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Simulating the morphology and mechanical properties of filled diblock copolymers
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We couple a morphological study of a mixture of diblock copolymers and spherical nanoparticles with a
micromechanical simulation to determine how the spatial distribution of the particles affects the mechanical
behavior of the composite. The morphological studies are conducted through a hybrid technique, which com-
bines a Cahn-HilliardCH) theory for the diblocks and a Brownian dynami{&D) for the particles. Through
these “CH-BD” calculations, we obtain the late-stage morphology of the diblock-particle mixtures. The output
of this CH-BD model serves as the input to the lattice spring m@gd8M), which consists of a three-
dimensional network of springs. In particular, the location of the different phases is mapped onto the LSM
lattice and the appropriate force constants are assigned to the LSM bonds. A stress is applied to the LSM
lattice, and we calculate the local strain fields and overall elastic response of the material. We find that the
confinement of nanoparticles within a given domain of a bicontinous diblock mesophase causes the particles to
percolate and form essentially a rigid backbone throughout the material. This continuous distribution of fillers
significantly increases the reinforcement efficiency of the nanoparticles and dramatically increases the Young's
modulus of the material. By integrating the morphological and mechanical models, we can isolate how modi-
fications in physical characteristics of the particles and diblocks affect both the structure of the mixture and the
macroscopic behavior of the composite. Thus, we can establish how choices made in the components affect the
ultimate performance of the material.
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[. INTRODUCTION particle interactions. In this paper, we will refer to this hybrid
method as the CH-BD model.

The blending of nanoparticles and polymers provides a The output of the CH-BD simulation then serves as the
means of creating hybrid materials that integrate the desiinput to the lattice spring modé€LSM), a micromechanical
able features of each of the constituents. For example, theodel that captures the elastic properties and mechanical re-
particles impart stiffness and the polymers prevent the matesponse of the composite. By combining the CH-BD and
rial from being brittle. If the nanoparticles are metals orLSM models, we can determine how the structural evolution,
semiconductors, the composite can exhibit the unique elewr the history of the material, affects the mechanical response
trical, optical, or magnetic properties of the inorganics and24]. Furthermore, we do not have to makd hocassump-
the flexibility and processibility of the polymers. Recently, tions about the distribution of particles in the system; this
there has been considerable interest in blending nanoparticlesstribution evolves naturally from the self-assembling inter-
and diblock copolymerf§l—-17] to create materials for flex- actions between the different components. Through the LSM,
ible batterieg 1], photonic band gap devicd6] and nano- we can carry out three-dimensional simulations that include
electrode arrayf13,14]. One of the challenges in designing as many as 1564 particles. In particular, the studies reported
such complex materials is predicting the macroscopic behawiere represent the first 3D studies on the mechanical proper-
ior of the composite based upon such constituent characteties of such extensive filled copolymer systems. The results
istics as the diblock architecture and the nanoparticle surfacallow us to determine how changes in the nature of the com-
chemistry. By addressing this challenge, researchers coujgbnents influence the macroscopic properties of the compos-
ultimately understand how choices made in the initial desigrite.
stage affect the final materials’ performance and facilitate the One reason for focusing on mixtures of diblocks and
efficient fabrication of composites with the desired proper-nanoparticles is that the self-assembly of the diblocks can be
ties. exploited to direct the distribution of the nanoparticles within

Here, we seek to tackle this issue by integrating two dif-the mixture[8,25—27 and thus, achieve a degree of control
ferent computational approaches and thereby relate the polpver the morphology of the system. For example, if the par-
mer architecture, the wetting interactions between the polyticles are preferentially wetted by ti#eblocks of a system of
mer and particles, the structure of the mixture, and theAB diblocks, the particles will localize within th& domains
mechanical behavior of the resulting material. In particularof the microphase separated melt. In recent computational
we use a hybrid methofil8-23 that combines a Cahn- studies that involve the hybrid CH-BD model, Ginzburg
Hilliard (CH) model for the diblocks and a Brownian dynam- et al. [23] showed that in the presence of tAd8 diblocks,
ics (BD) simulation for the particles in order to determine thetheseA-like particles in fact form a percolated network at a
structural evolution of the particle-filled copolymer melt. As significantly lower volume fraction(essentially half than
we detail further below, the approach allows us to specify thavould be required in a homogeneous matefiiad., ho-
architecture of the chains and the nature of the polymermopolymer melt In this study, one of our aims is to deter-
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mine how these percolating networks act to reinforce thesions[41-45. Recently, three-dimensional simulations have
copolymer matrix. included a spherical particle in the presence of plasticity
The two main numerical techniques that can be used t639], while we have applied a three-dimensional multi-
investigate the reinforcing properties of the filler particles arenclusion Born LSM to the numerical investigation of vis-
the finite element methotFEM) and the LSM. The FEM, a  Coelastic polymers reinforced with either platelets, rods, or
discretized continuum model, is the dominant technique emsphereg446]. These studies reveal that the LSM is becoming
ployed in micromechanical modeling. The FEM employs@n increasingly valuable technique in the numerical simula-

