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Competition between electroconvection and Fre´edericksz distortions in nematic liquid crystals with
slightly positive dielectric anisotropy

B. Dressel and W. Pesch
Physikalisches Institut der Universita¨t Bayreuth, D-95440 Bayreuth, Germany

~Received 3 December 2002; published 26 March 2003!

Planar electroconvection in nematic liquid crystals with positive dielectric anisotropy is theoretically studied
in the nonlinear regime. The system is characterized by a competition between the nonequilibrium electrocon-
vection instability and the equilibrium Fre´edericksz distortions. Near a resulting multicritical bifurcation point
a splay-roll instability and a bistability between the convective and the homogeneous states occur.
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I. INTRODUCTION

Electroconvection~EC! in nematic liquid crystals~nemat-
ics! is widely accepted as an excellent paradigm to stu
pattern forming instabilities in anisotropic systems@1–5#.
Nematics are intrinsically anisotropic fluids with uniaxi
symmetry. The preferred axis~the directorn) corresponds to
the mean orientation of their elongated molecules. The
occurs when a voltage above a critical threshold strengt
applied across a thin layer of a nematic with nonvanish
electrical conductivity, which originates from impurities o
suitable doping. At the convection onset typically a perio
array of convection rolls~stripes! is observed, which are as
sociated with periodic director distortions perpendicular
the roll axes in the layer plane.

Besides the nonequilibrium EC instabilities alternative
equilibrium phase transitions~‘‘Fréedericksz transitions’’!
can be observed if electric~or magnetic! fields are applied to
the uniformly oriented nematics@2#. The resulting homoge
neous director distortions, i.e., without spatial variations
the plane, are minimizers of the orientational elasticity p
tential characteristic for nematics@6#. The interplay between
the periodic pattern-forming and the homogeneous mode
reflected in phenomena such as ‘‘abnormal’’ rolls@7–10# or
‘‘dendritic growth’’ @11# which have no counterpart in th
standard Rayleigh-Be´nard convection. The bifurcation dia
grams are organized by various multicritical points mainly
the nonlinear regime, such that the theoretical analysis
well as the experimental verification are quite demanding
the present case, the EC is discussed in a system, w
equilibrium and nonequilibrium phase transitions and th
competition are disentangled in a transparent manner, sin
certain multicriticality is already seeded in the linear regim

Our investigations concentrate on the familiarplanar EC.
In the common capacitorlike configuration an ac volta
V(t)5A2U cos(vt) is applied in thez direction between two
transparent plates~in thexy plane!, which confine a nematic
layer. By a suitable surface treatment of the plates the di
tor is orientated in a preferred direction~alongx̂) in the layer
plane. The effective voltage amplitudeU and the circular ac
frequencyv serve as main control parameters. All mater
properties of nematics require a tensorial description.
instance, the dielectricity tensore, which expresses the elec
tric displacementD5e•e0E in terms of the electric fieldE,
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has the representatione i j 5e'd i j 1(e i2e')ninj ( i , j
5x,y,z), which reflects the uniaxial symmetry. Obvious
e' describes the dielectric response ifE is oriented perpen-
dicular to n while e i governs the caseEin. For positive
dielectric anisotropyea5e i2e'.0, the orientation ofn
parallel toE is energetically favored.

Historically, standard nematics, like 4-methox
benzylidene-48-n-butylaniline~MBBA ! or a mixture, Merck
Phase 5, with negative dielectric anisotropyea have played a
major role in the investigation of EC, since there was hope
exploit them for designing liquid crystal displays@12#. For
this reason most of the material parameters for those s
stances have been measured, which has allowed a qua
tive comparison with the theoretical calculations on the
@13#. For instance, a spontaneously excited homogene
twist mode, which corresponds to a rotation of the director
the plane of the nematic layer, has turned out to be esse
for the interpretation of secondary instabilities in the plan
EC @14,15#. A reverse sequence of bifurcations is typical f
thehomeotropicgeometry~director orientation perpendicula
to the confining plates, i.e., parallel to the applied elec
field!. First a primary Fre´edericksz transition takes plac
leading virtually about the center plane of the cell to a pla
configuration, which at increasing voltages becomes conv
tionally unstable via a secondary bifurcation@16#.

