PHYSICAL REVIEW E 67, 031803 (2003
Entropy of chains placed on the square lattice
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We obtain the entropy of flexible linear chains composetlohonomers placed on the square lattice using
a transfer matrix approach. An excluded volume interaction is included by considering the chains to be
self-avoiding and mutually avoiding, and a fractipnof the sites is occupied by monomers. We solve the
problem exactly on stripes of increasing widthand then extrapolate our results to the two-dimensional limit
m— co using finite-size scaling. The extrapolated results for several finite valudsaoid in the polymer limit
M—o for the cases where all lattice sites are occupiger 1) and for the partially filled casp<1 are
compared with earlier results. These results are exact for dinMrs2) and full occupation g4=1) and
derived from series expansions, mean-field-like approximations, and transfer matrix calculations for some
other cases. For small values I, as well as for the polymer limiM —«, rather precise estimates of the
entropy are obtained.
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[. INTRODUCTION In this paper we obtain estimates for the entropy of flex-
ible M-mers placed on the square lattice, using transfer ma-
The term dimer was introduced in the 19309 as an trix techniques. This is done calculating numerically exact
abbreviation for diatomic molecules in a model for their ad-values for the entropy of the problem on strips with finite
sorption on crystal surfaces. Later dimer models were apwidths m and periodic boundary conditions, and then using
plied in the study of other physical systems such as ferrofinite-size scaling to extrapolate the results to the two-
electrics, and much is known about their thermodynamiadimensional limitm—c. We separate the problem in cases
properties[2]. One relevant question in these models is thewhereM is finite or infinite(polymer limit). Also, the case of
entropy associated with the placing of the dimers on a regufull coverage p=1) may be treated separately from the gen-
lar lattice. For the particular case of full covering of the eral case. In the general case, it is convenient to address the
square lattice by dimers, this question was answered exactjyroblem in an ensemble that is grand canonical with respect
some time ago, using a technique based on pfaffiar$].  to the number of monomers placed on the lattice, whereas for
However, even the generalization of this problem for thefull coverage it is easier to perform a microcanonical calcu-
case of partial covering of the square lattice is still an operation.
question today, no exact result being known. The expressions we used to calculate the entropy are
In this paper we address a generalization of the problenshown in Sec. Il. The model is discussed in more detail and
of the entropy of dimers, considering entropy related to covthe transfer matrices are described in Sec. Ill. Our results for
ering the square lattice with chains wikh monomers each the entropies as well as the extrapolation procedure and their
(we will call themM-mer9 as a function of the fractiop of ~ results, may be found in Sec. IV. The simple one-
sites of the lattice occupied by monomers. The chains will belimensional case is solved in Sec. V, and Sec. VI presents
considered flexible, so that there is no energy associated tbe final discussions and conclusions.
bend them. Since the only energy in the model is the infinite
excluded volume interaction, which forbids the presence of Il. DETERMINATION OF THE ENTROPY
more than one monomer on the same lattice site, the problem o ) )
is athermal. It may be a simple model for the adsorption of For the_ case of full coverage, it is convenient to obtain the
monodisperse flexible chains on the surface of a crystal. Be2ntropy directly from Boltzmann's expression
sides the exact solution of the problem fdr=2 andp=1 s 1
mentioned above, other cases were already considered in the s(p=1)= lim —— = lim —In Q, (1)
literature. Rather precise transfer matrix calculations were noNKe N
performed in the polymer limitM —oo for Hamiltonian
walks (p=1) [6]. There are also mean-field approximationswhere( are the number of ways to fill the lattice witk
[7], Bethe-Husimi lattice calculatior{8], and series expan- Sites completely wititM-mers. In the polymer limitV — o,
sions inq !, whereq is the number of first neighbors of We consider asingle Hamiltonian walk, that is, a self-
each site in the latticE9], and in those calculations approxi- avoiding walk(SAW) that visits all sites of the lattice.
mate values for the entropy are obtained for both the full In the general case where a fractiprof lattice sites is
(p=1) and partial p<1) coverage cases. occupied by monomers, we define the grand-canonical parti-
tion function
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wherez is the activity of a monomer anbd(M,N,p) is the
number of ways to place chains withM monomers each on

the lattice withN sites. For the polymer limit, again a single % i
SAW is placed on the lattice, and the partition function is - -k - - - - -=RL
defined as

Y D

E(z)=; Z'T(n,N), (3)