preprocessed mesh generation, which enables the model §gn Of micromechanics. As we show in the studies described
fully capture the spatial discontinuities of highly inhomoge- P€loW: when the LSM is coupled with a computational model

neous materials. The FEM techniques also allow complextnat reveals the morphology of complex mixures, the inte-
nonlinear tensile relationships to be incorporated into théd'ated approach can be used to establish structure-property
analysis. In three dimensions, the FEM micromechanical€lationships for a broad class of materials.
simulations generally employ a unit-cell methodology or an__ !t should be noted, however, that the application of con-
axisymmetric approach; these models possess translatiorfdfuum mechanics to systems on the nanoscale might be ex-
and reflective symmetry, respectively. Utilizing both unit-cell t€Nding the traditional applicability of the LSM, since the
and axisymmetric systems, Christmanal. [28] and Llorca mechanical behavior in nanocomposites is dictated by more
et al.[29] investigated SiC reinforced aluminum composites. JiScréte phenomena. That said, the potential wealth of quali-
Hom and McMeeking30] employed a unit-cell simulation tative information that can be obtained concerning the defor-

to study a cubic array of rigid spheres in an elastic-perfecfnation of complex morphologies associated with nanocom-
plastic matrix. In order to investigate clustering effects, thePOSites warrants the application of such techniques.
particles may be displaced towards axisymmetric boundaries, NS Paper is organized as follows: in Sec. II, a descrip-
although this assumes an infinite array of clustering effectdOn of the simulation techniques for modeling the structural
[29,31. A regular distribution of three clustered particles in €volution of diblock-particle mixtures and the micromechan-
an infinite system was modeled using an axisymmetric sysicS Of solid polymeric composites is given. In Sec. Ill, we
tem by Thomsoret al. [32]. A repeated pattern of particles m\{estlgate the effepts of varying the diblock copolymer'ar-
allowed clustering effects to be considered, while particlechitecture and particle volume fraction on the morphological
decohesion was accounted for through the use of a tractio’d méchanical behavior. The effects of size and polydisper-
separation relation similar to Needlemgsg]. Simulations sity in the particle system are also investigated. In Sec. IV, a

addressing significantly larger collections of particles wereSUmmary of results is provided and conclusions are drawn.