In this paper we studyplanar EC in nematics withposi-
tive dielectric anisotropyea.0. This case, which has no
attracted much interest so far, is in fact very convenient
investigate the competition between convective and homo
neous modes. While in the standard planar setup withea

,0 the electric fieldE (i ẑ) is stabilizing, a destabilizing
dielectric torque acts now on the director to align it with t
field direction. However, an ensuing homogeneous distor
~the Fréedericksz transition! occurs only for an applied volt-
age amplitudeU above a certainv independent threshold
UF5pAk11/(eae0) ~see, e.g.,@17#, k11 denotes the splay
elastic constant!, since opposing torques from the orient
tional elasticity have to be overcome. The Fre´edericksz tran-
sition can compete with the nonequilibrium EC instability
the basic state. The EC becomes possible above a frequ
dependent threshold voltageUc(v), which increases mo-
notonously with v starting from Uc(0)
'p2Ak11s' /(sae'e0). The material constantss' and sa
are defined in analogy toe' and ea via the components o
©2003 The American Physical Society07-1
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the conductivity tensors [ s i j 5s'd i j 1saninj . Note that
the ratio of e' and s' defines the charge relaxation tim
tq5(e'e0)/s' , which serves as a time scale in the sequ

Inspection of the expressions forUF and Uc(0) above
reveals that the Fre´edericksz transition is, in fact, easily pre
empted by a primary EC instability at smallv and at not too
large ea . With the increasing frequencyUc(v) approaches
UF from below until the curves cross at a codimension
~C2! point v5vC2. The experimental studies of nemati
with positive ea have, in fact, exclusively concentrated o
the linear threshold linesUc , UF , and the identification of
vC2 ~see, e.g.,@18,19# and further references therein!. Mate-
rials for a wider range of positive dielectric anisotropiesea
.0 were systematically synthesized by mixing MBBA wi
few weight percentages of suitable nematics~EBCA,
MBCA! with large ea'20. Most material parameters~in
particular the viscosities, see Sec. II below!, which are
needed for a precise comparison with the linear theory, h
not been measured in these mixtures. However, the exp
mentalUc , UF threshold values compared well with the th
oretical calculations@18,19# on the basis of a material param
eter set, to which we refer as MBBA* henceforth. In
MBBA* exceptea the material parameters of pure MBB
are used@20,21#. The explicit bifurcation diagrams presente
in this paper are calculated for MBBA* with a representative
medium valueea50.1.

A simple consideration reveals that besidesUc , UF a fur-
ther instability line in the nonlinear regime has to meet
C2 point. If the voltage amplitudeU is lowered starting in
the Fréedericksz state forU@UF and forv,vC2, one will
hit for continuity reasons an upper transition lineUc

F(v)
.UF.Uc(v) to the convection state. All the transition line
are sketched in Fig. 1 to underline from the beginning
generic framework for the bifurcation structure nearvC2,

FIG. 1. Upper and lower convection onsetsUc , Uc
F as function

of the dimensionless frequencyv85vtq together with the Fre´ed-
ericksz bifurcation line UF5pAk11/(eae0) ~solid lines! for
MBBA* with ea50.1. The dashed line indicates a weakly nonl
ear approximation forUc

F near the codimension-2 pointvC28 ~see
Sec. III B below!.
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which is detailed below. A comprehensive analysis of t
bifurcation diagram in the vicinity ofvC2 has also revealed a
rich variety of nonlinear bifurcation types. As an example f
the complex structure of the multicritical pointvC2 it will be
demonstrated below that the bifurcation at the linesUc , UF

is supercritical, while it is subcritical and hysteretic atUc
F .

The resulting possibility of bistability between the conve
tion states and the homogeneous Fre´edericksz distortions ha
not been mentioned to our knowledge in the literature so
and might apply to other EC experiments as well.

The paper is organized as follows. In Sec. II we brie
present the fundamental equations as the basis of our t
retical calculations and define our notations. Section III co
tains the analysis of the convection onset at the bifurca
lines Uc and Uc

F . In Sec. IV the nonlinear bifurcation dia
gram for the substance MBBA* is presented and discusse
in detail. With some concluding remarks the paper will e
in Sec. V.

II. BASIC EQUATIONS

To explain the EC destabilization mechanism that h
been elucidated first by Carr and Helfrich@22,23#, a brief
sketch of the standard nematohydrodynamic equations is
ficient @4,24#. They describe the coupling between the dire
tor n, the velocityv, and the electric fieldE, which derives
asE52¹f from the electric potentialf.

