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Iterative signature algorithm for the analysis of large-scale gene expression data

Sven Bergmann,* Jan Ihmels,† and Naama Barkai‡

Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
~Received 11 October 2002; published 11 March 2003!

We present an approach for the analysis of genome-wide expression data. Our method is designed to
overcome the limitations of traditional techniques, when applied to large-scale data. Rather than alloting each
gene to a single cluster, we assign both genes and conditions to context-dependent and potentially overlapping
transcription modules. We provide a rigorous definition of a transcription module as the object to be retrieved
from the expression data. An efficient algorithm, which searches for the modules encoded in the data by
iteratively refining sets of genes and conditions until they match this definition, is established. Each iteration
involves a linear map, induced by the normalized expression matrix, followed by the application of a threshold
function. We argue that our method is in fact a generalization of singular value decomposition, which corre-
sponds to the special case where no threshold is applied. We show analytically that for noisy expression data
our approach leads to better classification due to the implementation of the threshold. This result is confirmed
by numerical analyses based onin silico expression data. We discuss briefly results obtained by applying our
algorithm to expression data from the yeastSaccharomyces cerevisiae.
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I. INTRODUCTION

DNA microarray experiments monitor the expression le
els of thousands of genes simultaneously@1–4#. Using this
technology, large sets of genome-wide expression data h
been accumulated@5#. For example, the expression levels
the entire yeast genome~comprising ;6200 genes! have
been measured for more than 1000 different experime
conditions @6#. A large number of DNA-chip experiment
have also been carried out for higher eukaryotes, such a
nematodeC. elegansand the fruit flyDrosophila, as well as
for a variety of both normal and malignant human tissue

While large-scale expression data have the potentia
reveal new insights into the transcriptional network that c
trols gene expression, they also give rise to a major com
tational challenge: How can one make sense of the mas
expression data containing millions of numbers? The cla
fication of the genes and the experimental conditions is
essential first step in reducing the complexity of such da
However, while standard tools, such as clustering algorith
@7–14# ~see Refs.@15,16# for reviews! and singular value
decomposition~SVD! @17,18#, provide interesting results
when applied to relatively small data sets, typically conta
ing tens of experimental conditions and at most several h
dred genes, these methods are of limited use for the ana
of large data sets. In particular, a well-recognized drawb
of commonly used clustering algorithms is the fact that th
assign each gene to a single cluster, while in fact genes
participate in several functions should be included in m
tiple clusters@19–24#. Moreover, both in standard clusterin
methods and SVD, genes are analyzed based on their ex
sion underall experimental conditions. This is problemati
since cellular processes are usually affected only by a s
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subset of these conditions, such that most conditions do
contribute relevant information but rather increase the le
of background noise.

In a recent paper@25# we introduced a new method for th
analysis of large-scale gene expression data that was
signed to overcome the above-mentioned problems~see
Refs.@21–24# for other recent approaches!. A central idea of
this work was to integrate prior biological information, suc
as the function or sequence of known genes, into the ana
of the gene expression data. In the present paper we pre
a complementary method for the analysis of large-scale d
that does not require any prior knowledge beyond the exp
sion data. We start by providing a rigorous definition of t
type of information we aim to extract from the expressi
data by introducing the notion of atranscription module
~TM!. A TM contains both a set of genes and a set of exp
mental conditions. The conditions of the TM induce a c
regulated expression of the genes belonging to this TM. T
is, the expression profiles of the genes in the TM are
most similar to each other when compared over the con
tions of the TM. Conversely, the patterns of gene express
obtained under the conditions of the TM are the most sim
to each other when compared only over the genes of the
The degree of similarity is determined by a pair of thresh
parameters. The gene threshold constrains the gene set,
the condition threshold constrains the condition set. Imp
tantly, distinct transcription modules may share comm
genes and conditions.

The precise definition of a TM as the object to be r
trieved from the expression data allows us to establish
efficient algorithm that searches for the modules encode
the data. Starting from a set of randomly selected genes~or
conditions! one iteratively refines the genes and conditio
until they match the definition of a TM. Using a sufficient
large number of initial sets it is possible to determine all t
modules corresponding to a particular pair of threshol
Scanning through a range of thresholds decomposes the
into modules at different resolutions.
©2003 The American Physical Society02-1
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This paper is organized as follows. In Sec. II we provi
a mathematical definition of a transcription module. In S
III we introduce our algorithm that searches for such mo
ules and compare our method with SVD. In Sec. IV we d
cuss the normalization of the expression data. In Sec. V
present analytical insight into the role of the threshold in o
algorithm. We show that for noisy expression data the ap
cation of a threshold improves significantly the identificati
of transcription modules. We provide an estimate for
maximal amount of noise for which a successful identific
tion is still possible. In Sec. VI we compare our method w
other standard tools usingin silico expression data. In Sec
VII we discuss briefly results obtained by applying our alg
rithm to real expression data from the yeastSaccharomyces
cerevisiae. We conclude in Sec. VIII.

II. FORMALISM

A. The expression matrix

We consider data from microarray experiments given
terms of a gene expression matrixE. The matrix elementEcg

denotes the log-fold expression change of genegPG
[$1, . . . ,NG% at the experimental conditioncPC
[$1, . . . ,NC%, whereNG andNC refer to the total numbe
of genes and conditions, respectively. The matrixE may be
viewed as a collection ofNC row vectors:

E5S g1
T

g2
T

A

gNC

T
D . ~1!

Each vectorgc
T5(gc

(1) ,gc
(2) , . . . ,gc

(NG)) describes thegene
profile for conditionc, containing the expression levelsgc

(g)

5Ecg of all the genes that were monitored under this con
tion. Alternatively, the expression matrix can be viewed a
collection ofNG column vectors:

E5c1 ,c2 , . . . ,cNG
. ~2!

Here each vectorcg5(cg
(1) ,cg

(2) , . . . ,cg
(NC))T describes the

condition profilefor geneg, containing the expression leve
cg

(c)5Ecg of this gene under all the conditions of the data s
We define two normalized expression matrices~cf. Sec.

IV !

EG[S ĝ1
T

ĝ2
T

A

ĝNC

T

D ~3!

and

EC[~ ĉ1 ,ĉ2 , . . . ,ĉNG
!. ~4!
03190
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The rows ofEG and the columns ofEC are given in terms of
the normalized gene and condition vectors,

ĝc[
gc2^gc&gPG

ugc2^gc&gPGu
and ĉg[

cg2^cg&cPC

ucg2^cg&cPCu
, ~5!

respectively. These vectors have zero mean (^ĝc&gPG

5^ĉg&cPC50) and unit length (uĝcu5uĉgu51). This normal-
ization implies that(gÊG

cg50, (g(ÊG
cg)251 for each condi-

tion c and(cÊC
cg50, (c(ÊC

cg)251 for each geneg. Center-
ing and rescaling the rows inEG allows for a meaningful
comparison between any two conditionsc and c8 through
their associated gene profilesĝc andĝc8 . Similarly, centering
and rescaling the columns inEC allows for the comparison
of any two genesg andg8 through their associated conditio
profiles ĉg and ĉg8 . Note that the normalized matricesEG
andEC in general are not equal.

B. Transcription modules

Our goal is to find sets of coregulated genesGm,G,
together with the relevant experimental conditionsCm,C
that induce their coregulation. We refer to such a combin
set,Mm5$Gm ,Cm%, as a TM. Here the indexm ranges be-
tween one and the number of transcription modules,NM .
Biologically a TM may be associated with a particular cell
lar function. Ideally each TM would correspond to a tra
scription factor that regulates the genes inGm and that is
activated under the conditions inCm . Of course, a one-to-
one correspondence between transcription modules and
scription factors is an over-simplification, but it can still pr
vide useful insight into the nature of the expression da
First, the total number of transcription factors,NTF , is much
smaller than the number of genes:NTF!NG . Thus we ex-
pect also the number of transcription modules, and there
the effective dimensionality of the expression matrix to
relatively small:NM!NG . Second, the number of genes a
tivated by a single transcription factor,NG

(m) , is known to be
limited: NG

(m)!NG . Third, different transcription factors ca
regulate the same gene and can be activated under the
experimental conditions. Hence distinct modules may sh
common genes and conditions.

Mathematically, a TM can be defined as follows:

'~TC ,TG!:H Cm~Gm!5$cPC:^EG
cg&gPGm

.TC%,

Gm~Cm!5$gPG:^EC
cg&cPCm

.TG%,
~6!

whereTC and TG are two threshold parameters. The abo
definition states that for each conditionc in the TM the av-
erage expression level of the genes in the TM,^EG

cg&gPGm
, is

above a certain thresholdTC . Conversely, for each geneg in
the TM the average expression level over the conditions
the TM, ^EC

cg&cPCm
, is also above some thresholdTG . This

reciprocal dependence between the genes and the cond
associated with a TM implies that, considering only t
genes of the module, the conditions of the module are
actly those for which the coexpression is the most stringe
2-2
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Similarly, considering only the conditions of the module, t
genes of the module are the most tightly coregulated. N
that our definition of a TM is symmetric with respect
genes and conditions, such that no preference is give
either of them. In particular, we use the expression matrixEG
~normalized with respect to genes! in order to specify the
conditions of the module (Cm), given the genes of the mod
ule (Gm). Similarly we useEC ~normalized with respect to
conditions! to specify the genes inGm , given the conditions
in Cm .