performed by Guseet al. [34], in which a periodic elastic
system, containing up to 64 spherical particles, was used to Il. MODEL
calculate the overall elastic constants. Recently, a similar
multiparticle system has been considered byuBd35], in
which systems containing 20 particles where deformed. The The system consists of aAB diblock copolymer melt
number of particles that can be simulated is limited by theand mobile nanoparticles. We simulate the behavior of this
computational expense of the FEM, and a more computationmixture on a three-dimensional cubic lattice, which i 64
ally efficient technique is required to simulate larger systensites in size and has periodic boundary conditions in all three
sizes. directions. The copolymer melt is characterized by the scalar
The LSMs of elasticity consist of a network of intercon- order paramete¥ which describes the local concentration
necting springs, the properties of which can be varied tdlifference between thé and B components. Note tha¥
tailor the response of the system and to ensure that the model—1 (1) corresponds to the equilibrium order parameter for
conforms to elasticity theory. One variety of the LSM is the A-rich (B-rich) phase. In this version of the model, the par-
Born LSM, which is a macroscopic equivalent of the Born-ticles in the system are “soft” or penetrable, since we neglect
Huang model for microscopic elasticif6]. The extension excluded volume interactions between the particles and the
of a spring is energetically penalized by way of a centralfluid. (Excluded volume interactions can be explicitly in-
force constant, while a lack of rotational freedom is imposedcluded in the mode[23]; for corresponding systems, both
upon the springs through the introduction of a noncentrathe “hard” and “soft” fillers yield similar results for the
force constanf37,38. Rotation of this system from the net- particle distributiong.The particles have an affinity for the
works' original orientation results in a restoring force, al- block. This affinity is introduced via a polymer-particle cou-
though the configuration is otherwise unchanged. This laclpling term in the free energfas described belowThus, the
of rotational invariance does not have a significant effect formicrophase separation of the diblocks can affect the spatial
small displacemen{s7], for which this model can be shown distribution of the particles and the particles can influence
to be equivalent to the mathematical theory of an isotropidhe size and morphology of the polymer domains.
elastic continuunp39]. More complicated rotationally invari- The CH equatiorf47,48 describes the phase separation
ant three-body interactions have been considé#4gd, al- of a binary mixture by spinodal decomposition, in the ab-
though the additional computational expense is unwarrantesience of hydrodynamics. The dynamics of microphase seg-
in systems where rotations are assumed to be small. regation for a diblock copolymer melt is described by the
The majority of the LSM particulate simulations have traditional CH equation with the addition of the term
been the two-dimensional investigations of circular inclu-—T'(W —f) [49], whereI" determines the thickness of the

A. Determining the morphology of diblock-particle mixtures

031802-2



SIMULATING THE MORPHOLOGY AND MECHANICAL . .. PHYSICAL REVIEW E 67, 031802 (2003

domain structure and describes the asymmetry of the of Eq. (1)] significantly reduces the computational expense
diblock. The case off=0 describes a 50:50 symmetric of the simulations. The discrete equations are of the form
diblock. The kinetic equation for the order parameter for this

system is W(r,t+1)=G[W(r,t)]-(G[W¥(r,t)]—W(r,t))

ov SF —r(w-f), (6)
- —=MV2— —T(V—1f)+¢ (1)
where a hyperbolic tangent model is included in the function

where M is the kinetic coefficientmobility) of the order G, although'the results are insensitive to this choice of map
parameter field, and is the noise fieldwhich is presently ~[50]. In particular,
set to zerg. F is the local energy term and is given Iy
= is i JF
Fg+Fcpi- In the current studyk is given by G[W(r 1)]=Atanh( W)+ a;pleD[(\P(r )= (r,0)].
()

In the current simulation, the parameters are assigned the
whereA and D are material specific parameters and the in-following values:A=1.3 andD =0.5; these parameters cor-
tegration is over the volume of the system. respond to an intermediate-to-strong segregation regime for

The nanoparticles are introduced through the couplinghe diblock. The operatof* ) indicates the isotopic spatial
free energyF.p . This free energy describes the interactionaverage over the neighboring nodes, @gt)—*] can be
between the soft particles and the polymer, and ensures thatnsidered as a discrete generalization of the Laplacian. In
the forces on the particle due to the presence of the polymdhree dimensions, the spatial average on a cubic lattice is
induce equal and opposite forces within the polymer. Thegiven by
coupling free energy is of the form

D
Fd=J Aln[cos(‘lf)]+ \If2+ (W) ar, (2

S Dt S @
ch:zf 2 V=X -wlor, 3 BOW B0 BONW
) ) ] - ) where NN, NNN, and NNNN represent the nearest, next-
where  is a material constank; is the position of thé™  \earest, and next-next-nearest neighbors, respectjéely

particle, and¥ s is the desired value of the order parameter atrhis form of spatial averaging operator ensures isotropy.
the patrticle surface To model the fact that the particles have

an affinity for theA phase, we se¥’ ;= —1. The potential

U() is nonlinear, and is given by B. Determining the micromechanical behavior of solid

polymeric composites

Xi— A lattice spring model enables the micromechanical in-

Mo V(r=x)>R, (4) vestigation of a solid polymer to be undertaken. The model
discretizes the continuum elastic behavior of a given material

U(r—x) =1V (r—x;)<R. onto a simple cubic lattice. This lattice consists of a network
of nearest and next-nearest neighbor interactions, which are

The parameter sets the range of the interaction aRds ~ harmonic in nature. These harmonic interacti¢springs