The important point is that in the presence of direc
distortions an electric current densityje5¹•(s•E) is inevi-
tably associated with a charge densityre5¹•(e•e0E) ac-
cording to the continuity equation

d

dt
re1“• je50, ~1!

with d/dt5] t1v•“ the substantial derivative. The bul
force reE in the Navier-Stokes equation

rm

d

dt
v5reE2¹p1¹•S, ~2!

with the pressurep and the mass densityrm , may then over-
come the viscous stresses, to drive the velocityv. The fluid is
assumed incompressible (“•v50). S denotes the stress ten
sor with viscous and~almost negligible! elastic contribu-
tions. The explicit form ofS ~see, e.g.,@2,4#!, which goes up
to quintic order in the components ofv andn, includes six
~five independent! Leslie shear viscosity coefficient
a1 , . . . ,a6 @25#. The familiar effective~Miesowicz! viscosi-
ties that are determined by the relative orientations ofn and
v and the gradients ofv depend linearly ona i . For instance,
the large shears]xvz and]zvx at a convection roll center in
the planar case give rise to the Miesowicz viscositiesh1
5(a41a52a2)/2 and h25(a31a41a6)/2,h1, respec-
tively.

Eventually the director dynamics is governed by

g1n3
d

dt
n5n3~hel1he1hv!, ~3!
7-2
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with g15a32a2. The restoring angular momenta in case
splay (k11), twist (k22), and bend (k33) director distortions
are contained in the effective fieldhel derived from the Frank
orientational elastic energy~see, e.g.,@2,4,6#!. The dielectric
and viscous torqueshe andhv , respectively, are defined as

he5eae0~n•E!E, hv52a2D•n2a3n•D, ~4!

where the tensorD(Di j 5]v i /]xj ) characterizes the velocit
shear. For example, the viscous torque contributio
2a2]xvz enhances the splay distortion of the director at
roll center. Equations~1!–~3! have to be solved with the rigid
boundary conditions v50, n5 x̂ and f5f0

57A2U cos(vt) at z56d/2, with d the cell thickness.
For a more compact notation we combine in the followi

all field variables in a symbolic vectorV5(f,n,v), so that
the set of Eqs.~1!–~3! can be written in the symbolic form

B•] tV5L•V1N2~V,V!1N3~V,V,V!1•••. ~5!

The components of the vector operatorsN2 , N3 , . . . are
quadratic, cubic, . . . inV and its spatial derivatives
whereasL andB represent matrix differential operators.

III. ONSET OF CONVECTION

In the following the ‘‘lower’’ threshold curveUc for the
destabilization of the conductive ground state and the co
sponding ‘‘upper’’ one,Uc

F , for the destabilization of the
Fréedericksz state, already shown in Fig. 1, are analyze
detail.

A. Lower onset of convection atUc

The calculation of the lower onset of convectionUc(v)
requires a linear stability analysis of the planar ground s
V05(f0 ,n0 ,v50) with n05 x̂. From Eq.~5! we arrive by
linearization ofV5V01dV with respect to the convectiv
perturbationdV(r ,z,t) at the linear eigenvalue problem
B•] tdV5L•dV. It is diagonalized by the ansatzdV(r ,z,t)
5elteiq•rV(q,z) with q5(q,p). The eigenvaluel5s
1 iV with the maximal real part determines the growth ra
s(q,v,U). The conditions50 yields the neutral curve
U0(q,v) with the minimum Uc(v)5U0(qc ,v) at q
5qc(v). In the present case the bifurcation is stationa
(V50) and we find typically normal rolls at threshold, i.e
qc5qcx̂. Technically the eigenvalue problem is solved by
Galerkin method, where all fields are expanded with resp
to the vertical coordinatez into a set of functions, that fulfill
the ~rigid! boundary conditions at the confining plates. T
periodic time dependence of the eigenvector due to the
plied ac voltage is captured by the Fourier series in time. T
series expansions are appropriately truncated, such tha
eigenvalue problem amounts to the diagonalization of a
trix acting in the space of the expansion coefficients. It tu
out that the neutral curve is already very well described
keeping only the leading modes inz andt . One arrives thus
at an one-mode approximation, that represents the de
03170
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dence of the neutral curve on the material parameters
particularly transparent manner,

U0
2~q8,v8!5

p2k11

e'e0

K~q8!H~q8,v8!

q82A~q8!1~ea /e'!B~q8,v8!
. ~6!