We would like to reformulate and somewhat general
the definition of a TM in Eq.~6! by introducing vector
notation. To this end we represent the genes and
conditions of a TM by a pair of a gene vecto
gm5(gm

(1) ,gm
(2) , . . . ,gm

(NG))T and a condition vector

cm5(cm
(1) ,cm

(2) , . . . ,cm
(NC))T. A nonzero componentgm

(g)

(cm
(c)) implies that the geneg ~conditionc) is associated with

the modulem. Consider the linear transformations

cm
pro j[EG•gm5S ĝ1

Tgm

ĝ2
Tgm

A

ĝNC

T gm

D and

gm
pro j[EC

T
•cm5S ĉ1

Tcm

ĉ2
Tcm

A

ĉNG

T cm

D . ~7!

The resulting vectors contain the projections of the vect
gm andcm , which specify the TM, onto the set of the~nor-
malized! gene profiles$ĝc% and condition profiles$ĉg%, de-
fined in Eq. ~5!, that describe the expression data. Fo
binary vectorgm the components ofcm

pro j are just the expres
sion levels summed over the genes of the TM for each c
dition in the data set. Likewise for a binary vectorcm the
components ofgm

pro j are the expression levels summed ov
the conditions of the module for each gene.

The consistency requirement in Eq.~6! can then be writ-
ten as

'~ tC ,tG!:H cm5 f tC
~cm

pro j!,

gm5 f tG
~gm

pro j!,
~8!

where tC and tG are the condition threshold and the ge
threshold, related toTC andTG , respectively. The threshol
function

f t~x![S w~x1!Q~ x̃12t !

A

w~xNx
!Q~ x̃Nx

2t !
D ~9!
03190
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acts separately on each of theNx componentsxi of the vector
x and yields the products of a weight functionw(x) and a
step functionQ(x) as output. The arguments of the ste

function, x̃i5@xi2m(x)#/s(x), have been centered and re
caled. We use the mean as center,m(x)5^x&, and the ex-
pected or measured standard deviation,s(x)

5A( i
Nx(xi2^x&)2/Nx, as scale factor. The step function se

to zero all elements of the vectorx that do not exceedm(x)
by at leastts(x). @Down-regulation can be captured by r
placing x̃i→ux̃i u in Eq. ~9!.# Using w(x)51 as weight func-
tion all the significant elements are set to unity. This bina
formulation corresponds to the consistency requiremen
Eq. ~6!. @To capture down-regulation one uses sgn(x) as
weight function.# It is straightforward to extend our formal
ism using different weight functions. In this case the entr
of the gene vector and condition vector become continuo
and their value determines the significance of a particu
gene or condition, respectively. As we shall see, a parti
larly relevant choice isw(x)5x in which casef t(x) is semi-
linear.

The compact definition of a TM in Eq.~8! can be under-
stood as follows: Applying the threshold functionf tC

to cm
pro j

results in a nonzero componentcm
(c) of the module’s condi-

tion vectorcm , if the corresponding gene profileĝc is suffi-
ciently aligned with the gene vectorgm of the module. Bio-
logically this means that a significant fraction of the genes
the module are coregulated under conditionc. Similarly, the
application of f tG

to gm
pro j results in a nonzero componen

gm
(g) in the module’s gene vectorgm , if the corresponding

condition profileĉg is sufficiently aligned with the condition
vectorcm of the module. Biologically this implies that a sig
nificant fraction of the conditions in the module induce
coregulated expression of geneg.

It is important to note that the content of a particul
module Mm5$Gm ,Cm% depends on the pair of threshold
(tG ,tC). In many cases for slightly larger thresholds the
exists a related moduleMm

up , such thatMm
up,Mm . Simi-

larly, for somewhat smaller thresholds there usually exist
module Mm

down, such that Mm,Mm
down. Thus there are

nested sets of modules,Mm
top,•••,Mm

bottom that persist
over a finite range of the thresholds. This hierarchical str
ture resembles the tree structures obtained from cluster
However, in our case distinct branches may share comm
genes or conditions.

III. THE ITERATIVE SIGNATURE ALGORITHM

The rigorous definition of a transcription module, in pri
ciple, allows us to determine the modules encoded in
expression matrix by testing all possible sets$Gm ,Cm% for
their compliance with Eq.~8!. However, since the number o
such sets scales exponentially with the number of genes
conditions, such an approach is completely infeasible co
putationally. We therefore suggest a different approach.
principle idea is to search for solutions of the consisten
equation in Eq.~8! through the map defined by
2-3
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c(n11)5 f tC
~EG•g(n)!, ~10!

g(n11)5 f tG
~EC

T
•c(n11)!. ~11!

The first equation assigns a condition vectorc(n11) to a given
gene vectorg(n). We refer to the componentcc

(n11) of this
vector as acondition score. This score is nonzero only if the
corresponding gene profileĝc , defined in Eq.~5!, is suffi-
ciently aligned with the gene vectorgm

(n) . In the subsequen
step in Eq.~11! the component~or gene score! gg

(n11) of the
gene vectorgm

(n11) is assigned a nonzero value only if th

corresponding condition profileĉg is sufficiently aligned with
the condition vectorcm

(n11) . In a recent work@25# we have
applied the map in Eqs.~10! and~11! to a variety of biologi-
cally motivated input sets$gi

(0)% assembled according t
prior knowledge of the regulatory sequence or function
the genes. Sets of coregulated genes and coregulating c
tions were constructed from recurrent realizations of the o
put sets defined byg(1) and c(1). In this work we pursue a
different strategy, namely, we apply the maps in Eqs.~10!
and ~11! iteratively by reusing the gene vectorg(1) as input
for Eqs. ~10! and ~11! in order to obtain new output set
defined byc(2) andg(2). Repeating this procedure we obta
$g(3),c(3)% from g(2) and so on. In general, the serie
$g(0),g(1),g(2),g(3), . . . % rapidly converges and we can d
fine a ‘‘fixed point’’ gene vectorg(n* ) that satisfies

ug(* )2g(n)u

ug(* )1g(n)u
,« ~12!

for all n above a certain number of iterations. The parame
« determines the accuracy of the fixed point.g(* ) depends
both on the ‘‘seed’’g(0) and the thresholdstG andtC , which
are fixed parameters. Together with the associated cond
vector c(* ) it defines a TM, since (g(* ),c(* )) by definition
solve Eq.~8!. We call this procedure theiterative signature
algorithm ~ISA!.

Although the set of possible input seeds is huge, usu
there exist only a rather limited number of fixed points fo
given set of thresholds (tG ,tC). Therefore, in general the
ISA is applied as follows:~1! generate a~sufficiently large!
sample of input seeds$gm

(0)%, ~2! find the fixed points
(gm

(* ) ,cm
(* )) corresponding to each seed through iteratio

and~3! collect the distinct fixed points in order to decompo
the expression data into modules. The structure of this
composition depends on the choice of thresholds (tG ,tC).
Scanning over different values for (tG ,tC) reveals the modu-
lar structure at different resolutions: Lower thresholds yi
larger units whose coregulation is relatively loose, wh
higher thresholds lead to smaller, tightly coregulated m
ules. Each fixed point (gm

(* ) ,cm
(* )) has its ‘‘basin of attrac-

tion,’’ i.e., the set of seeds that converge to it under the
erative scheme in Eqs.~10! and~11!. The size of this set is a
measure of the ‘‘convergence radius,’’ while the avera
number of iterations, which is needed until Eq.~12! is satis-
fied, characterizes the ‘‘depth’’ of this basin.
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The computation time of any algorithm, designed for t
analysis of large-scale expression data, is of crucial imp
tance. For algorithms that require the full correlation ma
ces~such as clustering or SVD!, already the computation o
these two matrices can be very intensive, since its comp
tion time scales liketcomp

corr }NG
2 NC1NC

2 NG . However, the
ISA is not based on this kind of information. Rather th
squaring the expression matrix, only multiplications of t
expression matrix withsparsematrices~of size NG3NI or
NC3NI), whereNI is the number of input sets, have to b
performed. Due to the sparseness, the computation tim
the ISA goes liketcomp

ISA }NiterNI(NCÑG1NGÑC), whereÑG

andÑC refer to the average number of genes and conditi
respectively, whose scores are above the threshold, andNiter
is the number of iterations until convergence. Thus the co
putation time of the ISA scales linearly withNG andNC . In
general, only very few iterationsNiter are needed to find the
fixed points. A large number of input setsNI increases the
chances to find the fixed points with a small convergen
radius. However, for practical purposes it is useful to ac
mulate progressively sets of fixed points by running the I
repeatedly with a moderate value forNI , thus increasing
gradually the accuracy of the fixed point decomposition. I
portantly,ÑG and ÑC are much smaller thanNG andNC as
long as the respective thresholds are high enough. Fin
we note thattcomp

ISA can be further improved by choosing th
input seeds not completely at random, but using the inform
tion of previous runs~e.g., starting from the sets obtained
different thresholds!.

Comparison with singular value decomposition

For w(x)5x, in the absence of thresholds and neglect
the two different normalizations of the expression data,
iterative scheme reads

ĉ(n)5
E•ĝ(n21)

uE•ĝ(n21)u
, ~13!

ĝ(n)5
ET

• ĉ(n)

uET
• ĉ(n)u

. ~14!