U(r—xi)=exr(—

the radius of the particle. result in linear forces between lattice sitesdes, which
The motion of the particles is dictated by the Langevin€nable the emergence of linear elastic behavior. The energy
equation associated with a nodma in the lattice is taken to be of the
form
L?Xi M oF . (5) 1
at P(?Xi & Emzz ; (Un=Up) My (U= Up), 9

whereMp is the particle mobility and; is a Gaussian white
noise term. It should be noted, however, that particles argvhere the summation is over all the neighboring nodes,
prohibited from overlappingi.e., if a particles’ new position connected tan by a spring. The term,, is the displacement
causes it to overlap with another particle, the move is reof nodem from its original position, and .,,, is a symmetric
jected. In this sense, a hard core interaction between thenatrix that introduces the elastic properties of the springs,
particles is imposed. Through the coupled Eds.and (5),  through central and noncentral force constants.
the ordering dynamics of the diblock copolymers is inte- It has been shown that this system of springs obeys, to
grated with the diffuse motion of the nanoparticles. first order in the displacement, the equations of continuum
A cell dynamical system(CDS), or cellular automaton, elasticity theory for an isotropic medium, whose elastic con-
methodology is used to evolve the order parameter field fostants can be determined in terms of the elements of the
the microphase-separating copolymer nig@,51. The em-  matricesM,,, [39]. The Young’s modulu€ and Poisson’s
ployment of CDS[rather than a conventional discretization ratio v are of the form
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5k(2k+3c) k—c polymer matrix, as dictated by the results of the CH-BD
= 4k+e ' YT T crak (10 calculation. In order to accurately capture the deformation
fields in the vicinity of the particles within the LSM, the
wherek andc are the central and noncentral force constantsSyStem size is doubled from that of the CH-BD simulation.
respectively39]. An LSM consisting of 148 nodes is utilized; the central
The force constants are initially associated with the nodesL28® nodes are assigned elastic properties as a function of
Nodes are assigned different values depending upon the I§0€ particle and polymer positions in the CH-BD calculation.
cation in the material where they are situated. The force conIhe system is extended by ten unit lengths in all directions,
stants for the springs are then averaged from the nodes whel@king values from the periodicity of the CH-BD simulation,
they connect. The harmonic form of the energy results ifherefore ensuring that all areas of the CH-BD model are
forces that are linearly dependent upon the displacement ¢gPresented by bulk nodes in the LSM simulation.
the nodes. If forces are applied to the boundary nodes, and
the spring constants specified, then the nodal displacements . RESULTS
can be obtained through a set of sparse linear equations.
These equations are solved using a conjugate gradient
method to find the equilibrium configuration that corre- We initially consider the effects of diblock copolymer ar-
sponds to no net force at each nd&g)]. chitecture and particle volume fraction on the resultant mor-
In order to present relevant deformation fields, the stresphological and mechanical characteristics. In the following
and strain tensors are calculated from the forces and disimulations, the parametek andM, [in Egs.(1) and(5),
placements. The strain tensor can be obtained through a finitespectively are set equal to 1. Three different diblock co-
difference approximation of the displacement field. A centralpolymers are considered, corresponding to the following pa-
difference approximation can be used, rameters:(@) '=0.004 andf=0.0 , (b) I'=0.016 andf
=0.0, and(c) I'=0.004 andf=0.2[see Eq.(1)]. The pa-
rameterl” is inversely proportional tdN?, whereN is the

A. Uniform particle size

OxU(i i k) =1—2[ —Ugi+2j,00T8Ug 1110~ 8Ui—1j k) degree of polymerization of the copolymer. Thus, an increase
in I corresponds to a decrease in the domain size. Vaifying
HUG-2j00]; (1D from 0.0 to 0.2 changes the composition from 50:50 to 60:40

