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Modulated structures in electroconvection in nematic liquid crystals
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Motivated by experiments in electroconvection in nematic liquid crystals with homeotropic alignment we
study the coupled amplitude equations describing the formation of a stationary roll pattern in the presence of
a weakly damped mode that breaks isotropy. The equations can be generalized to describe the planarly aligned
case if the orienting effect of the boundaries is small, which can be achieved by a destabilizing magnetic field.
The slow mode represents the in-plane director at the center of the cell. The simplest uniform states are normal
rolls, which may undergo a pitchfork bifurcation to abnormal rolls with a misaligned in-plane director. We
present a new class of defect-free solutions with spatial modulations perpendicular to the rolls. In a parameter
range where the zigzag instability is not relevant these solutions are stable attractors, as observed in experi-
ments. We also present two-dimensionally modulated states with and without defects which result from the
destabilization of the one-dimensionally modulated structures. Finally, fdoneery smal) damping, and
away from the rotationally symmetric case, we find static chevrons made up of a periodic arrangement of
defect chaingor bands of defecjseparating homogeneous regions of oblique rolls with very small amplitude.
These states may provide a model for a class of poorly understood stationary structures observed in various
highly conducting material§‘prechevrons” or “broad domainsy.
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I. INTRODUCTION mental and[10—-12 for theoretical work. In this case the
director is initially oriented perpendicular to the layer, i.e., in
Nematic liquid crystals, the simplest type of intrinsically the z direction, so the system is isotropic in tlkey plane.
anisotropic fluids, continue to provide model systems for aThen the first instability is the spatially homogeneouselre
wide variety of interesting nonlinear dynamical phenomenaericksz transition where the director bends away fromzhe

like optical instabilities[1], flow-induced nonlinear waves girection, singling out spontaneously a directoin the x-y
[2], critical properties of nonequilibrium transitiof8], and  plane. After the transition the slow, undamped variation of

in particular electrically or thermally driven convection in- . . -
. the in-plane directorc (the Goldstone modemay be de-
stabilities[3,4] (see also Ref.5] and references therein scribed by an angle. At higher voltages there is a further

In nematics the mean orientation of the rodlike molecules o L o .
_ i ) - . ) transition to EC, which is in many respects similar to that in
is described by the director. ElectroconvectioiEC) driven

. . cells with planarly aligned nematics. However, now the
by an ac voltagéJ at frequencyw is commonly observed in

thin nematic layers sandwiched between glass plates Witﬁoldstone mode has to be included in the description even
Y 9 P right at threshold. It turns out that the torque arising when

o ; : . ONAUGhe in-plane director and the wave vector &kghtly) mis-
tivity anisotropy (r,>0) and negative or slightly positive aligned is destabilizing, i.e., it acts to increase the misalign-

dielectric anisotropy, . In the well studiedlanarly aligned ment (“abnormal torque). Then the in-plane director in

case, wheren is anchored parallel to the bounding platesNRs is not perpendicular to théocal) roll axis. These NRs
along a direction which we will take as (we choose the \ith a misaligned in-plane director were termed abnormal
layer in thex-y plang EC sets in directly from the homoge- (q|is (ARs) [6]. Furthermore one may expect spatiotemporal
neous state at a critical voltadé () and leads slightly  gjisorder right at threshold and this has indeed been observed,
above threshold to ordered roll patterns associated with gt |east in the oblique roll regime, where one expects faster
periodic director distortion with the critical wave vector dynamics[9,11,13. For NRs the experimental situation is
0c(w). Here we will only consider the most common situa- not totally clear{13].