In Eq. ~6! the notations

K~q8!5
11~k33/k11!q821~Hx /HF!2

11q82
,

H~q8,v8!5s~q8!21v82e~q8!2,

s~q8!5q82~11sa /s'!11, e~q8!5q82~11ea /e'!11,

A~q8!5
a~q8!

h~q8!
[

~a2q822a3!s~q8!~ea /e'2sa /s'!

h2l1
41~a11h11h2! i 1q821h1q84

I h ,

B~q8,v8!5s~q8!1v82e~q8!

are used. The numerical constantsl151.505 63, i 1
51.246 52,I h50.972 67 correspond to certain overlap int
grals,q85qd/p is the dimensionless wave number, andv8
5vtq is the ac frequency in units of the charge relaxati
time tq @26#. For convenience we have included the effect
a planar stabilizing magnetic fieldH5Hxx̂, which is nondi-
mensionalized in Eq.~6! with the help of the splay Fre´eder-
icksz field HF5(p/d)Ak11/(m0xa), xa.0 denotes the an
isotropy of the magnetic susceptibility. According to th
representative example of Fig. 2~a! for MBBA* with ea
50.1 the rigorous behavior of the critical voltageUc(v8)
5minq8U0(q8,v8) is already determined very satisfactori
from Eq. ~6!. The linesUc andUF cross in this case at th
C2 point,vC28 51.99.

The v dependence of the critical wave numberqc(v),
which in fact slightly decreases with increasingv8 in Fig.
2~b!, might look unexpected, since forea,0 we are accus-
tomed to a monotonous increase ofqc8(v8) and a divergence
also ofUc at the cutoff frequencyvcut8 ('2 for MBBA with
ea520.53@4#!. The rather smooth variations ofUc , qc with
v can be understood by examining more closely the thre
old formula Eq.~6!. Stabilizing mechanism are captured v
the orientational elasticity termK(q8).0 and the viscous
dampingh(q8).0. Thea(q8) term represents the essen
of the Carr-Helfrich destabilizing mechanism: The fact
(ea /e'2sa /s'),0 displays the charge separation effe
coupled to the hydrodynamic torque contribution (a2q82

2a3),0. The crucial difference in the threshold behavi
between the standard MBBA and the MBBA* with ea.0
comes from the dielectric torque term (ea /e')B(q8), which
is only weakly frequency dependent. Forea,0 this term is
negative~stabilizing! with a minimum atq850. The term
q82A(q8), which has to compensate (ea /e')B(q8) (U0

2.0
is necessary for EC!, has a maximum forq8;1.2 for small
frequencies that decreases with increasingv8 and shifts to
larger q8. Since minimization ofU0(q8) requires, loosely
speaking, maximization of the denominator in Eq.~6! the
7-3
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decrease ofA(q8) with increasingv8 has to be balanced b
larger qc8 values. In contrast, forea.0 the situation is just
opposite, the contributions ofq82A(q8) and (ea /e')B(q8)
add up, andqc8(v8) will in fact even decrease.

With the use of Eq.~6! the linear properties of electrocon
vection can be easily assessed for other material param
as well. For instance, the Fre´edericksz transitionUF would
precedeUc for ea*0.295 for MBBA* as already mentioned
in Ref. @4#. In general, one has also to be aware of a poss
bifurcation to oblique rolls with the critical wave vectorqc
5(qc ,pc) including a finite angle with the preferred dire
tion x̂ in the cell@4#. In this case the exact threshold behav
can also be described very well by a slightly more comp
cated one-mode formula@4,13#, which contains Eq.~6! as a
special case forpc50. While the threshold voltage in th

FIG. 2. Threshold voltageUc ~a! and critical wave numberqc in
units of p/d ~b! as function of the dimensionless frequencyv8 for
MBBA* with ea50.1 in comparison between rigorous numeric
results~thick lines! and the analytical one-mode formula~6! ~thin
lines!. The Fréedericksz thresholdUF5pAk11/(eae0) is shown as
well ~a!.
03170
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case of an oblique roll bifurcation is only slightly below th
normal roll threshold according to Eq.~6! the roll anglea
5arctan(pc /qc) is fairly sensitive against variations of th
material parameters@4#. Finally we would like to mention
that the convection regime can be enlarged with the use o
horizontal magnetic field@27#. The Fréedericksz threshold
according to UF5pAk11/(e0 ea)A11(Hx /HF)2 is then
shifted to larger values, whereasUc reacts less sensitively
For instance, in the case of MBBA* with ea50.1 and for
Hx5HF we find the valuesUF512.19V, U(0)56.26V,
such that the C2 point is shifted to the larger value,vC28
53.06 @cf. Fig. 2~a!#.