(particles are incorporated into the minority phasEehere-
fore, the effects of domain size and composition are taken
%hto consideration. A range of particle volume fractions,
arying from 5% to 25%, are also considered, where the
l?article radius is three unit lengthsix unit lengths in the
LSM). This range in volume fraction of particles corresponds

whereu ; i is the displacement field at coordinateg, k,
andh is the initial distance between adjacent nodes; altern
tively, forward or backward approximations are considered
system boundaries. The stress tensor is directly obtainab
from the forces acting on a nodthe center of a cubic unit

cell) [40], to a variation in the number of particles from 116 to 580 in
the simulations.
> Fo “iT The morphology of a filled diblock copolymer system at
o = m (12) late times (=50 000) is presented in Fig. 1. The parameters
4 A of the diblock copolymer ar& =0.004 andf =0.0, and the

volume fraction of particles is 20%. The isosurface of the

Here, X, represents a sum over the cube surfagsis the  diblock copolymer at an order parameter of zénaidway
force on any surfacen of the cubic cell, whilen’ is a unit  between phasé and phaseB) is colored blue, while the
vector either normal or parallel to the surfaogandAis the  regions where a positive order parameter intersects the sys-
surface area. The scalar stress and strain values quoted hésen boundariegtermed isocapsare colored red. In other
correspond to the normal stress and strain components in thveords, the red regions mark tliephase and the transparent
tensile direction. regions indicate thé phase. The particles are colored black,

In order to assess the effective reinforcement provided bynd are clearly confined within the transpar@ghase of the
the particles within the composite, we determine the relativaliblock. The system shows elements of lamellar ordering on
guantities (1—ug)/ug, whereu is the strain field andiy is  a short scale, however, the lamellas are interconnected, and
the homogeneous response of the unreinforced polymeriihe overall morphology is closer to a bicontinuous structure.
matrix. The average strain in the system can be determined/hile the system will tend towards the thermodynamic limit
through the average nodal displacements at the systeof a perfect lamellar phase, the time scales for reaching this
boundaries, in the tensile direction. The average strain anstate through a dynamic model are prohibitively large. In
the applied stress can then be used to calculate the Young&perimental systems, similar morphologies are found be-
modulus(stress of a material divided by its straihis al- cause again it takes long times to reach perfectly ordered
lows the global stiffness of this locally heterogeneous matephases and the system can get kinetically trapped.
rial to be determined. In order to quantify the confinement of nanoparticles

As noted above, the elastic properties of the springsithin the diblock copolymer domains, the particle correla-
within an LSM simulation are assigned values dependingion function is presented in Fig. 2. The particle correlation
upon whether the node is situated within a particle or thfunction adopted in this study is defined ag(r)
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FIG. 1. (Color) Three-dimensional morphology of a filled diblock copolymeric system. An isosurface inbetwegmatitlB components
is colored blue, isocaps are colored red, and the particles are colored black.

:V<Ei2j;ti5(r_rij)>/(477r2N,2))i whereV is the volume of the =0.016 atf=0.0) as the third exhibited similar results.
system and\,, is the number of particles. The results are There is only one discernible peak at a distance of six unit
averaged over three independent runs. For clarity, only twéenaths, which corresponds to the diameter of the particles.

diblock copolymer systems are showir£0.004 andl’  This reveals that the system of particles exhibit strong short
range order, but do not display long range order. The par-

18 : : : : ‘ ticles are forced to lie within close proximity of each other
16| 4 ?:8:8%1 §§’8§§8}; e due to the confinement within the diblock copolymer, but
14| A Randomly Dispersed. - ] long range order is suppressed due to the tortuous structure
12| of the diblock domains. For comparison, the particle corre-
4l lation functions for an equivalent number of randomly dis-
s 08 persed particles, which exhibit no such confinement, are also
' presented. As can be seen, there is no local ordering of the
06 particle positions and the peaks observed in the diblock co-
04 polymer systems are no longer present.
0.2 To assess the consequences of such morphological varia-
0 s - é é 1'0 1'2 1‘4 tions upon the resultant mechanical properties of the macro-

scopic material, we now use the output from our hybrid CH
and Langevin dynamics simulations as the input for the
FIG. 2. The pair correlation functior{defined as g(r) LSM. The elastic deformation of the structures is undertaken,
=V(;Z;,6(r —ryj))/(4mr®Nj)] for particles confined in two ~ with both the force constants of theandB phases being set
diblock copolymer systems and for randomly dispersed particles. to unity, while the particles are assigned a force constant of

r
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FIG. 3. (Color) The relative strain fieldedefined as —ug)/uy, whereuy is the response of the unreinforced polymeric matiax (a)

a system where the particles are confined within the domains of a diblock copolyméb)amaystem consisting of randomly dispersed