tion, where the bifurcation is supercritical and leads to sta- By applying an in-plane magnetic field, which now de-

tionary rolls withg, parallel tox [normal rolls(NR9)]. Inthe  fines thex direction and exerts an aligning torque onthe
usual low-frequency conduction regime, where the wavedisorder at threshold can be suppressed. Indeed the situation
length is controlled by the cell thickness, this may exclude inthen is similar to that in the planar case. However, for a small
particular very low frequencies, where the rolls at thresholdield a small abnormal torque will suffice to overcome the
may be oriented obliquelydepending on the materjalin magnetic alignment, and then one has a transition to ordered
NRs near threshold the director remains intheplane, i.e., ARs, where the in-plane director is homogeneously rotated
perpendicular to the roll axis. out of thex direction. For NRs this symmetry breaking is

The investigation of homeotropically oriented cells usingspontaneous, either to the left or to the right, and the transi-
nematics with manifestly negative dielectric anisotroy tion is described by a supercritical pitchfork bifurcation,
<0 was initiated rather recently, see Rd®-9| for experi-  which has been verified experimentalli4,15.
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In the planarly aligned case one also has a transition tgystem by the following set of coupled Ginzburg-Landau
ordered ARs, although this occurs at a distance from threshequations for the complex patterning modlend the slowly
old such that a quantitative description is more difficult. varying anglee [11,17:

Since now the director is aligned at the cell boundaries the
distortion of the in-_plane dire_ctor_is cqnfined to the center ;"9EA:[8+§>2<><(9§+ ffxy(ﬂgz,_2iqCC1<Pf9§/—C2<P2)—g|A|2
part of the cell leading to a twist distortion. Incidentally, this

is the reason why the phenomenon has been identified only +ivayelA, (1)
recently in planar convectiofil6]. By applying a magnetic

. . . . a2 - 2 2

field in they direction one can now destabilizeand thus 7109 =K1d50+Kadip—Te

move the AR transition downward towards the primary in-

stability. The AR transition merges with the primary bifurca- r . . i .

tion when the field reaches the strength of the twist Freeder- +70= igcA™ (dy—igep)Atc.cl. @)
icksz field. When the two transitions are near each other a

simple reduced description can be used. This shows that there we have chosen thedirection along the wave vector
two classes of systems are similar in many ways. _of the NRs. The angle of the in-plane director is measured
Above the AR transition one often observes more complitrom thex axis. The validity of Eqs(1) and (2) is restricted
cated structures with or without defects. In particular, in ho+y small values of the reduced control paraméteore pre-
meotropic EC, modulations of the AR mode have been Obtisely e/g<1 and angles|<1). Special attention should
served which leave the roll pattetne., its phasgvirtually — pe paid to the sign of the parameferIf T were positive the
unchanged14,13. Ideally, such structures can be consideredse|g , would be stabilized by the roll pattern. HowevEris

quasi one dimensiondlD) with spatial variations only per- egative, at least for the standard nematics which have been
pendicular to thenormally orientedl rolls. We wish to ad- | sad in relevant experimenf&1,17,18. This gives rise to

dress in particular such structures by studying the simpleshe {ransition to abnormal rolls and to interesting dynamical
set of coupled amplitude equations capable of describing thpenomena. Note tha, tends to zero at the transition from
AR scenario. These equations were first derived for homeo; .41 to oblique roIIsyat threshold.

tropic systems near threshdldl1, 17 but with a slight gen- The equations can be justified most convincingly for ho-

ﬁralization thley can ai(sohillustrate the planar case. Wﬁlprﬁsemeotropic orientation near the EC thresh@ieduced control
be'r?I 15. S0 utltc;]ns do tt tsl_a;)tpropr;zattﬁ typleb V\:e V;” t elg,parameters<1). Overall rotation invariance then requires
netfly discuss the destabilization ot these SUUCIUTES. Flipat the three terms multiplying2, in Eq. (1) combine to
nally we present a new class of fully ordered 2D solutions, .. . 2 ST Y .
. ; T (dy—iqce)“, so thatC;=C,=1. Without the isotropy-
occurring at higher voltagéor smaller magnetic fieldsn- Yo L . . X
: I breaking term— T, which is realized easily by an in-plane
volving periodic arrangements of defect cha{ps bands of v < o
defects. We call them static chevrons since they are remi-magnetic field(thenT=x,H%), the anglep may not satu-
niscent of the dynamic chevrons observed in the dielectri¢ate- Then one has to resort to a globally rotational invariant
range of EC, and more recently, also in homeotropic convecdeneralization of Eqsil) and(2) [17,11. We will see that
tion [13]. this is not always necessary.