The fixed points of the above equations correspond to
pairs of vectors (ĝm ,ĉm), where ĝm5gm /ugmu and ĉm
5cm /ucmu are the normalized eigenvectors ofET

•E and
E•ET, respectively. Both eigenvectors are associated w
the common eigenvaluemm

2 5uE•ĝmu25uET
• ĉmu2. It is inter-

esting to note that a SVD of the expression matrix yie
exactly those eigenvectors and eigenvalues@28,29# ~see sec-
tion 1 of the Appendix for a brief review of SVD!. This
decomposition is usually performed in a sequential man
In this case one determines first the pair (ĝ1 ,ĉ1) associated
with the largest eigenvaluem1

2. In fact, this pair emerges as
fixed point of the above equations for any seedg(0) that is
not perpendicular toĝ1. It can be shown that the matrix
2-4
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E15m1ĉ1•ĝ1
T ~15!

provides the best rank-1 approximation toE5E11R1,
whereR1 denotes the residual term. A subsequent diago
ization of R1 yields the~orthogonal! pair (ĝ2 ,ĉ2) associated
with the second largest eigenvaluem2. Continuing this pro-
cedure eventually decomposes the expression matrix in
sum

E5(
m

NM

Em1RNM
~16!

of the rank-1 matricesEm5mmĉmĝm
T with mm5ucmuugmu.

These matrices can be viewed as a special kind of trans
tion modules.

One of the advantages of SVD is that the significance
each modular componentEm can be determined simply ac
cording to the magnitude of the associated eigenvalue.
components associated with small eigenvalues are likel
reveal no real information and to contain only noise. Th
the spectrum of eigenvalues can give some indication of
dimensionality of the data: The existence ofNM eigenvalues
that are significantly larger than the remaining eigenval
suggests that there areNM dominant components. Similar t
SVD, the lengths of the fixed point vectors of the ISA pr
vide a measure of the relative importance of the associ
TM. Specifically,ugm

(* )u25(gPGm
(gg

(* ))2 reflects the size of

the gene set and@for w(x)5x] the strength of its coregula
tion, while ucm

(* )u25(cPCm
(cc

(* ))2 reflects the size of the
condition set and the strength of the coregulation induced
this set.

While the similarity between the ISA and SVD is instru
tive, there are several important differences.

Applying the threshold functions in Eqs.~10! and ~11!
yields a different spectrum of fixed points. Sets of genes
are fixed points of the iterative scheme for a particular cho
of the threshold, in general do not correspond to the eig
vectors of the expression matrix.

The thresholds affect the stability of the fixed poin
While the iterations in Eqs.~13! and~14! have only a single
stable fixed point (ĝ1 ,ĉ1), the ISA in Eqs.~10! and ~11!
usually possesses several stable fixed points. This is es
tially because the thresholds induce an ‘‘effective ortho
nality’’ by setting the small scalar products in Eq.~7! to zero.
Consequently input sets that are almost~but not exactly! or-
thogonal to the strongest fixed point, do not flow towards t
point under the iterations, but converge to a different fix
point.

SVD is very sensitive to the~unavoidable! noise in the
expression data. This noise induces mixing between mod
that would be orthogonal to each other in the absence
noise. In the ISA the threshold function provides an efficie
way to deal with such noise. Excluding the bulk of the gen
and conditions from the expression data at each step of
iterative procedure allows to pick up coregulated units t
would otherwise be masked by the noise.
03190
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For SVD distinct eigenvectorsĝm and ĝm8 as well asĉm

and ĉm8 are orthogonal to each other, since they diagona
a symmetric matrix. The constraint of orthogonality is n
present in the ISA.

SVD only reveals one single decomposition of the expr
sion matrix into modules. As for the ISA, changing the va
ues of the thresholds allows to analyze the modular struc
recorded in the expression matrix at different resolutions

For SVD the expression data have to be normalized ei
according to genes or conditions. The choice of data norm
ization, in general, follows from the interpretation of th
data. Demanding maximal variance among the princi
components, one is led to center the data either as inEG or
EC ~see section 1 of the Appendix on SVD for details!. Thus
the symmetry between the genes and the conditions is ex
itly broken when committing to eitherEC or EG . In contrast,
the ISA avoids this bias by alternating between the two p
sible normalizations at each step of the iterative procedur
Eqs.~10! and ~11!.

A connection between SVD and other algorithms for m
tivariate analysis was pointed out in Ref.@24#. ‘‘Semidiscrete
decomposition’’@26#, ‘‘non-negative matrix factorization,’’
@27# and k-means clustering can be viewed as SVD w
additional constraints on the eigenvalues and eigenvec
Other algorithms, like the ‘‘Plaid model’’@24#, extend SVD
by introducing additional parameters that allow for an im
proved decomposition of the expression data into potenti
overlapping sets of genes and conditions. In ‘‘gene shavi
@23# a cluster is formed by removing iteratively genes who
expression profiles are the least similar to the principal co
ponent. The optimal cluster is determineda posteriori, by
demanding both high-variance clusters and high cohere
between the genes in the cluster. Subsequently, a new cl
is obtained from the data orthogonal to the first cluster, a
so on. Our approach differs from these algorithms in t
important aspects. First, our method relies on a formal d
nition of a module, which is independent of the features
the other modules. In contrast, in all other approaches, in
vidual clusters are defined only with respect to the ot
clusters in the data. Second, our algorithm avoids the ac
mulation of noise by applying the threshold function alrea
in each step of the iterations in Eqs.~10! and~11! that would
otherwise lead to the principal component of the express
matrix.

IV. THE PROPER DATA NORMALIZATION

Given the ‘‘raw’’ expression data contained inE it is dif-
ficult to compare two experiments (gc andgc8) or two genes
(cg andcg8). This is because different experiments may
fect the expression levels at a different scale. For exam
one condition may change the expression of many gene
a very large factor (@1) while another condition affects
mainly the same genes, but shifts their expression level b
much smaller amount. Although the two conditions are
lated, this relation is not explicit in the expression da
Moreover, recording the expression levels with different m
croarray techniques as well as variations in the sample pr
2-5
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FIG. 1. How to properly normalize the expression matrix.~a! An in silico expression matrix, corresponding to two overlapping modu
of equal size and strength, was generated according to the model described in the text. The elements of the original expression mEcg,
were scaled toES

cg[Ecgsgsc , wheresgP@0,1# andscP@0,1# are random scale factors selected from a uniform distribution for each geg
and conditionc. FromES we calculated the normalized expression matricesEG andEC according to Eqs.~3! and ~4!. ~b! From the vector
c1, whose nonzero componentsc1

(c) specify the conditions of the upper-left module in~a! we calculated the vectorsgS5ES
Tc1 , gC5EC

Tc1, and
gG5EG

T c1. We plot their components~horizontal axes! gS
(g) ~black!, gC

(g) ~dark gray!, andgG
(g) ~light gray! as functions of the gene inde

~vertical axis!. Only for gC , obtained according to normalization used in the ISA,all the components associated with the genes of the mo
are significantly larger than the others.~c! From the vectorg1, whose nonzero componentsg1

(g) specify the genes of the upper-left modu
in ~a! we calculated the vectorscS5ESg1 , cC5ECg1, andgG5EGc1. We plot their components~horizontal axes! cS

(c) ~black!, cC
(c) ~dark

gray!, andcG
(c) ~light gray! as functions of the condition index~vertical axis!. Only for cG , obtained according to normalization used in t

ISA, all the components associated with the conditions of the module are significantly larger than the others.
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ration can change the scale of the results. Similarly the
namic range of two distinct genes could differ greatly ev
though the shape of their condition profiles might be simi
To overcome this difficulty we have introduced the norm
ized matricesEG andEC @cf. Eqs.~3! and ~4!#.

In order to study the impact of the normalization on o
algorithm we generated anin silico expression matrixE cor-
responding to two overlapping modules of equal size a
strength@see Sec. VI for more details on the model used
generate these data#. We selected random scale facto
sg ,scP@0,1# for each geneg and conditionc from a uniform
distribution and transformed the elements of the expres
matrix according toEcg→ES

cg[Ecgsgsc . Unlike the original
expression matrixE, the rescaled expression matrixES
@shown in Fig. 1~a!# corresponds to the realistic scenar
where the entities of the expression data have been reco
at different scales. FromES we calculated the normalize
matricesEC andEG .

The question we ask is which normalization has to
employed in order to reveal the ‘‘correct’’ genes from t
conditions associated with the underlying module, and wh
03190
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n
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n
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e
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normalization leads to the ‘‘correct’’ conditions, given th
genes of the module. To answer this question we defined
vectorsg1 andc1 by assigning nonzero components only f
the genes and conditions of one of the modules, respectiv
Using these vectors we computedcS5ES•g1 , cC5EC•g1,
and cG5EG•g1 as well asgS5ES

T
•c1 , gC5EC

T
•c1, and gG

5EG
T
•c1. The components of the resulting gene and con

tion vectors are plotted in Figs. 1~b! and 1~c!, respectively.
One can see that only forgC andcG @corresponding to the

the ‘‘correct’’ normalizations as used in the ISA, cf. Eqs.~10!
and ~11!# all the components associated with the genes
conditions of the module@specified by (g1 ,c1)] are signifi-
cantly larger than the others. For missing or ‘‘wrong’’ no
malization there are large fluctuations among the vector c
ponents. Hence applying a threshold would only capture p
of the relevant genes or conditions in this case. ThusEC is
best suited to identify the genes of a module from a se
conditions that is a good approximation ofCm , while EG is
the proper normalization to obtain the conditions of a mod
from a set of genes close toGm . Note that using these ‘‘cor-
rect’’ normalizations, it is even possible to distinguish t
2-6
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genes and conditions associated exclusively with the sp
fied module from those that belong also to the other mod
because the latter obtain a somewhat lower score.