particles.
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100. Thus, the effects of particle distribution are of primarysystem shows isolated regions of strain relaxation within the
interest in the current investigations, and the parameters aggarticles, but the inhibition of the neighboring matrix is less
consistent with experimental values for filled polymgs8].  dramatic than in Fig. @). Consequently, the strain concen-
The local relative strain field, as a result of the applicationtrations (shown in red and yelloywithin the matrix of the
of a constant stress at the simulation boundaries, for a systepandomly dispersed system are also more pronounced as re-
where the particles are confined within the domains of &jions within the matrix attempt to deform to the same extent
diblock copolymer ['=0.004 and=0.0) is depicted in Fig. a5 domains that neighbor the scattered particles. Such areas
3_(a)_. The corresponding relative strain fie_Id fora System con+f srain concentration are less apparent in Fig).3These
sisting of randomly dispersed particles is presented in Figy|ots indicate that the confinement of nanoparticles within

3(b). The three-dimensional strain fields are displayed as o150 of the domains of the bicontinuous structure leads to a

thogonal contours through the simulation. In both SyStemS(:ontinuous network of stiff material, which reduces the over-

. ) . 0 .
e volume aclon of ariles s 20%. The Barcles Sieal sai eld it re systen.
y app 9 : In order to quantify the deformation of the above confined

particular, the strain values within the particles are signifi- d randomlv di d particl ¢ th lative di
cantly lower than that of the matrix, due to the large disparityan randomly dispersed particie systems, the cumuiative dis-

in elastic constants. The inability of stiff particles to deform tioution functions of the local strain fields are plotted in Fig.
to the same extent as the neighboring matrix results in straifi: 1he_cumulative distribution function is defined as the
concentrations at the particle-matrix interface. These straif"oPability that the field in the system takes a value less than
concentrations lie along the tensile direction and emanat@l €qual to a specific amount. A comparison between con-
from the center of a particle. Perpendicular to the tensildined and randomly dispersed particle systems is made for
direction, the lower deformations within the particle inhibit Particle volume fractions varying from 5% to 25%. The
the deformation of the matrix and result in lower strainlower strains are invariably associated with the stiffer par-
fields. ticles, while the regions of higher strains correspond to the
It is apparent from Fig. @) that the diblock-confined par- Matrix. At 5%, there would appear to be little difference
ticles are clustered together, while the particles in Figp) 3 between the two systems, since the confined particles do not
are more randomly dispersed. It is this clustering of the conPercolate at such a low value. At higher particle volume frac-
fined particles that is of primary interest. In order to charactions, the disparity between the two systems becomes more
terize the particle clusters, and determine whether or not gegiPparent, with the confined particle systems possessing sig-
metric percolation occurs, we define particles that are closefificantly lower strain fields. As noted above, the geometric
than a certain distance to be part of the same cluster. HerB€rcolation inhibits the local strain fields, and therefore stiff-
we adopt a unit length in the LSM simulations as this char-€ns the composite material. . _
acteristic distance. Using this definition, we find that the con- I Fig. 5, we plot the percentage increase in the Young's
fined particle system in Fig.(8 forms a percolating cluster. Modulus relative to the unreinforced polymer for the various
(We note that Ginzburget al. [23] found the percolation Systems described above. This parameter is a measure of the
threshold for particles confined in a similar diblock matrix to Mmacroscopic mechanical properties of these composites. The
be ~10%.) results are averaged over three independent runs, with the
The percolating structure inhibits the deformation of the®fror bars indicating the standard deviation. The three cases
entire material and results in significant reductions in thehvolving particles confined within the domains of diblock
strain fields, as can be seen by the presence of the purp:gg)polymers are significantly stiffer than the system contain-

between the three confined particle systems, with the error

bars showing a clear overlap. For the systems studied here, it
is not possible to distinguish effects that diblock copolymer
architecture or composition may have on the reinforcement
efficiency of the nanoparticle fillers. There is, however, a
significant benefit in confining the particles within the
diblock copolymer domains.

1?//o
OD.
0.8 25%.
Confined.
Random.

