are two interpretations for the expansion in Eq.

ing the normalization of),, and switching to vector notation, (A5) that depend on the way the expression data are viewed.
If we consider the data as a collection of gene vectpras
UmCm=E- G- (A9) inEq.(1), then Eq(A5) translates into an expansion of these
vectors in terms of a collection of gene vectors, i.e.,
Similarly, equating?|R|%/g'? to zero it follows that
Ny

BmOm=E"- C. (A10) gc=mE=1 prCOgnt ol (c=1,...N¢o), (Al4)

This remarkable result implies th&,, can be determined

simply by solving simultaneously the linear equations in Eqswhere{ém} is the basigone forall g.), and the expansion

(A9) and (A10). The latter is equivalent to a SVD of the coefiicients are given bwmefﬁ) (one foreachg,). More-

matrix E,
over, for eachy, there is a residual gene vectgf that de-
G'-E-C=M, (A1l)  termines how wellg, is approximated by the sum. Con-
o R L R versely, if we consider the data as a collection of condition
where G=(9;,9,, - -.,8;) and C=(c;,¢c,, ... .,¢) are or-  vectorscy as in Eq.(2), then the expansion in EGA5) can

thogonal matricesM is a diagonal matrix of the same di- be read as
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N (ab)=(a)(b). (A21)
Cg= > wmdPontcy (9=1,...Ng), (AL5)

m=1 Since the expression for the variance of the produetin
R ) - ) Eqg. (19) may be somewhat less obvious, we give its deriva-
wherecg denotes the residual condluon vector. In this casgjon here. From the definition of the variance
the condition vectors of the modulds,,,}, provide the basis 5 5 5
of expansion, while the expansion coefficients for eachre V(a)=((a—(a)))=(a’)—(a)%, (A22)
given by ungy we obtain

So far we have left the normalization Bfunspecified. In

fact the choice of normalization follows from the interpreta- V(a)V(b)=(<a2>—<a)2)((b2>—<b)2) (A23)
tion of the data, if, instead of a minimal residual term in Eq.
(A6), one demands maximal variance among piacipal =(a2)(b?) —(a)%(b%) —(a?)(b)?+(a)%(b)2.
componentsthe projections of the data rows or columns (A2
onto the eigenvectors associated with the largest eigenval- _ _
ues. For example, if the expression data are viewed as dNhen using Eqs(A21)—(A24) it follows that
collection of gene vectors, one would like to find the VeCtorV(ab)=<a2b2)—(ab>2 (A25)

g, that maximizes the variance of the principal components

c@=gl. g, ie., =(a?)(b?) —(a)*(b)? (A26)
18 o e 1., . . =V(a)V(b)+(a)X(b?)+(a?)(b)?~ 2(a)X(b)>
V%:N_Cczl (C(l)_<c(l)>c)2:N_CgI'Sg'gl- (A16) (a)%(b)+(a}b) (ayX(b) (A27)
Here the bilinear term has been written in terms of the scatter =V(a)V(b)+((a2>—<a)2)(b>2+ (<b2>_<b>2)<(2>228)
matrix
=V(a)V(b)+V(a)(b)?+V(b)(a)?. (A29)

Nc
SQEE (gc_<gc>c)'(gc_<gc>c)T- (A17)
c=1 3. Accurate treatment of the noise propagation
In order to simplify our presentation of the propagation of
the noise under the iterative scheme in Eky) we used the
approximate recursive equation in E®5) to derive the
fixed point noise-to-signal ratio in EqR6). Here we give an
accurate treatment that is valid everNiE”>1 is not satis-
fied.
First, note that if the iterative scheme converges, then for

Maximizing V¢ under the constraint thaf - g,= 1 is equiva-

lent to finding the eigenvector & associated with the larg-
est eigenvalue. For normalized da&, coincides with the

gene gene correlation matrix

Cy=El-Ec with ¢39=cl.c,.  (A19)

. . . . — -1)_ ~(n) _T(n-1)_7
Conversely, if the expression data are viewed as a collectioR—* We havev&”)—v&“, )_U(G*.) andvés”)—v&“ .)_U(G*)'
of condition vectors, the vectar, that maximizes the vari- In this case we can write two fixed-point equations

ance of the component§® =cf - ¢, is the eigenvector asso- ~ ANgve|  ve
ciated with the largest eigenvalue of the scatter matrix v 1- =——(v¥)+1), (A30)
(NEM?) NG
NG
S= 2, (cg—{(Cg)g)(Cy—(Cg)g)"- (A19) 1) -
=1 o) 1—@ =08, (A31)
For normalized data$. equals the condition condition cor-
relation matrix Solving Egs.(A30) and (A31) for vg‘) we get
S -1
C.=Eg-E¢ with C¢=qgl g . (A20) |, 2 NE”  ANg .
e N ve NG
Note, however, that sindég+# E, the matrice€,- EE and
Eg- Eg are different fromC, andC,, and do not represent N Ng | T
correlation matrices. = N (A32)
Ve Ng
2. The variance of a product of random variables Here, the approximation on the right-hand side neglects the

By definition, the mean of the product of tidependent  1NE” term and yields exactly the same result as obtained
random variablea andb is the product of their mean values, from the simplified iterative scheme in E®5) that ignores
ie., the difference between!! andv (.
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Interestingly, a necessary condition for convergence cafhus if
be derived also without any approximation directly from
Egs. (23) and (24). To this end note that Eq24) implies

~ (WRNIWES
trivially that v =0 . Then it follows that ve=vSit= NG (:G D (A34)
G
NGUCJF N(m) U
s =2y o (A33)
(NG") NG the noise-to-signal ratiol’ converges to a finite value.
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