V. ANALYSIS OF THE ISA

The fundamental issue is how well the ISA can rev
relatively small, noisy, and possibly overlapping modu
from the expression matrix. In this section we address
question by considering a simple model where the exp
sion matrix corresponds to asingletranscription module. Our
idea is to consider the gene vector that undergoes iterat
as a stochastic entity and to study how its distribut
evolves under the iterations. This approach allows us
quantify how the efficiency of our algorithm depends on t
size of the module and the noise in the expression data.

A. Linear recursions

In the following we consider a slightly simplified iterativ
scheme, where no threshold function is applied to the co
tion vector. In this case one can write an iterative equat
that depends only on the gene vector. If, moreover, no g
threshold is applied the iterations are defined through
linear equation@cf. Eq. ~A12! in the Appendix#

ĝ(n)5
C•g(n21)

uC•g(n21)u
. ~17!

Here the matrixC5ET
•E emerges from applying first Eq

~13! and then Eq.~14!. As we mentioned before, the fixe
points of this linear recursion are the eigenvectors ofC.

Let us consider the simplest scenario corresponding
single set of coregulated genesG1,G whose coregulation is
triggered by the conditions inC1,C. Specifically, we as-
sume that all the genes inG1 are equally important, such tha
a noise-free measurement would result in identical condi
profiles for these genes. In this ideal case the matrix elem
C gg8 would equal some constant if bothg andg8 belong to
G1 and be zero otherwise. In order to model the effect
noisy data we consider the elements ofC as random vari-
ables with mean value
do
l

ep

d
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^C gg8&5H mC , g,g8PG1

0, otherwise,
~18!

and varianceVC for all g,g8PG. In the absence of noise
~i.e.,VC50) the matrixC possesses only a single~nontrivial!
eigenvectorg(0), whose nonzero components specify t
genes of the TM. However, forVC.0 this is not true any-
more.

Assume that we knew the eigenvector ofC for VC50 and
use it as a~binary! seedg(0) for Eq. ~17! with a noisy real-
ization ofC ~i.e., VC.0). The question is whether the fixe
point resulting fromg(0) still characterizes the genes of th
module. In general the vectorĝ(1) obtained by the first itera-
tion does not coincide withĝ(0). Due to the probabilistic
description ofC we can only determine the mean and t
variance of the components ofg(1)5C•g(0). The mean of
gg

(1)5(g8C gg8gg8
(0) is equal to the number of genes in th

module,NG
(m) , timesmC if gPG1, and zero otherwise. Simi

larly the variance ofgg
(1) is NG

(m)VC . Here we only used the
additivity of the mean and the variance. However, already
gg

(2) in the next iteration we need to deal with products
random variables. To this end, we note that for two indep
dent random variablesa and b we have~see part 2 of the
Appendix for proof!

^ab&5^a&^b&

and

V~ab!5V~a!V~b!1V~a!^b&21V~b!^a&2. ~19!

Using these results we find that the mean values of the c
ponents of the vectorg(n)5C•g(n21) are given by

^gg
(n)&5H mG

(n)[NG
(m)mCmG

(n21) , gPG1

0, gP” G1 ,
~20!

where mG
(n21) denotes the mean of the componentsgg

(n21)

associated with the module (gPG1). Only for the genes in
G1 there areNG

(m) matrix elements inC that contribute con-
structively to^gg

(n)&. Similarly, the variances ofgg
(n) are
V~gg
(n)!5H VG

(n)[DNGVCṼG
(n21)1NG

(m)@VCVG
(n21)1VC~mG

(n21)!21VG
(n21)mC

2#, gPG1

ṼG
(n)[DNGVCṼG

(n21)1NG
(m)VC@VG

(n21)1~mG
(n21)!2#, gP” G1 ,

~21!
er

is
not
whereDNG[NG2NG
(m) denotes the number of genes that

not belong to the module. Note thatVG
(n) has an additiona

term with respect toṼG
(n) , due to the contribution of the

nonzero mean values inC.
In order to assess whether the iterations improve the s

rability between distributions of the genes within (gPG1)
and outside (gP” G1) the module, we introduce the rescale
variances
a-

vG
(n)[

VG
(n)

~mG
(n)!2

and ṽG
(n)[

ṼG
(n)

~mG
(n)!2

. ~22!

Note thatvG
(n) andṽG

(n) are dimensionless and invariant und
the normalization of the gene vectors.vG

(n)!1 implies that
the distribution of the genes associated with the module
well separated from the distribution of the genes that do
2-7
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belong to the module. Using Eqs.~20! and~21! we obtain the
following recursive equations:

ṽG
(n)5

DNGvC
~NG

(m)!2
ṽG

(n21)1
vC

NG
(m) ~vG

(n21)11!, ~23!

vG
(n)5 ṽG

(n)1
vG

(n21)

NG
(m)

, ~24!

wherevC[VC /mC
2 is the ~fixed! noise-to-signal ratio of the

expression matrix.
If NG

(m)@1 the second term in Eq.~24! is negligible and

we can ignore the small difference betweenvG
(n) and ṽG

(n) .

Then, settingṽG
(n)5vG

(n) in Eq. ~23! leads to the approximat
recursive equation

vG
(n)5

NGvC
~NG

(m)!2
vG

(n21)1
vC

NG
(m)

. ~25!

This equation converges to

vG
(* )[S NG

(m)

vC
2

NG

NG
(m)D 21

, ~26!

provided that

vC,vC
crit[

~NG
(m)!2

NG
. ~27!

For further reference we state this result also for thesignal-
to-noise ratio

rG
(n)[

mG
(n)

AVG
(n)

5~vG
(n)!21/2. ~28!

The corresponding fixed-point value equals

rG
(* )5$NG

(m)@rC
22~rC

crit !2#%1/2, ~29!

if

rC[
mC
AsC

.rC
crit[

ANG

NG
(m) , ~30!

and is zero otherwise.
The interpretation of the critical valuevC

crit for the noise
in the expression data is straightforward: Only sets of ge
that are sufficiently large and whose coregulation is recor
in the expression matrix with relatively low noise~i.e., vC
,vC

crit) can be captured by the iterative procedure with
threshold in Eq.~17!. Actually Eq. ~30! is only a necessary
condition for the identification of a module, since for a re
able separation of the distributions of the gene scores a
ciated with the module, we needrG

(* )@0. As we mentioned
before, the number of genes associated with cellular fu
tions is expected to be rather limited,NG

(m)!NG . Therefore
we conclude that Eq.~30! presents a serious limitation fo
03190
s
d

t

o-

c-

the extraction of biologically relevant modules through t
analysis of the eigenvectors ofC ~as in SVD!.

B. Noise reduction by the threshold function

As discussed in the preceding section the noise in
expression data may obstruct the identification of a TM
fundamental aspect of the threshold functions in the ISA is
reduce the effect of such noise by excluding the bulk of
genes and conditions that do not contribute information
rather increase the level of background noise.

To illustrate this point, let us repeat the study of noi
propagation presented above for the simplified iterat
scheme like in Eq.~17!, but with the linear map followed by
a threshold function:

g(n)5 f t~C•ĝ(n21)!, ~31!

where f t is defined in Eq.~9! and we use a linear weigh
function w(x)5x. Let us assume that the gene scores
distributed according to normal distributionsN(x;m,s),
wherem ands refer to the mean and the standard deviat
of the random variablex. As a result of the threshold func
tion only

ÑG
(m)5NG

(m)E
t

`

N~r;rG
(n21) ,1!dr ~32!

genes from the module contribute constructively to the m
in Eq. ~20!. Similarly, only ÑG

(m) genes from the module an

DÑG5DNGE
t

`

N~r;0,1!dr ~33!

genes outside the module contribute to the variance ofgg
(n) in

Eq. ~21!. ÑG
(m) is the expected number of genes in the mo

ule, whose score has not been set to zero by the thres
function. Similarly, DÑG is the expected number of gene
that do not belong to the module, but have a nonzero sc
The crucial point is that, because of the different mean v
ues of the two distributions, the threshold function exclud
more genes that do not belong to the module than genes
do belong to the module. For example, ifrG

(0)53 for the
initial ~normal! distribution, then a thresholdt52 would re-
move almost 98% of the genes outside the module (DÑG
.0.0233DNG), but less than 16% of the genes associa
with the module (ÑG

(m).0.8413NG
(m)). We note that the pre-

cise shape of the distribution function is in fact not cruci
since our derivation relies only on the additivity of the me
values and variances, and Eq.~19!.