Our results could also be of relevance for the higher- 1he parameter€,,C, were introduced to allow for more
frequency dielectric regime, where the rolls are very narrowdéneral situations like in planar alignmefar structural sta-
and therefore the orienting effect of planar boundary condibility one needsC,>C1>0). Then the magnetic field term
tions is substantially weaker than in the conduction rangein Eg. (2) actually models the orienting effect of the bound-
Recently, the weakly nonlinear description of the dielectricaries. In the common conduction range, where the wave-
regime in planarly aligned systems has been investigated itgngth is of the order of the cell thickness, the orienting
detail [18]. effects are sufficiently strong so that interesting dynamics of

In Sec. Il we discuss the basic equations, which take the Sets in at values of which are too large to allow quanti-
form of an activator-inhibitor system, and their homogeneougative description by Eqs(l) and (2). Then, in particular,
solutions. In Sec. Il we study 1D modulated solutions. Theirsingular mean flow has to be includgtd, 2. To reduce the
stability within the full 2D equations is investigated in Sec. damping ofe one can either apply a destabilizing in-plane
IVA and in Sec. IVB some 2D structures, in particular magnetic field and/or go to the dielectric range, where the
defect-free solutions, are presented. In Sec. V we present tt@ffect of boundaries is weak¢f8]. When T becomes too
static chevron states. We conclude by putting our results intsmall higher-order terms are needed in E2). _

a more general context, relate them to experiments, and For calculations it is useful to introduce a scaled version
present an outlook. of Egs.(1) and(2) for £>0,

OA=[1+ 32+ 92— 2ic,pdy— d>— |A|2—iviyd]A,
II. BASIC EQUATIONS TOA=[1+ 05+ 5= 2ic1dy— ¢~ |A*~iviyd] .

AND HOMOGENEOUS SOLUTIONS

In situations where the in-plane director, described by an N2 2., I_ * e
angle ¢ measured from the direction, becomes an active dp=D1dxd+D2dyp—hop+ 2A (C2dy=id)Atc.c.,
mode already near the threshold to NRs one can describe the (4
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where The casen=0 needs special attention. Clearly the whole
band
A=(2lg)"?A,  ¢=8"4/(£,0:\/Cy),
5 5 L Ap=0, ¢g=const 9
ngxxs_llzxa yzgyys_UZYu tzZ')’lgt/(8|F|Q§).
is the solution of the equation. The segmégg| <1 is re-
r=1T19%(2y,9), v= ;//(ff,chx/c—z), pulsive, whereas the regiofhé,|>1 are attractive. The AR
state(for h=0) separates the two cases. There is a separatrix
D,=2Ka9/(IT|0285,),  D,=2K,g/(IT|02&5,), AZ2+1/(1+ 7)p2=1, which separates trajectories flowing
out of the repulsive segment from those coming from infin-
¢1=C1/\Cy ©=VC, h=2Tg/(IT|q%). (5 ity.