FIG. 1. Example of a state fan=4 vertical bonds. The refer-
whereI'(n,N) is the number of ways to place a SAW with ~ ence line indicates the set of vertical bonds whose configuration is
monomers on theN-site lattice. The density of monomers described.
may now be written as

tion prevents us from closing a ring at any level, since this
d configuration is not allowed in the model.
p(2)=2,¢(2), (4 As an example of these definitions, we consider the case
of pentamers M1=5) placed on a strip of widttm=4.
where the thermodynamic potential per lattice site is defined\mong the possible configurations of a set of vertical bonds,
as the one depicted in Fig. 1 is described by the vectols
=(0,1,1,0) andp)=(1,2,2,0). Elements of the line associ-
] . ated to this state of the transfer matfixare obtained con-
$(2)=lim GIn=(2). (3  sidering the possible continuations of the site,|p)} one
N step upwards, as shown in the two examples in Fig. 2. The
resulting state in Fig. (@) is described by the vectois)
=(0,0,0,0) andp)=(2,0,4,0), while the final state in Fig.
2(b) corresponds to the vector)=(0,0,0,0) and|p)

In the thermodynamic limit, a Legendre transformation al-
lows us to rewrite the potential as

#(z)~maxpInz+s(p)}, (6  =(2,0,0,0). Each monomer placed on a site between the two
o sets of vertical bonds contributes with an activityo the
partition function, so that the element of the transfer matrix,
and thus the entropy may be written as which corresponds to the first configuration, is equatip

while the second configuration is associated to an element
equal toz* in the transfer matrix. Only the second configu-
ration contributes in the case of full occupancy.

For the polymer caseM —oo, a single chain passes
with s(0)=0. through the whole strip, so that it is enough to describe the
connectivity at a particular set ah vertical bonds by indi-
cating the bond that is connected to the initial monomer of
the chain(in y— — =) and the pairs of bonds connected to

We proceed defining a strip of widtim on the square each other, exactly as was done in the original work of Der-
lattice in the &,y) plane, so that £x<m and —<<y  rida[10]. Thus, a single vectdu) is enough to describe the
<o, with periodic boundary conditions in both directions. A state in this limit.
transfer matrix may be built for this problem, inspired on the Once the transfer matriX'is obtained, the entropy of the
prescription due to DerridflQ] for infinite chains in strips. model on the strip in the thermodynamic limit is related to
We thus consider the operation of including an additionatthe largest eigenvalue of the matrix. For the case of full
step to the strip in the positive direction, addingm new  occupancy f=1), the number of configurations is given by
sites of the lattice. To properly take into account the statisti-
cal weight of the new step, we may define the state ofnthe Q=Tr(T""), (8
vertical bonds of the lattice, which are incident to the new

sites by specifying the following.
(1) The number of monomers already present in the chair i Y
that passes through the vertical bofiidis equal to 0 if no
chain is present These numbers may be put into a vector
|p), with m components. It is necessary to keep track of this®
information so that we know when to end each chain. ~—RL RL
(2) The pairs of bonds which are connected to each OthEIy_] N v, h
through a path lying entirely below the reference lisee
Fig. 1). These pairs may also be be specified by a (2) (b)
m-component vectofv ), associating a different positive in-

teger to each pair of connected bonds and O to the ones that FIG. 2. Possible continuationgeference line RL) following
are not connected to each other. This connectivity informathe configuration depicted in (teference line R)L

s<p)=—f:|nz<p'>dp', )

IIl. DEFINITION OF THE TRANSFER MATRIX

m ~RL” RL”
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whereN=ml is the number of sites and the elements of thea subset to obtain an estimate for the two-dimensional en-

matrix 7' are defined by the limit tropy and its confidence interval, not all subsets may be ex-
trapolated, so that, for example, no estimate could be found
for hexamers M =6), where we calculated entropies for

7= Iim'—n’:. (9)  widths up tom=7. The final estimate was chosen to be the
2-=Z highest possible extrapolant, and the error associated to it
was obtained from the previous generation of extrapolants,

The entropy is then related to the largest eigenvaltef through
this matrix, so that
e= lim 2|S|/,l_3|r+l|. (13)

" —o

1
s(pzl)zaln)\’. (10
The extrapolated values of the entropies for 1 and their
uncertainties are displayed in Table Il, together with values

For the general case, where a fractppof lattice sites are . - i X
g o obtained with other techniques and best values found in the

occupied by monomers, the grand-canonical partition func

tion is related to the transfer matrix through literature. ) )
Our results may be compared with other values in the
E(z)=Tr(Th, (11) literature. One may notice that the mean-field estimates are

systematically smaller than the values obtained here, but no
such general trend is apparent for the Bethe-Husimi lattice
results. The estimate for dimers agrees with the exact value

and thus the density(z) will be

zd z d . o
p(z)=lim N d—zln EH(z)= = d—zln N, (12 TABLE I. Entropies calculated for eadfi-mer, divided in sub-