B. Binary particle systems

We also investigate the effects of adding a binary particle
mixture to the copolymer matrix. The particles in the binary
mixture are chemically identicdl.e., they both favor thé
phase, but differ in size. The smaller particles have a radius
of 2 and the larger particles have a radius of three unit
lengths. These studies provide insight into the role that poly-

FIG. 4. The cumulative distribution function of the relative local dispersity in particle size plays in the mechanical properties
strain field for systems consisting of randomly dispersed particle®f the composite. The total volume fraction of particles is
and systems where the particles are confined within the domains dfeld fixed at 20% and the ratio of small to large fillers is
a diblock copolymer. varied between the limiting cases of all smé&ll564 par-

Cumulative Distribution Function

-1 -0.8 -06 -04 -02 0 0.2 0.4
Relative Strain
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ticles) and all large(464 particles A comparison of the re-
sults for the purely large and small fillers yields insight into
the effects of particle size on the behavior of the system. In
these studies, the parameters that characterize the diblock
copolymers are fixed df=0.004 andf=0.0.

Figure 6 shows the morphology for a system containing
10% of large and 10% of small particles. The particles are
again clearly confined within th& domains of the diblock
copolymer. Note that the particles selectively swell these
compatibleA regions, giving the diblock matrix in Fig. 6 an
asymmetric appearance. However, here as in the other cases
described in this section, the copolymer is a symmetric
diblock.

It is also clear from Fig. 6 that the small particles can

FIG. 5. The percentage increase in Young’'s modulus as afund:ead_”y penetra_te and chalize in regi0n§ between the large
tion of particle volume fraction. Systems containing particles con-Particles. At a fixed particle volume fraction, decreasing the
fined within the domains of various diblock copolymers are com-Size of the particles results in an increase in the totahber

pared with a system consisting of randomly dispersed particles. Of particles and hence, an effective increase in the particulate

surface area. Consequently, there is a greater surface area
available for possible polymer-particle interactions. To illus-
trate this point, we defin®, as the volume fraction of poly-

FIG. 6. (Color) Three-dimensional morphology of a filled diblock copolymeric system. An isosurface in betwegmtit3 components
is colored blue, isocaps are colored red, and the small and large particles are colored black and gray, respectively.
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FIG. 7. The volume fraction of polymeric material that is within FIG. 8. The fraction of particles that are a part of the largest

a given distancéa unit length of any particlesy,, as a function of  cluster as a function of the volume fraction of small particles. The

the volume fraction of small particles. overall volume fraction of small and large particles is maintained at
20%.

meric material f andB) that is within a given distance@ 209 of the system possesses lower strains due to the 20% of
unit length of any particles and pld¥, as a function of the  4iff particles present within the composite; however, in the
volume fraction of small particlessee Fig. 7. The result_s _ upper 80% of the system, a gradual trend is observed. The
are averaged over three runs and the standard deviatiopgformations in the matrix are increasingly inhibited as the
were found to be negligible. As the volume fraction of small\,gjume fraction of smaller particles is increased.
particles is increased, the particles come in contact with and The |ower strain fields due to the decrease in particle size
affect a greater volume of the matrix. have a direct impact on the Young’s modulus of the macro-
The fraction of particles that are a part of the largest Clus'scopic material. The percentage increase in Young’s modulus
ter, P, is plotted as a function of the volume fraction of small jg plotted in Fig. 11, as a function of the volume fraction of
particles in Fig. 8. The data are averaged over three rungmg|| particles. The data are averaged over three runs, were
with the error bars corresponding with the standard deviame error bars represent the standard deviations. An increase
tion. Geometric perqolatlon occurred in all systems. Since af, Young's modulus of over 30% is observed as the particle
a fixed volume fraction, there are a greater number of smalyj;e is altered from all large to all small. This is attributable
particles than large ones, these fillers would be e'xpected ' an increase in the total particle surface area, a greater
cluster to a greater extent than the larger spe@sthe  gegree of clustering, and an increase in the volume of poly-
characteristic distance used to indicate clustering is not rameric material that is effectively trapped by the particles.
dius dependent, but is fixed at one unit in our studiébis is  These effects result in lower strains throughout the system

in fact the case, with the fraction of particles in the maingnq hence, an increase in the global Young’s modulus.
cluster approaching one with increasing number of small par-