_ _ _ o The degeneracy fon=0 is presumably realistic for ho-
The damping parameter gives the ratio of the aligning meotropic EC. It is a consequence of rotational invariance.
(=isotropy breaking torque over the abnormal torque of For planar EC the degeneracy is removed by higher-order
NRs. For large values di one can set)=0 and disregard terms, in particular a term proportional @® in Eq. (4).
Eq. (4). h can be decreased by either decreasing a stabilizinglevertheless it is instructive to study this limit where results
magnetic fieldincreasing a destabilizing fieldr by increas-  simplify.
ing . Below we will show that, keeping the aligning torque
fixed, one can write lIl. 1D MODULATED STRUCTURES
h=ear/e, (6) Next we consider modulated structures that leave the roll

wheres ag is the reduced control parameter, where the tran_pattern untouched, i.e., which do not involve the phase of the

sition from NRs to ARs takes place. The parametede- comp!ex fieldA. This can occur g_enerically only for spatial
: ) - . . variations alongk. Then the equations take the form
scribes the action of the gradient of the in-plane director on
the phase of the rolls. Experimentally it can be controlled by
varying the frequency. In this paper, we will be concerned
with the ranger>0, where NRs are first destabilized by the 2 o
transition to ARS(see below. For v<<0 the zigzag instability drp=(D1d5+A=h) . (11)
comes in earlier. Various features of E¢8) and (4) have
been analyzed in Ref§11,17,2] and comparison with ex- In this section we will study these equations. We will choose
periment has given evidence for their validity. A>0.
We first discuss the homogenous solutions of Egsand
(4) for rolls with modulation wave vector(,P) where A A. Single domain walls
=Ae (TPY) A =0, and a constant in space angfe
= ¢o. One is left with the dynamical system

T A= (92+1—A’— ¢?)A, (10)

We start by discussing domain walls that connect the two
variants of AR solutions and their interaction. Near the AR

T9A=[1—Q%— P2+ 2¢,Pdo— ¢2— A2]A,, transition 1 near 3 domain walls attract each other, so that
modulated states are unstable. This can be seen from the fact
0t¢o=(Ac2>—h)¢o—Csz<2)- ) that for 1-h<1 the amplitude can be eliminated adiabati-

cally from Eq.(10) leading to
These equations can be classified as an activator-inhibitor
system with activatoA, (positive linear growth rate for not

too large wave vectorand inhibitor ¢. For simplicity we . )
will in the following considerQ=0 (the results are easily N this equation all modulated stat@hey can be expressed

generalizell For P=0 (rolls exactly in thex direction; we in terms of an elliptic integralare unstable, although their

will deal with this case, except in Sec) Vhere is the sym- Iifetime; are excegdingly long due to the exponential_ly weak
metry ¢— — . The basic uniform statd,=0, ¢,=0, is an (attractive interaction between well separated domain walls

unstable solution of Eq(7), and the NR staté\,=1, ¢q (see belpw : . . .
—0, is stable only foh=1. Finally, the abnormal rollAR) Surprisingly, for lower damping, the interaction acquires
repulsive parts, so that stable modulated structures can

dip=(D135+1—h—¢?) . (12)

states . .
emerge. In fact, foh—0 the interaction becomes purely
Apr=1h, ¢sr==\1-h (8)  repulsive so that onlyeriodic modulations exist(see be-
low).

exist in the range &h<1. They bifurcate from the NRs at  Actually, for h=0 a static domain wall solution can be
h=1 and they break the symmetgy— — ¢ of the equations. found analytically. It reads
Forh>0 the two AR states are global attractors with regions

of attraction Ag>0, ¢,> or <0, respectively. Forh Au(X)=AgsecliBX),  du(X)= dotani(Bx), (13
>47/(1+47) the AR states represent sadd(éso real ei-
genvalues otherwise spiral points. where
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There are also pulse-type states localized around one of the
AR solutions as well as nonperiodic extended solutions.