N—c sets with the same finite-size scaling behavior.

where\ is the largest eigenvalue of the transfer matfix  wolecular weight

. i . ) Entropies of each subset
This relation may be inverted to obtain the entropy as &

function of the density using Eq7). M=2 {s1}={52,54.,56, - - - ,S14}
{s2}=1{s3,55,57, - - - S13}
IV. NUMERICAL RESULTS M=3 {s1}=1{83,56,S9,512}

{s2}=1{52,54,55,57,58,510,511}
{si}={s4,5q}
{s2}=1{52,56,S10}
{s3}=1{s3,S5,57,S0}

The size of the transfer matrix increases very fast with M=4
both the molecular weigh! and the widthm of the strip
grow. This sets an upper limit to the widths that we were able
to consider for each chain of a given molecular weight. One M=5 (] ={5q}
may observe in Fig. 3 that the growth of the size of the (sii={s 15 S 55 S50}
transfer matrix is roughly exponential. 3 217 132:93134136: 27228

Furthermore, as was already ob d in simil lcula- M= {s1}={s6}

, y observed in similar calcula ;
tions for polymerg[11], the values of the entropy for each {,52}:{53}
class ofM-mers are split into subsets with different finite- {sst={s2.54}

size scaling behaviors in each subset according to the width

{sa}={ss.57}

of the strips, so that extrapolations must be done within each M=7 {s1}={s2,53,54,55,56}
subset. These splittings seem to be related to frustration ef- M=8 {sit={sa}
fects in the limit of the fully occupied lattice, and the subsets {s2}={s2}
are indicated in Table I, where all the widths we considered {s3}={s3,85}
are given. M=9 {s1}={s3}

The data of each subset were extrapolated to the two- {ss}=1{s5,S4}
dimensional limitm—o using the Shanks transformation M — 0 {si}=155,54,56, - - . S12}
[12], since we expect finite-size corrections to be exponen- {s5}={53.55.57, . . . S1a}

tial. Since at least three values for the entropy are needed ia
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TABLE Il. Entropy of M-mers on the square lattice for full coverage=(1) obtained through different
techniques. The series results listed are truncations at second ogjet.in

M Mean Field[8] Bethe[8] Series[9] Husimi[8] Transfer matrix Best value
2 0.19315 0.26162 0.26867 0.26740 0.2912000071  0.291564]
3 0.39268 0.42284 0.41699 0.41295 0.4120100002

4 0.46301 0.48166 0.48889 0.48951 0.514860045

5 0.49229 0.50669 0.51008 0.50888 0.4990/00091

7 0.51008 0.52217 0.52170 0.52284 0.54%1015301

M— o 0.3863 0.4055 0.3967 0.40670 0.3870.0009 0.386611]

obtained by Fisher and co-workd&-5], and the entropy for listed in Table Ill, and it may be noticed that the largest value
Hamiltonian walks M — ) is consistent with both transfer for the maximum entropy occurs for tetramers, as was also
matrix calculationg6] and the result of series expansions upfound forp=1.

to third order inq~* [13], which is s,.~0.38629. In this In the polymer limit M —oo, the model of a polymer
series, the first-order term is absent, while in the square laplaced on a strip in the grand-canonical ensemble displays a
tice case §=4), the second- and third-order terms cancelfirst-order phase transition at a critical activity, with the
each other; and thus the third order entropy has the mearmoexistence of a nonpolymerized phage=Q) and a poly-
field value as shown in Table II. merized phaseg(= p.>0) [14]. As the widthm of the strip

Another relevant question is the value of the molecularis increased, the discontinuity in the density at the transition
weight which maximizes the entropy at full occupari®yg.  becomes smaller and in the two-dimensional limit-, a
4). Mean-field and Bethe lattice results show maximum en-continuous transition is found at~0.379 052 2[15]. The
tropy atM =8 for a lattice with coordination numb&=4  entropy of a polymer on a strip of finite width is therefore
Refs.[7,8], while series up to second order @' on the not defined forp<p., as may be seen in Fig. 6, where the
square lattice as well as Husimi lattice calculations dor extrapolated value of the entropy as a function of the density
=4 result in a maximum entropy &8 =7. Our results sug- for polymers is depicted. As larger widths are considered, the
gest that this maximum actually occurs t=4 on the step in the entropy decreases; and in the two-dimensional
square lattice, if we suppose that that only one maximuniimit, we haves(p=0)=0.
exists in the curves(p=1)x M, and also disregard the value
obtained forM =7 due to the large uncertainty associated to
it.