B. Upper onset of convection atUc
F

To calculate the upper onset of convectionUc
F a linear

stability analysis of the Fre´edericksz ground stateVF
5(f,nF ,v50) for U.UF has been performed starting from
Eq. ~5! with the use of the Galerkin methods.

It has turned out that the general behavior ofUc
F for v8

&vC28 can be satisfactorily described by an analytical a
proach, where only the leading Galerkin coefficients a
kept. The Fre´edericksz solution that bifurcates supercritica
at U5UF is calculated within a standard weakly nonline
scheme. Near threshold the director readsnF
5„1,0,cF cos(pz/d)… in the leading order of the amplitud
cF , which vanishes atUF . To the orderO(cF

3), where the
corrections;cF

2 to nx51 andf0 come into play, one ar-
rives at a Landau-type equation] tcF5sScF2gFcF

3 with
the saturation coefficientgF and the splay growth rate

sS5td

eae0~U22UF
2 !

g1d2
. ~7!

The linear growth ratesS crosses zero atUF ; td
5a0d2/(k0p2) denotes the director relaxation time, whe
a051023 N s/m2 andk0510212N set the scales for the vis
cosity and elasticity effects, respectively.

The calculation ofgF is straightforward and the final ex
pression forgF

21 can be read off in the square brackets of t
following explicit representation:

cF
25sSF 2g1d2

tdp2S k332
3

4
k111C~U,v8! D G[c1@U22~UF!2#,

~8!

C~U,v8!5
U2eae0

p2 S 3

4
1

sa /s'1v82ea /e'

11v82 D ,

which is valid in the limitU→UF , v8→vC28 .
In the next step the linear stability analysis of the Fre´ed-

ericksz solution has to be performed. For finitecF the planar
director symmetry is broken and the periodic director flu
tuation crucial in the Helfrich mechanism to drive EC a
impeded; consequently, the threshold must increase c
pared toUc . Technically one has to repeat the calculatio

l

7-4
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that led toUc @see Eq.~6!#, but now for the nontrivial dis-
torted ground state (n5nF). We will skip the straightforward
though somewhat lengthy calculations. The final result in
vicinity of vC28 becomes very transparent if written in th
following form: (Uc

F)22(Uc)
25c@(Uc

F)22(UF)2#}cF
2 ,

consistent withUc
F5Uc at cF50. Solving forUc

F we obtain

~Uc
F!25

c~UF!22~Uc!
2

c21
, c5c1c2 ~c.1!. ~9!

It turns out that the factorc2, which has to be calculate
numerically, depends mainly on some overlap integr
while the material parameter dependence is condensed i
parameterc1 defined in Eq.~8!. It is obvious from Eq.~9!
that the lineUc

F starts at the C2 point (Uc5UF) as well.
Furthermore, inspection of Eq.~8! proves that for fixedea ,
sa an increase of the bend constantk33 leads to a decrease o
cF andc1. Thus the slope ofUc

F(v8) depends rather sens
tively on k33, which is, for instance, known to increas
strongly with temperature near a nematic-smectic transi
@28#. In Fig. 1 the analytical threshold curveUc

F with c1

'0.019, c2'97.8 for MBBA* (ea50.1) is compared with
the rigorous numerical results. As to be expected from
weakly nonlinear approach there is, in fact, a good agr
ment near the C2 pointvC28 wherecF is not too large.

IV. NONLINEAR REGIME

After the discussion of the linear threshold linesUc , UF ,
andUc

F in Sec. III we will now turn to the phase diagram fo
the nonlinear states that bifurcate at these lines. Our num
cally demanding analysis has focused on the interesting
gime nearv85vC28 , since for lower frequencies the wel
investigated familiar EC bifurcation scenarios forea,0 ~see,
e.g.,@24#! were expected and indeed found in some selec
test runs~for more details see@29#!. The analysis of the
periodic solutions and their stability is again based on Ga
kin methods, by which Eq.~5! is mapped on a system o
nonlinear algebraic equations for the expansion coefficie
with respect to suitable test functions. The equations
solved by a Newton iteration scheme and, in general, te
for stability with the use of the standard methods@13,24#.