Let us first approach these modulated solutions from the
side of large separation between domain walls by studying
their interaction. Repulsive interaction is a prerequisite to
form stable periodic states and interaction of both signs are
necessary to form nonperiodic arrayz2]. The problem is
formulated as follows. Two walls are placed symmetrically
around the origin at positions Xy. Then the fields have zero
derivative atx=0. We now focus on the regioxn>0, write
the amplitude and angle asA=A,[x—Xq(t)]+a[x

=15 -1 -5 0 5 LLUN N —Xo(t),t], &= Pyl X—Xo(t) ]+ o[ X—Xp(t),t] and substitute

x these expressions into Eq&l0) and (11). In the spirit of
FIG. 1. Domain wall solution connecting the two abnormal roll Small variationsand slow (slaved dynamics we keep the

statesA=h, ¢==1—h for D,=0.2 andh=0.01. terms linear ina and ¢, but neglect those that are small and
contain time derivatives
BP=155- AI=2D.%  $3=2(1+Dy)p% XoTAL= — (5 +1-3AL— pl)a+2A,bue,
1
(14 Xohp=—2A —(D12+A,—h 16
0bw= whwa—( 195t Ay )@, (16)

It selects the stateA=Ag, = * ¢y from the continuum of

s:agnis(g)t. :{Vedhave_ checlll<ed ImtJ.merlctﬁIIy ta;]nd cou:I))d f\|/r\;d N0l functions isX— Xo.

sta ehsal_c Og“aT I;Na 1s30u lon other b?n Ef3). We To satisfy the boundary conditions one neests A,

notvevt at S|qcez>0r]> q.'( ) connelf;s §ta ebstgéesc,j. ' —A.,a' =—A, ande=d,— b, ¢' = — P, atx=0. At the
e mention that stationary wa(ll3) is embedded in a other endx—oo the perturbations and ¢ should vanish.

continuous family of moving walls connecting inequivalent _— . ;
states(9). Their study is beyond the scopes of the presen Au/lt|ply|r,19 Ea. (-16) by the adjoint of the t_rar_ls_latlonal mode
w»— ¢y) and integrating from zero to infinity, we obtain

paper. A . )
- an equation that has, on the right-hand side, only the bound-
Since forh# 0 the walls can connect only to the AR statesary terms ak=0. On the left-hand side, the integrals may be

and par— =1 (# ¢g) for h—0, this limit has to be clari- ) L :
fied. An example of a numerically stablgvithin the 1D extended to- with negligible error leading to

equationg wall for smallh is shown in Fig. 1. The fields go

where the dot denotes time derivatives and the argument of

2\ _ Ir2\\w _ A'2 n _ _ 12
to their AR values at spatial infinity. However, in the wall (D) = AN Xo= A"+ Au(Au—Ax) = Dal by
region the fieldg exhibits an overshoot approaching the val- + O (by—b)] (17)
ues *+ ¢, of Eq. (13). The overshoot becomes longer and e '
approaches nearer to ¢, ash—0. where (- --)=[”_dx---. This formula can be used only

In order to understand this behavior better, we study th§hen the term in brackets on the left-hand side is positive,
spatial decay of the solution into the AR state. This is ob+ o for

tained by linearizing Eq910) and(11) around an AR solu-

tion and calculating the spatial exponents. They are T< Tacce={ PuI(AL?). (18)
5 , 4h(1-h) Otherwise translation becomes an active mode, i.e., one ex-
pi=h*+/h"— D, (15 pects spontaneous acceleration of the domain wall. This can

be shown by retaining the small time derivative terms omit-
Forh—0 the exponents are complex and tend to zero, whicilie‘j.In Eqs.(16): We will here assume Ed18) to hold ((.EX'
explains the slow decay. The exponepts remain complex perimentally this appears to be the dased comment briefly
for damping constants<h.=(1+ D1/4)__1 We will show N the acceleration instability at the end of this section.
osc .

that this is the bound up to which domain walls may repel '”bthe SpleCif' gal‘s'e;_o at”d for wall(13), expressior(17)
and thus form stable bound states. can be evaluated leading to

_ o = —2BX%g
B. Interaction of domain walls, modulated structures [2(1+Dq)=7D1lxo=12D, e ’ (19