It follows that the mean values and variances of the co
ponents of the vectorg(n) are given by the same expressio
as in Eqs.~20! and~21!, respectively, except that we have
replaceNG

(m) by ÑG
(m) and DNG by DÑG . Substituting the

effective numbersÑG
(m) andDÑG into Eqs.~20! and~21! the

argument leading to the expression for the fixed-point sign
to-noise ratio in Eq.~29! is essentially unchanged, and w
have
2-8
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FIG. 2. Finding the fixed point value of the signal-to-noise ratio.~a! The fixed point value of the signal-to-noise ratiorG
(* )(t) is found by

solving Eq.~34! ~cf. Sec. V!. We plot its right-hand side RHS (rG ,t)[@ÑG
(m)rC

22(ÑG
(m)1DÑG)/ÑG

(m)#1/2 as a function ofrG for several
values of the thresholdt as indicated in the legend~settingNG56000, NG

(m)560, rC51). RHS (rG ,t) depends onrG and t through the

effective numbersÑG
(m)(t,rG) andDÑG(t) @defined in Eqs.~32! and~33!# that denote the expected number of genes inside and outsid

module that passed the threshold. Each curve increases monotonically from zero to its maximal valuerG
max(t). For rG@t, the effective

number ÑG
(m) approachesNG

(m) . In this limit rG
max(t) depends ont only through DÑg , which goes to zero fort@1. Thus rG

max(t)
→ANG

(m)rC
221 asymptotically. According to Eq.~34! the fixed-point solutions for the signal-to-noise ratiorG

(* )(t) are given byrG

5RHS(rG ,t) and therefore correspond to the intersections~indicated by the big dots! of these curves with the diagonal~shown as a dashed
line!. ~b! The solutions in~a! are plotted as a function of the thresholdt. For a relatively small threshold (t&2) rG

(* )(rG ,t) increases rapidly
as a function oft, saturates torG

max for t*2, and suddenly falls off to zero at a certain thresholdt trans('6). This behavior can be understoo
from ~a!: For a low threshold the intersection of curves for RHS(rG ,t) with the diagonal appears at small values ofrG . For largert the
intersections occur in the saturated regime of RHS(rG ,t), such thatrG.rG

max(t). However, ift is too large the curves do not intersect wi

the diagonal and there is no solution.~c! ÑG
(m)(t)/NG

(m) ~dark gray! as well asDÑG(t)/DNG ~light gray! and %(t)[ÑG
(m)(t)/@ÑG

(m)(t)

1DÑG(t)# ~black! are shown as functions oft. %(t).1 for 3&t,6, indicating the optimal regime for the threshold.
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rG
(* )5$ÑG

(m)@rC
22~ r̃C

crit !2#%1/2, ~34!

with

r̃C
crit[

AÑG
(m)1DÑG

ÑG
(m)

. ~35!

Note that unlike Eq.~29!, the right-hand side of Eq.~34! still
depends onrG

(* ) throughÑG
(m) . Therefore Eq.~34! is an in-

tegral equation forrG
(* ) which can be solved numerically. A

graphical solution of this equation is provided in Fig. 2 f
different thresholds and a specific choice of the parame
NG , NG

(m) , andvC ~see caption for details!.
As can be seen in Fig. 3~a!, applying a threshold function

improves significantly the identification of the module. W
show the fixed point value of the signal-to-noise ratio,rG

(* ) ,
as a function of both the thresholdt and the~fixed! signal-
to-noise ratiorC of the expression data. In the absence o
threshold functionrG

(n) converges to zero ifrC is below some
critical valuerC

crit . Applying a threshold,rG
(n) converges to a

finite value, even ifrC,rC
crit ~but rC. r̃C

crit), indicating the
03190
rs

a

identification of the module. Moreover, one can see fro
Fig. 3~a! that there is an optimal regime for the thresholdt,
where rG

(* )(t,rC) is ~nearly! maximal. Within this regime
rG

(* )(t,rC) depends only weakly ont, so the convergence i
robust with respect to the exact choice of the threshold. T
size of this regime increases withrC .

In order to quantify the relative increase of the fixed po
value of the signal-to-noise ratiorG

(* )(t,rC) due to the appli-
cation of the threshold function we define the ratio

r ~ t,rC![
rG

(* )~ t,rC!2rG
(* )~rC!

rG
(* )~ t,rC!

, ~36!

where rG
(* )(rC) refers to the value to which the signal-to

noise ratio converges when no threshold is applied.
rG

(* )(t,rC)50 we setr (t,rC) to zero. We showr (t,rC) as a
function of t andrC in Fig. 3~b!. The figure shows that ther
exists a large region in the parameter space oft and rC
,rC

crit , where the iterations only converge to a positi
value due to the threshold. Moreover, even forrC.rC

crit ,
where the iterative schemes converges to a positive v
also without a threshold, there exists a large region, wh
2-9
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FIG. 3. Properties of the fixed point value of the signal-to-noise ratio.~a! The fixed point value of the signal-to-noise ratio,rG
(* )(t,rC),

characterizes the separability between the gene score distributions for the genes inside and outside the single module~cf. Sec. V for details!.
The plot showsrG

(* )(t,rC) as a function of both the thresholdt and the~fixed! signal-to-noise ratio in the expression matrixrC . For very
small thresholdsrG

(* )(t,rC) vanishes ifrC is below some critical valuerC
crit'1.3. However, increasing the threshold the iterations conve

to a finite fixed point,rG
(* )(t,rC).0, even ifrC,rC

crit ~but rC. r̃C
crit*0.5). There is an optimal regime for the thresholdt, whererG

(* )(t,rC)
is ~near to! maximal. Within this regimerG

(* )(t,rC) depends only weakly ont, so the convergence is robust with respect to the exact ch
of the threshold. The size of this regime increases withrC . ~b! The ratio r (t,rC)[(rG

(* )(t,rC)2rG
(* )@rC)#/rG

(* )(t,rC) characterizes the
improvement in the identification of transcription modules that is achieved by the application of the threshold function.@rG

(* )(rC) denotes the
fixed-point value of the signal-to-noise ratio in the absence of a threshold, andr (t,rC) is set to zero forrG

(* )(t,rC)50.# We showr (t,rC) as
function of t andrC . The regime, whererC,rC

crit is subdivided into a white region@r (t,rC)51#, where the iterative scheme only converg
to a positive value,rG

(* )(t,rC).0, due to the threshold and a black area@r (t,rC)50#, where the iterative schemes does not converge
positive value implying that the module cannot be identified in this regime. Note that also forrC.rC

crit , where the iterative schem
converges to a positive value even without a threshold, there exists a large region in the parameter space oft andrC @the light gray area for
r (t,rC)], whererG

(* )(t,rC) is significantly larger thanrG
(* )(t).
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rG
(* )(t,rC) is significantly larger thanrG

(* )(t). Thus we con-
clude that the threshold function improves significantly~and
in certain cases makes at all possible! the convergence of a
noisy input set to a gene vector that specifies the TM.

We have also performed numerical simulations of the
erative scheme in Eq.~31!. To this end we employedin silico
expression data that were generated according to Eq.~18!
and superimposed with a certain level of noise. The ini
gene sets were composed such that only the distributio
the genes scores associated with the module had a non
mean value, while the distribution of the remaining gen
was centered around zero. The simulation allowed us to t
the evolution of the two distributions under the iteration
The results indicate a good agreement between the nume
and the analytical results. Details of this analysis are p
sented in Fig. 4. In particular, in Fig. 4~d! we show an ex-
ample where only the application of a proper threshold le
to a separation between the two distributions.

VI. BEYOND THE SINGLE MODULE

In order to study the ISA in a more realistic scenario,
have performed further numerical simulations based onin
silico expression data encoding several, possibly overlapp
transcription modules. These data were generated accor
to the following simple model. Each moduleMm is governed
by a single~virtual! transcription factor whose activity i
described by a pair of vectors$gm ,cm%. The nonzero compo
nentsgm

(g) of the gene vectorgm specify the genes that ar
03190
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g
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transcribed if the transcription factorm is active, while the
nonzero componentscm

(c) of the condition vectorcm specify
the conditions that activate this transcription factor. Then
NM modules the log expression of geneg at conditionc is
defined asEcg5(m51

NM gm
(g)cm

(c) . The final expression matrix
is obtained by adding noise to these matrix elements.

A. Expression data corresponding to two modules

As initial example we considerin silico expression data
based on two transcription factors. We defined the com
nentscm

(c) andgm
(g) for m51,2 such that there are two ove

lapping transcription modulesM1 and M2 ~see Fig. 5 for
details!. We applied the ISA to a collection of input se
composed of randomly chosen genes. We found that
structure of the resulting fixed points depends strongly on
thresholdtG . Figure 5~b! shows the corresponding outpu
sets for a discrete choice of thresholds. For a very l
threshold (t.22) the output sets contain essentially all t
genes. Applying a somewhat higher threshold (t.21)
yields output sets containing all the genes that are assoc
with either of the two modules. For a moderate thresh
(t.0) there are two types of output sets, comprising eit
the genes ofM1 or M2. For a high threshold (t.1) all the
output sets contain only those genes that belong to both m
ules. Finally, for a very high threshold (t.2) the output sets
are empty. For intermediate values of the threshold value
observes relatively sharp transitions between these w
defined fixed points@Fig. 5~c!#. At these transitions the cor
2-10
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FIG. 4. Evolution of the score distributions under the ISA.~a! The distributions of the gene scores of 100 input sets which serve as s
for the iterations of our algorithm: The distribution of the genes that are not part of the TM~light gray! has a vanishing mean value. Th
genes belonging to the module~black! are distributed with a positive mean value. Note that the two initial distributions cannot be d
guished from each other accurately.~b!, ~c! Evolution of the two distributions under the iterative scheme defined by Eq.~17!. ~b! Without
applying a threshold, the mean of the signal distribution decreases in each iteration and the separability of the two distributions
improve.~c! When a threshold (t51) is applied the mean of the signal distribution increases in each step until it saturates at a value
the two distributions are well separated.~d! The signal-to-noise ratiorG

(n) characterizes the separability between the gene score distribu
for the genes within and outside the module~cf. Sec. V for details!. We plotrG

(n) as a function of the number of iterationsn. The evolution
of rG

(n) under the iteration schemes with~squares! and without~circles! a threshold obtained from the numerical simulation~gray! are in good
agreement with the theoretical predictions~black! according to Eq.~25!. We usedNG51700, NG

(m)540, andrC51 for this figure.
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respondence between the output sets and the modular s
ture of the data is less precise.