In Fig. 3 the complete phase diagram in theU,-v8 plane
near the C2 point (vC28 51.99) is shown, which is considere
to be generic for the EC instabilities in nematics with sligh
positiveea . Let us discuss at first the white wedged-shap
convection regime delineated by the linesUc and Uc

F . In-
creasing the applied voltage at lowerv8 the normal rolls
above Uc become at first unstable against the lon
wavelength zigzag~ZZ! instability, which involves undula-
tions along the roll axis. At the lineUS , on the other hand, a
homogeneous splay modenz

S5cS cos(pz/d) spontaneously
bifurcates. Forv8 larger than the crossing point,v851.75,
of UZZ and US , the splay mode is directly superimpose
onto the periodic director distortion with amplitudeA leading
to the so-called splay rolls@15# characterized by the off
plane director componentnz5@A cos(qx)1cS#cos(pz/d). The
bifurcation atUS in Fig. 3 is supercritical and can appe
03170
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above or below the~in the convection regime,v8,vC28 ,
irrelevant! line UF . Although the transition is certainly fa
vored by the dielectric torque forea.0, it is also driven by
complex nonlinear interactions between the director and
flow field. In fact, splay rolls have been identified and d
cussed also in buoyancy driven thermal convection in ne
atics @15#.

The interaction between the convection-mode amplitu
A and the homogeneous splay director distortioncS is cap-
tured by the coupled order parameter equations forA and
cS :

] tA5~sR2gRuAu22bcS
2!A,

~10!
] tcS5~sS1GcuAu2!cS .

All coefficients have been calculated and a good agreem
with the Galerkin analysis has been found. ForcS50 theA
equation describes the supercritical bifurcation of the ro
with the amplitude A25sR /gR}U2/Uc

221 at Uc . The
splay-roll bifurcation takes place, when the effective grow
ratesS

e f f5sS1GcA2 becomes larger than zero. The coef
cient Gc is negative for smallerv8 before it changes sign a
v8,vS851.68, marked by a star in Fig. 3. The form o
US(v8) can be understood on the basis of Eq.~10!: In the
regimev8,vS8 a splay bifurcation atUS,UF is possible,
because the contributionGcA2.0 in sS

e f f can compensate
sS , which is negative forU,UF @cf. Eq. ~7!#. For v8
.vS8 the negativeGc term suppresses at first the positivesS

term in sS
e f f resulting inUS.UF .

Of particular interest is the upper bifurcation lineUc
F @see

also Eq.~9! and Fig. 1#, at which the Fre´edericksz state be
comes convectionally unstable whenlowering the voltage

FIG. 3. Complete phase diagram for MBBA* with ea50.1 for
frequenciesv8 near the C2 pointvC28 ~see text! on the basis of the
Galerkin calculations for rolls with the critical wave vectorqc(v8).
The bifurcation lines above onset (Uc) indicate the zigzag instabil-
ity (UZZ), the Fréedericksz transition (UF), the splay-roll bifurca-
tion (US), the Fréedericksz→ convection (Uc

F), and the convec-
tion → Fréedericksz transition (UF2).
7-5
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from above. A weak nonlinear expansion slightly above
line Uc

F with respect to the convective perturbation yields
negative saturation coefficientg for frequenciesv8,vC28 in
the resulting Landau equation, indicating a subcritical bif
cation.g is strongly decreasing with frequency, i.e., the su
critical nature becomes more pronounced at lowerv8. How-
ever, it should be emphasized that lineUc

F has in principle no
relevance, when the voltage isincreasedfrom below, i.e.,
when starting from convective Galerkin solutions inside
white wedged-shaped regime in Fig. 3. In fact, we fou
these solutions to exist far beyondUc

F in the nonlinear re-
gime, but we were not able to study systematically their s
bility. Only in an intermediate frequency rangevcF8 ,v8
,vC28 above ~and on the right of! the line UF2 in Fig. 3
convection ceased to exist. Thus, in contrast to the uni
Fréedericksz-solution in the bright gray region,bistability
exists between the Fre´edericksz and convective solutions
the gray-shaded area enclosed betweenUc