For partial occupancy of the lattice, the results are similar A particular case where results may easily be obtained
to the ones shown in Fig. 5 for the entropy of dimers as analytically is the one-dimensional problem<€1). In this
function of the fraction of occupied lattice sitgs, For all ~ case, the dimension of the transfer matfixs equal toM,
the cases, we considered that the entropy displays a sing@d we have
maximum. The density at which this maximum occurs in-
creases withM, getting closer tp~0.79, the value found in
the polymer limit. The densities and maximum entropies are

V. ONE-DIMENSIONAL CASE

7= 611017 2(i 1)+ i w6 1) (14

e
Matrix
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FIG. 5. Entropy for dimers as a function of the density. In the
FIG. 4. Entropy at full occupancy of the lattice as a function of inset, results of values obtained in this work are compared with
the molecular weighM. results from series expansi¢8] and Bethe lattic¢8] calculations.
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TABLE Ill. Maximum values of the entropy as a function of the 0.9
density.
M Density of maximum entropy Maximum entropy s | :'
2 0.64 0.66 .
3 0.71 0.70 ¢
4 0.76 0.74 507 o |
g0.
5 0.76 0.73 a
7 0.78 0.72 o®
M — o0 0.79 0.56 o’
0.6 | o 1
[ ]
- . . L
where 1<i,j<M. One may easily obtain the secular equa-
tion of this matrix, which is 05 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 08 1
AM—\M-1_zM=p, (15) o

. . FIG. 7. Density of maximum entropy as a function @1
The density may then be found as a function of the largest ;;, y by

eigenvalue\ by using the secular equation above and also

expression(12). One obtains 7), where the entropy vanishes for all valuespofThe value
1—a of the maximum entropy is a decreasing functionaof
\= p, (16) For a given value oM, the density that maximizes the
1-p entropy is obtained through the equation
where a=(M—1)/M. Then the entropy may be found by (1—ap) “(1-p)p(l—a)] T =1, (18)
performing the integration in Ed7), changing the integra-
tion variable fromp to N. The result is VI. CONCLUSION
s=(1-ap)in(l-ap)—(1-p)in(1-p) In this paper we estimate the entropy of chains with
monomers, each placed on the square lattice as a function of
—p(1=a)infp(l=a)]. A7 the fractionp of lattice sites occupied by monomers. The

eestimates were obtained by extrapolating numerically exact

This result is equal to the expression that is obtained if th . S -
coordination number of the Bethe lattice redékpression va!ues for the entropy on Strips of finite widts cal_culatef:i
using a transfer matrix approach, to the two-dimensional

(22) in Ref. [8])] is taken equal to 2. The entropy in the limit .
one-dimensional case vanishes, as expectedpfot, and "0 M-

the maximum is located at a value of the density which is bOT ;[he square la:}![(;]e’ Ol:r calculations |l}d|c5tte that the
equal to 1/2 for monomersy=0) increasing monotonically absolute maximum of the entrogy (p) occurs for tetramers

: : . o ; (M=4). In the one-dimensional case, the maximum entropy
with « and approaching 1 in the polymer limit—1 (Fig. of sy(p) is a monotonically decreasing function bf, the

1 absolute maximuns,(1/2)=In(2) being obtained for mono-
mers and approaching 0 &— .
The problem of the thermodynamic properties of the
0.8 . athermal model of chains formed ¥ monomers placed on
a regular lattice has been the subject of several simulational
studied16—19. While some of these investigations estimate
06 ] the insertion probabilityp(p,M,N) (the probability that an
additionalM-mer placed on the lattice with chains on the
N-sites lattice does not overlap with any of thehains that
are already present on the latticand then proceed calculat-
03 . ing the osmotic pressure through integratigk6,17, the
pressure may also be estimated directly, the so-called repul-
sive wall method 18]. Extensive scanning method simula-
0.1 - T tions were also performefdl9], and this method leads di-
0 ‘ ‘ L ‘ ‘ L ‘ rectly to an estimate of the entropy, which may be compared
© 01 02 03 04 05 06 07 08 05 A with our results. Since the smallest valueNfin the simu-
. lations isM =10, no direct comparison is possible with our
FIG. 6. Entropy of polymers as a function of the density. Theresults. Nevertheless, at all densities considered in the simu-
squares correspond to extrapolations of the values on strips of finit@tions (p=0.27, 0.40, 0.53, and 0.53he results of the
widths and the full line is the result for a strip of width=7. simulations for the entropy, properly renormalized, interpo-

09 4

0.7 4
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05 -

04

0.2 4
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late our estimates favl =7 and for polymers 1 — ). ACKNOWLEDGMENTS
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