We have also varied the condition thresholdtC . Interest-
ingly, for not too large a threshold (tC&2) the resulting gene
output sets are almost independent of the choice oftC . How-
ever, the condition output sets depend critically on the va
of tC and exhibit a similar behavior as the gene output set
terms of structure~not shown!. This is not surprising, since
the ISA is symmetric with respect to genes and conditio
We conclude that scanning over different values oftG andtC
reveals the modular structure of the expression data, sta
from the ‘‘supermodule’’ M1øM1, over its overlapping
componentsM1 andM2, to the ‘‘submodule’’M1ùM1.

B. Expression data corresponding to many modules

The above example shows that the ISA can identify ov
lapping modules. However, forNM52 there exist only 22

54 possible transcriptional states, so the 100 condition
the expression data are highly redundant. For real data
situation is reverse: The number of experimental conditi
is much smaller than the possible number of transcriptio
states. In order to study how the ISA deals with such a s
nario, we considered a set of more realistic models base
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many transcription modules. We investigated to what exte
the ISA, as well as hierarchical clustering and SVD, we
able to reconstruct these modules from the respectivein
silico expression data.

In the first numerical experiment we studied how the d
ferent algorithms handle noisy data. To this end we genera
expression matrices corresponding to 1050 genes and 1
experimental conditions that belong to 25 modules of diff
ent sizes, each associated with a transcription factor. In o
to focus on the effect of noise we considered only nonov
lapping modules that do not share any genes or conditio
Onto the binary expression data we superimposed noise f
a random distribution. We varied the widths of this distri-
bution, simulating different levels of noise.

In order to quantify how well the modules were identifie
by the different methods we proceeded as follows: For S
we collected the 25 eigenvectors of the gene gene correla
matrix that were associated with the largest eigenvalues.
each of the 25 modules we selected the eigenvector that
the largest overlap with the gene vector characterizing
module, and in Fig. 6 we show the average Pearson co
cient between these two vectors~triangles!. For hierarchical
clustering we used theMATLAB implementation for average
2-11
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FIG. 5. Identification of overlapping modules. Anin silico expression matrix describing 500 genes under 100 experimental cond
was generated according to the model introduced in the text. The data correspond to two overlapping transcription modulesM1 andM2, each
containing 250 genes and 50 conditions.~a! The expression matrix is shown for comparison on the left of each row.~b!, ~c! Using this matrix
we applied the ISA to 1000 input sets composed of randomly chosen genes. Iterations were performed using different choic
thresholdtG . ~b! The boxes in each row represent ten of the resulting converged gene sets that were obtained fortG as indicated on the left.
Each boxi 51, . . . ,10 is composed of 500 lines that specify the genes that appear in the corresponding fixed point. Genes that belo
converged set are represented by a dark gray line, while the remaining genes are shown in light gray. FortG.22 the output sets contain a
the genes,tG.21 yields output sets containing the genes that are associated with either of the two modules, fortG.0 there are two types
of output sets, comprising either the genes ofM1 or of M2, for tG.1 all the output sets contain only those genes that belong to both mod
and for tG.2 the output sets are essentially empty.~c! The number of sets that converged~within 95% accuracy! to M1øM1 ~solid line!,
M1 ~dotted line!, M2 ~dashed line!, or M1ùM1 ~dash-dotted line! are plotted as functions oftG . Scanning over different thresholds revea
the modular structure of the expression data (M1øM1→M1 ,M2→M1ùM1).
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linkage to compute the complete hierarchical cluster tr
Using this cluster tree we partitioned the expression ma
using different cutoffs such that the resultant partitions c
tained at least 15 and at most 40 clusters. From all th
partitions we selected the one whose clusters had the hig
average overlap with the gene content of the modules. T
overlap is shown in Fig. 6~squares!. Finally, for the ISA we
reconstructed the modules from the fixed points that
curred repeatedly. Namely, in order to avoid artifacts due
distinct, but very similar, fixed points, we ‘‘fused’’ these s
lutions using a procedure that resembles agglomerative c
tering, albeit for modules rather than genes~see Ref.@25# for
details!. The fraction of correctly identified genes per modu
~circles! as well as the fraction of correctly identified mo
ules~asterisks! is shown in Fig. 6. We conclude that for nois
data the identification capability of the ISA is superior to th
of SVD and clustering. In particular, SVD is very sensitive
the addition of noise and fails to identify the modules ac
rately, even for a small level of noise. Clustering can han
a moderate amount of noise, but not as much as the ISA
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A second numerical experiment was designed to st
quantitatively the ability to identify overlapping module
We specify the regulatory complexity by the the number
transcription factors per genenTF . Only if each gene~and
condition! is associated with exactly one transcription fac
(nTF51) the expression matrix can be written in bloc
diagonal form. For larger values ofnTF distinct modules
share common genes and conditions and the expression
trix cannot be reorganized into in block-diagonal shape.
applied the SVD, hierarchical clustering, and the ISA to t
expression matrices generated fornTF51, . . . ,6 andevalu-
ated the outputs in the same manner as described above~see
Ref. @25# for related results!. The results are shown in Fig. 7
One can see that the ISA could successfully identify all
transcription modules even in the case of highly overlapp
modules. In contrast, fornTF.1 the identification capabili-
ties of SVD and clustering rapidly decrease. This is beca
the clustering algorithm does not allow for multiple assig
ments of one gene to different modules and therefore usu
captures only small, incomplete fractions of the overlapp
2-12
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modules. Similarly, if the expression matrix cannot be re
ganized into block-diagonal shape due to the overlap
tween the modules, the eigenvectors identified by SVD
to characterize the modules properly.

VII. APPLYING THE ISA TO YEAST EXPRESSION DATA

The analytical and numerical studies presented above
dicate that the ISA is well suited for the analysis of expr
sion data. In this section we give a brief presentation of
biological insight that can be obtained from applying o
method to real data. We analyzed a diverse set of more
1000 DNA-chip experiments that were obtained by differe
groups@6#. The yeastSaccharomyces cerevisiaeis an ideal
model organism to test our algorithm, due to the wealth
expression data and the large amount of additional biolog
knowledge that exists for this organism.

We have applied the ISA to the yeast expression d
using different values for the gene thresholdtG
51.8,1.9, . . . ,4.0, while the condition threshold was fixed
tC52.0. ~As we pointed out previously, the gene content
the modules depends only weakly on the exact choice
tC .) For each value oftG we employed;20 000 randomly
composed initial gene sets of various sizes in the search
fixed points. The modules were reconstructed from the re
rent fixed points using a similar algorithm as for thein silico
expression data. Indeed, such a processing of the ‘‘ra
fixed points is needed to avoid many similar modules t

FIG. 6. Module identification from noisy expression data.In
silico expression matrices for 1050 genes under 1000 conditi
corresponding to 25 nonoverlapping transcription modules of
ferent sizes, were generated according to the model described i
text. Noise from a uniform distribution was superimposed o
these expression data. The widths of this noise distribution was
varied, simulating different levels of noise. We quantified the e
ciency of different algorithms to retrieve the modules from the
pression data as described in the text. We show the fractio
correctly identified genes for the ISA~circles!, hierarchical cluster-
ing ~squares!, and SVD~triangles!. For the ISA also the fraction o
correctly identified modules is indicated~asterisks!. SVD is very
sensitive to the addition of noise and fails to identify the modu
accurately, even for a small level of noise. Clustering can hand
moderate amount of noise, but not as much as the ISA.
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biologically correspond to the same coregulated unit.
The number of modules increases withtG , ranging be-

tween five at the lowest level (tG51.8) to;100 at the high-
est resolution (tG54). In contrast, the typical module siz
declines rapidly as a function oftG . The stepwise increasing
of tG exposed many chains of closely related modules t
persist for finite rangestGP@ tG

bottom,tG
top#. IncreasingtG , the

number of genes assigned to each element of the chain
creases until the size of the module declines sharply atG

5tG
top and either disappears completely or splits into two

more submodules. Likewise decreasingtG beyondtG
bottomde-

stabilizes the fixed point, since many unrelated genes
added to the module that pull the module towards a differ
fixed point. In this case the module may either ‘‘merge’’ wi
another module or flow into a completely different fixe
point.