ticles. Even though small particles are more disperged
indicated by Fig. ¥, they still cluster to a greater degree
within the domain structure of the diblock copolymén Through a combination of numerical techniques, we were
part, because there are a greater number of them than largéle to interrelate the structure and micromechanical behav-
particleg. This increase in clustering is expected to translatdor of the copolymer-nanoparticle composites. Through the
through to the mechanical properties. CH-BD calculations, we could determine the effects of the
Figure 9 reveals the relative strain field for a system conmicrophase separation of the diblocks on the spatial distribu-
taining 10% large particles and 10% small particles. The retion of the mobile particles. Through the LSM, we could
gions of low strain, corresponding to the stiffer particles, arecapture the elastic deformation of the resultant hybrid mate-
clearly observed as before. Now, however, the clustering ofial. Furthermore, we could investigate the behavior of sys-
particles is more apparent than that in Fige)3A significant  tems that contain up to 1564 particles. For randomly dis-
difference between the cases in Fig&)3nd 9 is the area persed fillers, simulations involving a relatively low number
over which these particles cluster. The smaller particleof particles can be sufficient to describe the overall stiffness
spread out over a greater volume of the material and inhibibf the material and thus, can be large enough to encompass a
the deformation of the matrix to a greater degree than in theepresentative volume elemefRVE) of the composite.
system containing just large particles. Effectively, a largetHowever, the tortuous spatial arrangement of particles con-
volume of polymer matrix is trapped or surrounded by thefined in diblock copolymers introduces an additional length
particles and therefore less capable of deforming. scale, that of the domain size. To determine the mechanical
Quantitatively, the effects of particle size can be seen irbehavior of such complex materials, it is important to con-
Fig. 10, which depicts the cumulative distribution function of sider the morphology of a sufficiently large system that cap-
the local relative strain as the volume fraction of particlestures both the unique structural characteristics of the copoly-
varies from being 20% large to 20% small. The data aremer domains and the particles’ spatial arrangement, which is,
averaged over three independent runs. The plots show that part, templated by these diblock domains. The LSM has

IV. CONCLUSIONS
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FIG. 9. (Color) The relative strain fieldgdefined as §—ug)/uy, whereuy is the response of the unreinforced polymeric matfor a
system containing a 10% volume fraction of small and a 10% volume fraction of large particles, confined within the domains of a diblock
copolymer.

=

proven to be ideally suited for simulating the micromechan-useful in similar three-dimensional analyses.
ics of such large systems. While the utility of the LSM in  Through the selective incorporation of nanoparticles into
analyzing two-dimensional RVEs has recently been reportethe domains of a diblock copolymer, three-dimensional bi-
[54], it would appear that this technique might also provecontinuous nanoparticle structures were formed. As the vol-
ume fraction of particles was increased, geometric percola-
]
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FIG. 10. The cumulative distribution function of the relative Volume Fraction of Small Particles(%)

local strain field for systems containing various volume fractions of

small and large particles; varying from 20% large to 20% small. FIG. 11. The percentage increase in Young's modulus as a func-
The overall volume fraction of small and large particles is main-tion of small particle volume fraction. The overall volume fraction
tained at 20%. of small and large particles is maintained at 20%.
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tion of the particles occurred, and the particles effectivelybehavior could explain the increased stiffness that was ob-
formed a rigid network throughout the system. The deformaserved in the corresponding macroscopic material. Also of
tions within the polymer matrix are significantly suppressedconsiderable consequence is the volume of polymeric mate-
by the presence of this rigid nanostructural network, and theial that is effectively trapped between neighboring nanopar-
global stiffness of the material is notably increased. It isticles. For a fixed volume fraction of particles, as the particle
worth noting that for materials containing randomly dis- size is decreased, the number of particles increases. Conse-
persed spheres, rods and platelets, the rods and platelets oftgrently, the volume of material in which the particles are
superior reinforcement over the sphefd6|. Therefore, the dispersed increases, and the deformation of a greater volume
mechanical properties of diblock copolymers filled with suchof interparticle polymeric material is inhibited.
high aspect ratio particles may prove to be of particular in- We conclude that the inclusion of nanoparticles into a
terest. bicontinuous diblock copolymer structure results in a signifi-
Varying the size of the monodisperse particles and intro€ant increase in the reinforcement efficiency of the fillers. As
ducing bidispersity in the particle size were shown to exerpolymeric nanocomposites become increasingly important,
an appreciable influence over both the morphology of thesuch confinement effects will play a dominant role in opti-
diblock copolymer and the resultant mechanical properties ofnizing their mechanical behavior, and result in an expansion
the solid material. Systems containing small fillers exhibitedof potential applications to which such materials could be
a greater degree of clustering between the particles. Thismployed.
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