F andUF2.
For a better illustration of the subcritical nature of t

convection onset atUc
F and the interplay between the Fre´ed-

ericksz state and the convection, it is useful to follow t
order parametersA and c ~obtained as the Galerkin solu
tions!, when the reduced control parametere5U2/Uc

221 is
continuously increased at fixedv8. The casev851.88
slightly below vcF8 51.89 is shown in Fig. 4~a!. At first the
amplitudeA ~solid line! of the periodic roll state grows}Ae
abovee50 in line with the supercritical bifurcation atUc .
At eS the homogeneous splay modecS ~dot-dashed line!
bifurcates. Though a further increase inA is then slowed
down, splay-roll convection solution continue to exist up
large e, as already mentioned. On the other hand, we h
learnt from our previous considerations in Sec. III, tha
pure Fréedericksz statecF with A50, which bifurcates at
eF , can exist only fore.ec

F5(Uc
F)2/Uc

221 ~thick dashed
line!. Thus, decreasinge in the Fréedericksz state from
above leads in any case ate5ec

F to a discontinuous jump
@indicated by the double arrows in Fig. 4~a!# from the Fréed-
ericksz solutionnz

F5cFcos(pz/d) @Eq. ~8!# to the splay rolls
@Eq. ~10!# with A,cSÞ0. Obviously, fore.ec

F we recover
the bistability between the convection and the Fre´edericksz
state.

The situation changes for frequenciesv8.vcF8 since the
bistable regime is restricted to ane range betweenec

F and
eF2 in Fig. 4~b!. Above eF2.0.105 only the Fre´edericksz
solution exists (A50, c5cF). As demonstrated in Fig. 4~b!
the pointe5eF2 corresponds then to the saddle node~S! of
the backward bifurcation atec

F , which connects the stabl
and unstable branches of the roll- and splay modeA andcS ,
respectively. Atec

F the splay amplitude branchcS and the
Fréedericksz solutioncF have to merge in line with Fig
4~b!. The upper solidA line in Fig. 4~b!, which approaches
zero ate50 ~not shown! corresponds to theA line in Fig.
4~a!. In the same mannercF ~dashed! approaches zero ateF ,
as shown in Fig. 4~a!. When approachingvcF8 from above,
the saddle node moves obviously to largee along the almost
vertical separation lineUF2 for v85vcF8 in Fig. 3. Note that
the unstable solutions starting atec

F in Fig. 4~b! have not
03170
e

-
-

e
d

-

e

e

vanished; only for clarity they are suppressed in Fig. 4~a!,
because they have no physical relevance.

V. CONCLUSION

In conclusion we have demonstrated that planar nema
with slightly positiveea ~and positivesa) show interesting
nonlinear EC states, which result from the competition b
tween a convection mode and a homogeneous splay m
Above the subcritical transitionUc

F from the Fréedericksz
into convection state a bistability between a Fre´edericksz so-
lution ~equilibrium state! and a convective solution~nonequi-
librium state! was clearly identified. A transition frequenc
vcF could be determined below which we have been able

FIG. 4. Amplitudes for the off-plane director-distortionnz

5@A cos(qcx)1cS1cF#cos(pz/d) as function of the reduced contro
parametere5U2/Uc

221 for frequencies slightly below or abov
the transition frequencyvcF8 51.89 atv851.88 ~a! and v851.90
~b!. A describes the periodic off-plane director excursions in c
vection rolls andcS , cF the homogeneous splay distortion in th
convection or the Fre´edericksz state, respectively. For a detail
explanation, see text.
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construct splay-roll solutions up to high voltages, where
for v.vcF with increasing voltage a discontinuous tran
tion to a Fréedericksz state occurs. The bifurcation diagra
are believed to display the generic features. Support st
from the detailed physical interpretation of the destabili
tion mechanism as well as from the observation that par
eter modifications led only to some quantitative changes.
hope that our comprehensive theoretical analysis will m
vate future experimental studies. Besides a careful expl
tion of the linear destabilization linesUc , Uc

F , and the C2
point, the investigation of the bistable regime aboveUc
ys

s

st

c
.

A

R

.

hy

.

an

03170
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looks promising. One might, for instance, achieve a be
insight into the nature of inhomogeneous Fre´edericksz states
in the presence of walls between symmetry degenerated
figurations6cF where, according to Eq.~2!, also a flow is
excited.
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