The five stable fixed points identified fortG51.8 corre-
spond to the central functions of the yeast organism: pro
synthesis, cell cycle~G1!, mating, amino-acid biosynthesis

s,
f-
the

-
-
of

s
a

FIG. 7. Module identification in the presence of combinator
regulation.In silico expression matrices corresponding to 25 ov
lapping modules were generated according to a model that all
for combinatorial regulation~see text for details!. The degree of
overlap between the modules is specified by the average numb
transcription factors involved in the regulation of each gene (nTF).
Only for nTF51 each gene is associated with exactly one transc
tion factor. For larger values ofnTF distinct modules share commo
genes. We applied the SVD, hierarchical clustering~see Ref.@25#
for related results!, and the ISA to the expression matrices gen
ated fornTF51, . . . ,6 andevaluated the outputs as described in t
text. The ISA could successfully identify all the transcription mo
ules even in the case of highly overlapping modules~asterisks!. The
fraction of correctly identified genes per module only decrea
slightly as a function ofnTF ~circles!. In contrast, fornTF.1 the
identification capabilities of clustering~squares and crosses! and
SVD ~triangles! rapidly decrease. This is because the cluster
algorithm does not allow for multiple assignments of one gene
different modules and therefore usually captures only small, inco
plete fractions of the overlapping modules. Similarly, if the expr
sion matrix cannot be reorganized into block-diagonal shape du
the overlap between the modules, the eigenvectors identified
SVD fail to characterize the modules properly.
2-13



xpression
olds

orrelation
while the
ponds to
s of the
ales to

e fixed

BERGMANN, IHMELS, AND BARKAI PHYSICAL REVIEW E 67, 031902 ~2003!
FIG. 8. Modular organization of yeast expression data. The iterative signature algorithm was applied to genome wide yeast e
data gathered by more than 1000 DNA-chip experiments.~a! The figure shows the identified modules at three different gene thresh
tG5$1.8,2.1,2.4%. For each threshold the corresponding modules are displayed in a plane, such that their distance reflects their c
with respect to conditions. Moving to a higher threshold, corresponding modules are kept in the same position in each plane,
‘‘new’’ modules are placed such that their position reflects best their correlation with the other modules. The leftmost plane corres
the lowest threshold (tG51.8), where only five fixed points exist. The corresponding modules can be associated with central function
yeast organism: protein synthesis, cell cycle~G1!, mating, amino-acid biosynthesis, and stress response. We use different gray sc
indicate which of the fixed points that emerge at higher thresholds are related to these five central modules~i.e., they would converge to the
respective module at the lowest threshold!. ~b! The pie charts show the number of random input sets that converged to the respectiv
point. The gray scales are as in~a!.
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and stress response. Each module contains between 10
300 genes. Protein synthesis and stress are the most d
nant modules and comprise most of the experimental co
tions of the data set. In fact, these modules remain fi
points throughout the entire range of thresholds conside
here, and therefore can be considered the backbone o
transcriptional network.

A visualization of this network is presented in Fig. 8~a!.
For each threshold the corresponding modules are displa
in a plane, such that their distance reflects their correla
with respect to conditions. Moving to a higher thresho
nested sets of modules are kept in the same position in
plane, while the ‘‘new’’ modules are placed such that th
position reflects best their correlation with the other modu
This organization of the chains of nested modules is so
what similar to the data presentation by hierarchical tr
commonly produced by cluster algorithms. However, in o
case, chains of modules may extend over a finite range otG
and distinct chains can contain common genes. Additio
information, such as the number of input seeds that c
verged to the same fixed point@shown as pie charts in Fig
8~b!#, provides further inside into the transcriptional ne
work.

In a previous analysis of the same data@25# we applied
the map in Eqs.~10! and ~11! to a variety of biologically
motivated input sets$gi

(0)% assembled according to prio
knowledge of the regulatory sequence or function of
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genes, and reconstructed the modules from recurrent rea
tions of the output sets defined byg(1) andc(1). Remarkably,
the ISA ~which requires no information beyond the expre
sion data whatsoever! revealed essentially all the coregulate
units that we found in this analysis, as well as several n
transcription modules that had not been identified previou
Moreover, the ISA provides additional insight into the mod
lar organization through the evolution of the modules ov
different threshold values. Studying the functional anno
tions of the genes assigned to the modules, we observ
strong coherence for the genes that have been annotat
most of these modules. This suggests that the ISA provid
biologically meaningful decomposition into coregulate
units. A comprehensive discussion of the biological implic
tions of this analysis is beyond the scope of this work a
will be pursued elsewhere@30#.

VIII. CONCLUSIONS

We have presented a method for the analysis of gene
pression data. The innovation of our approach is twofold.
the conceptual level we provide a rigorous definition of wh
we want to extract from the expression data by introduc
the notion of a TM. Our definition in Eq.~6! assigns to a TM
both a set of coregulated genes and the set of experime
conditions under which this coregulation is the most str
gent. The size of a TM depends critically on the associa
2-14
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set of two thresholds that determine the similarity betwe
the genes and conditions of the module, respectively.
genes and conditions of a TM are mutually consistent imp
ing that the latter can be obtained from the former and v
versa. The notion of a TM is well motivated biologicall
Ideally the genes and conditions can be associated wi
transcription factor or a~fraction of! a pathway. Importantly,
distinct modules may share both common genes and co
tions.

On the computational level our definition of a TM pro
vides the basis for a simple but efficient algorithm to obt
the modules encoded in the expression data. Starting fro
set of randomly selected genes~or conditions! one refines
iteratively the genes and conditions until they are mutua
consistent and match the definition of a TM. The importa
point is that at each step of the iterations we apply a thre
old function, thus maintaining only significantly coregulat
genes and the associated coregulating conditions. The th
old stabilizes compact sets of coregulated genes and prev
the introduction of noise from unrelated genes and con
tions. Using a sufficiently large number of initial random se
it is possible to determine all the fixed points of the iterat
scheme for a given pair of thresholds. Scanning throug
range of values for these thresholds decomposes the data
modules at different resolutions. Since the computation t
for each iteration of our algorithm scales only linearly wi
the total number of genes it is particularly well suited for t
analysis of large-scale expression data.

Considering a simplified scenario of a single transcript
module embedded in a noisy background of unrelated ge
we showed analytically that the application of a thresh
improves the convergence properties of the iterative sche
Specifically, we considered the gene vector that underg
iterations as a stochastic entity and studied the evolution
its distribution under the iterations for a given threshold. T
allowed us to quantify how the successful identification
the module depends on the size of the module and the n
in the expression data.

Our analytical insights were confirmed numerically usi
computer-generated expression data. More complex g
regulation was also simulatedin silico. Considering a mode
with two overlapping transcription modules, we showed t
applying the ISA using a range of threshold values reve
the structure of the expression data at different resolutio
Depending on the value of the threshold our algorithm c
reveal each of the two modules, as well as their union
intersection. Using large computer-generated expression
trices we studied the capability of the ISA to reveal a lar
number of overlapping transcription modules from noisy e
pression data. We find that our method is significantly m
efficient at this task than standard tools, such as SVD
clustering.

The threshold functions as a resolution parameter in
analysis of real expression data. Using genome-wide exp
sion data gathered in more than 1000 experimental co
tions, we decomposed the yeast genome into sets of t
scription modules at different resolutions. The modu
decomposition reveals a hierarchical structure of the reg
tory network. At the lowest resolution we identified five tra
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scription modules that correspond to the central functions
the yeast organism. Increasing the threshold the numbe
modules increases while their size decreases. The functi
coherence of these modules indicates both the reliability
our approach and the strong correlation between cofunc
and coregulation at the transcriptional level in yeast. A co
prehensive discussion of the biological implications of th
analysis will be presented elsewhere@30#.

Finally we note that our formalism can be applied to an
lyze any data set that consists of multicomponent meas
ments. While we presented our method in the context of g
expression data, it is clear that our approach is well suite
reveal the modular organization encoded in any data ma
Applications of the ISA could include the analysis of biolog
cal data on protein-protein interactions or cell growth assa
as well as other large-scale data, where a meaningful re
tion of complexity is needed.
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APPENDIX

1. Singular value decomposition

This appendix reviews SVD, which is a common tool f
the analysis of expression data. We use notations that m
the similarities with the ISA the most apparent. SVD is us
to reduce the dimensionality of the data by projecting th
onto a subspace in such a way that as little information is
as possible. To this end, consider the following matrix:

Em5cm•gm
T , ~A1!

whose elementsEm
cg5gm

(g) cm
(c) are simply the products of the

components of a given gene vectorgm and condition vectors
cm . For two binary vectorsgm andcm ~whose elements are
either 0 or 1! Em

cg is unity if the modulem contains the gene
g and the conditionc ~i.e., the relevant vector componen
are gm

(g)51 andcm
(c)51). For real vectorsgmPRNG and cm

PRNC it is useful to rewrite the matrix in Eq.~A1! as

Em5mmĉm•ĝm
T , ~A2!

in terms of the normalized vectorsĝm5gm /ugmu and ĉm
5cm /ucmu. This normalization removes the ambiguity in th
choice ofgm and cm due to the invariance ofEm under the
transformationgm→fgm andcm→cm /f, wherefÞ0 is an
arbitrary real number. The prefactormm5ugmuucmu is just the
product of the lengths ofgm and cm . Then each module is
associated with a triple (mm ,ĝm ,ĉm) of a real number and
two normalized vectors. Comparing the magnitude of a
2-15
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two matrix elementsEm
cg and Em

g8c8 reveals the relative im-
portance between the gene condition pairs (g,c) and (g8,c8)
for modulem.

Multiplying Em with an arbitrary gene vectorg gives

Em•g5a• ĉm with a5mmĝm
T
•g, ~A3!

while multiplication of Em
T 5mmĝm• ĉm

T with any condition
vectorc gives

Em
T
•c5bĝm with b5mmĉm

T
•c. ~A4!

Thus Em and Em
T are projection operators onto the on

dimensional spaces spanned byĝm and ĉm , respectively.
Consequently, theses matrices have rank 1.

Now the basic idea of SVD is to reduce the complexity
the data by expressingE in terms of a relatively small num
ber NM(!NG ,NC) of such rank 1 matrices,

E5(
m

NM

Em1RNM
. ~A5!

Here R denotes the residual term whose Euclidean no
uRu5A(g,c(R

cg)2 has to be minimized in order to optimiz
the decomposition into modules in the above equation.

It is instructive to consider first the minimization for th
caseNM51. We have

uRu25(
g,c

~Ecg2Em
cg!25(

g,c
~Ecg2mmĉm

(c)ĝm
(g)!2 ~A6!

5(
g,c

~Ecg!222mmEcgĉm
(c)ĝm

(g)1mm
2 ~ ĉm

(c)ĝm
(g)!2. ~A7!

Setting the derivative ofuRu2 with respect to the componen
ĉm

(c) ,

]uRu2

ĉm
(c)

5(
g

22mmEcggm
(g)12mm

2 ~ ĝm
(g)!2ĉm

(c) , ~A8!

to zero we find thatmmĉm
(c)5(gEcggm

(g)/(g(gm
(g))2 or, recall-

ing the normalization ofĝm and switching to vector notation

mmĉm5E•ĝm . ~A9!

Similarly, equating]uRu2/ĝm
(g) to zero it follows that

mmĝm5ET
• ĉm . ~A10!

This remarkable result implies thatEm can be determined
simply by solving simultaneously the linear equations in E
~A9! and ~A10!. The latter is equivalent to a SVD of th
matrix E,

GT
•E•C5M, ~A11!

where G5(ĝ1 ,ĝ2 , . . . ,ĝr) and C5( ĉ1 ,ĉ2 , . . . ,ĉr) are or-
thogonal matrices.M is a diagonal matrix of the same d
03190
f

.

mensions asE whose nonzero elements are given bymm and
ordered such thatm1

2>m2
2>•••>m r

2 . r<min(NG ,NC) is the
rank of the expression matrixE. Combining Eqs.~A9! and
~A10!, one finds

ET
•E•ĝm5m2ĝm , ~A12!

E•ET
• ĉm5m2ĉm , ~A13!

implying that G is composed of the eigenvectorsĝm of
ET

•E and C consist of the eigenvectorsĉm of E•ET. One
way to solve the above equations is to start with some ini
gene vectorĝ(0), obtain the corresponding condition vect
via ĉ(1)5E•ĝ(0)/uE•ĝ(0)u according to Eq.~A9!, and use the
result to computeĝ(1)5ET

• ĉ(1)/uET
• ĉ(1)u using Eq.~A10!.

Iterating this alternating procedure as in Eqs.~13! and ~14!

converges to the pair (ĝ1 ,ĉ1) associated with largest eigen
value m1

25uE•ĝ1u2 provided that the initial vectorĝ(0) was

not orthogonal toĝ1. Thus the predominant module emerg
as the ‘‘fixed point’’ of the above coupled equations.

From Eq. ~A6! it follows that uRu25(g,c(E
cg)22mm

2 .
Hence forNM51 the norm of the residual term,uRu2, is
minimized exactly by the triple (m1 ,ĝ1 ,ĉ1). It is straightfor-
ward to extend this approach to the expansion of the exp
sion matrix in terms of several modules as in Eq.~A5!. To
this end one first computesE15m1ĉ1•ĝ1

T as described above
and applies the same scheme to the residual termR15E
2E1. This yieldsE25m2ĉ2•ĝ2

T associated with the secon
largest eigenvaluem2. Repeating this proceduresequentially
yields eventually the complete SVD of the matrixE. How-
ever, for practical purposes it is usually sufficient to comp
only a limited numbers of triples (mm ,ĝm ,ĉm) with m
51, . . . ,NM until the norm of the residual termuRNM

u2

5(g,c(E
cg)22(m51

NM mm
2 is below a certain threshold. Thus

approximating the expression matrix in terms of a relativ
small number of modules,NM!r reduces the complexity o
the data.

There are two interpretations for the expansion in E
~A5! that depend on the way the expression data are view
If we consider the data as a collection of gene vectorsgc as
in Eq. ~1!, then Eq.~A5! translates into an expansion of the
vectors in terms of a collection of gene vectors, i.e.,

gc5 (
m51

NM

mmĉm
(c)ĝm1gc

R ~c51, . . . ,NC!, ~A14!

where$ĝm% is the basis~one for all gc), and the expansion
coefficients are given bymmĉm

(c) ~one for each gc). More-

over, for eachgc there is a residual gene vectorgc
R that de-

termines how wellgc is approximated by the sum. Con
versely, if we consider the data as a collection of condit
vectorscg as in Eq.~2!, then the expansion in Eq.~A5! can
be read as
2-16
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cg5 (
m51

NM

mmĝm
(g)ĉm1cg

R ~g51, . . . ,NG!, ~A15!

wherecg
R denotes the residual condition vector. In this ca

the condition vectors of the modules,$ĉm%, provide the basis
of expansion, while the expansion coefficients for eachcg are
given bymmĝm

(g) .
So far we have left the normalization ofE unspecified. In

fact the choice of normalization follows from the interpret
tion of the data, if, instead of a minimal residual term in E
~A6!, one demands maximal variance among theprincipal
components~the projections of the data rows or colum
onto the eigenvectors associated with the largest eigen
ues!. For example, if the expression data are viewed a
collection of gene vectors, one would like to find the vec
ĝ1 that maximizes the variance of the principal compone
c1

(c)5gc
T
•ĝ1, i.e.,

V1
g5

1

NC
(
c51

NC

~c1
(c)2^c1

(c)&c!
25

1

NC
ĝ1

T
•Sg•ĝ1 . ~A16!

Here the bilinear term has been written in terms of the sca
matrix

Sg[(
c51

NC

~gc2^gc&c!•~gc2^gc&c!
T. ~A17!

Maximizing V1
g under the constraint thatĝ1

T
•ĝ151 is equiva-

lent to finding the eigenvector ofSg associated with the larg
est eigenvalue. For normalized data,Sg coincides with the
gene gene correlation matrix

Cg5EC
T
•EC with C g

gg85 ĉg
T
• ĉg8 . ~A18!

Conversely, if the expression data are viewed as a collec
of condition vectors, the vectorĉ1 that maximizes the vari-
ance of the componentsg1

(g)5cg
T
• ĉ1, is the eigenvector asso

ciated with the largest eigenvalue of the scatter matrix

Sc[ (
g51

NG

~cg2^cg&g!~cg2^cg&g!T. ~A19!

For normalized data,Sc equals the condition condition cor
relation matrix

Cc5EG•EG
T with C c

cc85ĝc
T
•ĝc8 . ~A20!

Note, however, that sinceEGÞEC , the matricesEC•EC
T and

EG
T
•EG are different fromCc andCg , and do not represen

correlation matrices.

2. The variance of a product of random variables

By definition, the mean of the product of twoindependent
random variablesa andb is the product of their mean value
i.e.,
03190
e

.

al-
a
r
s

er

n

^ab&5^a&^b&. ~A21!

Since the expression for the variance of the productab in
Eq. ~19! may be somewhat less obvious, we give its deriv
tion here. From the definition of the variance

V~a![Š~a2^a&!2
‹5^a2&2^a&2, ~A22!

we obtain

V~a!V~b!5~^a2&2^a&2!~^b2&2^b&2! ~A23!

5^a2&^b2&2^a&2^b2&2^a2&^b&21^a&2^b&2.
~A24!

Then using Eqs.~A21!–~A24! it follows that

V~ab!5^a2b2&2^ab&2 ~A25!

5^a2&^b2&2^a&2^b&2 ~A26!

5V~a!V~b!1^a&2^b2&1^a2&^b&222^a&2^b&2

~A27!

5V~a!V~b!1~^a2&2^a&2!^b&21~^b2&2^b&2!^a&2

~A28!

5V~a!V~b!1V~a!^b&21V~b!^a&2. ~A29!

3. Accurate treatment of the noise propagation

In order to simplify our presentation of the propagation
the noise under the iterative scheme in Eq.~17! we used the
approximate recursive equation in Eq.~25! to derive the
fixed point noise-to-signal ratio in Eq.~26!. Here we give an
accurate treatment that is valid even ifNG

(m)@1 is not satis-
fied.

First, note that if the iterative scheme converges, then
n→` we havevG

(n)5vG
(n21)5vG

(* ) and ṽG
(n)5 ṽG

(n21)5 ṽG
(* ) .

In this case we can write two fixed-point equations

ṽG
(* )S 12

DNGvC
~NG

(m)!2D 5
vC

NG
(m) ~vG

(* )11!, ~A30!

vG
(* )S 12

1

NG
(m)D 5 ṽG

(* ) . ~A31!

Solving Eqs.~A30! and ~A31! for vG
(* ) we get

vG
(* )5F S 12

1

NG
(m)D S NG

(m)

vC
2

DNG

NG
(m) D 21G21

.S NG
(m)

vC
2

NG

NG
(m)D 21

. ~A32!

Here, the approximation on the right-hand side neglects
1/NG

(m) term and yields exactly the same result as obtain
from the simplified iterative scheme in Eq.~25! that ignores
the difference betweenvG

(n) and ṽG
(n) .
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Interestingly, a necessary condition for convergence
be derived also without any approximation directly fro
Eqs. ~23! and ~24!. To this end note that Eq.~24! implies
trivially that vG

(n)> ṽG
(n) . Then it follows that

vG
(n)<

NGvC1NG
(m)

~NG
(m)!2

vG
(n21)1

vC
NG

(m)
. ~A33!
nc

n

io

-

a
tp

oc

.M

03190
nThus if

vC<vC
crit[

NG
(m)~NG

(m)21!

NG
~A34!

the noise-to-signal ratiovG
(n) converges to a finite value.
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