In simulations of Eqs(10) and(11) one easily finds stable Thus, at least for< 7. 0Ne haxy>0, i.e., the interaction
stationary solutions with more than one domain wall. In par-among walls is repulsive everywhere. This is consistent with
ticular there are periodic solutions which come in two vari-the numerical observation of stable periodic solutions and no
eties: those that preserve the global symmetry> — ¢ nonperiodic states.
(symmetrig¢ and others that do not preserveribnsymmet- Forh#0, we may use the asymptotic behavior character-
ric). This section is mainly devoted to periodic solutions.ized by the exponents in E@L5) to evaluate the right-hand
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osF .
oF ]
os- . -
L . i
L 4 0 , i
ak ] 0 0.5 1
L E h
i 1 . 1 . 1 i
-10 0 10 FIG. 3. Stability limits of the symmetric periodic solutions in
X the period EL) vs theh plane forD,;=0.2. Below the lind_, they

are unstable against breaking tile—— ¢ symmetry, leading to
ARs. Above the lineL, they are unstable against a symmetry-
broken periodic solution. The dotted line gives the minimum period
Lmin=2mVD1/(1—h), where the periodic solutions bifurcate from
NRs. On crossing the dashed line there is a zigzag instability that is
either short wavethin dasheg or long wave(thick dasheyl The
dash-dotted line is the limit of stability for the ARs.

FIG. 2. A symmetric periodic solution foD;=0.2 andh
=0.1. The dashed line gives the fieddand the solid line the field
¢. It is found by numerical simulation of Eq§10) and (11) with
periodic boundary conditions.

side of Eq.(17). In the range of complex exponergs , i.e.,
for h<h,s, the interaction is repulsive or attractive depend-

ing on the distance between walls. Thus one expects Stabt?reaking. For a fixedh and by increasing the period we find
periodic solutions in appropriate wavelength intervals as welly, ;¢ they are stabilized at some peribg(h). The curve

as nonperiodic structures, in agreement with simulations. AQ | ) can be calculated by a linear stability analysis. It di-
example of a periodic solution is given in Fig. 2 for a field verges to infinity foth— h¢.Since above this value no stable
valueh=0.1. _ _ periodic solutions are expected to exist according to the
Finally, in the monotonic rangé,sc<h<1, the right- 55 mntotic analysis given earlier. At(h) a branch of un-
hand side of Eq(17) is stable periodic solutions with brokefi— — ¢ symmetry bi-
furcates from the symmetric periodic solutions. We find that
(20) the symmetric periodic solutions lose stabilifipr the first
time) at L,(h) in Fig. 3 and from here on one has a stable
nonsymmetric periodic solution, where long and short do-
where c is a factor that cannot be determined from themains alternate. An example for such a solution is shown in
asymptotic analysis anpl_ is given in Eq.(15). One easily  Fig. 4 forh=0.1. Clearly this is the result of the nonmono-
sees that the term in square brackets is negative, so that tighic behavior of the interaction between domain walls. Pre-
interaction between domain walls is now attractive. In thissumably the curvé ,(h) also diverges al .
range we expect neither stable periodic nor nonperiodic so- An example of a more complicated nonperiodic solution

lutions, although, as pointed out before, the lifetime ofis shown in Fig. 5. Such states have been also observed in
modulations may be very long.

Let us now continue the symmetric periodic solutions to
small wavelengths. Since they conserve the glabal — ¢
symmetry one expects them to bifurcate from the NRs. This
is indeed the case. From a simple linear stability analysis one
finds that NRs are unstable with respect to periodic modes
with wave numbeiq|<q., where

[1-h
qc(h)= D, (21)

Indeed, the bifurcation is of supercritical type. In Fig. 3,

4

2 i—l
4h(1—h)

C exp(2p_Xg),

which summarizes our results on symmetric periodic solu- 20 “10 0

. .. . . X

tions, the minimum period. ,,;,=27/q.(h) is shown(dotted

curve. FIG. 4. A nonsymmetric periodic solution fdd,=0.2 andh

When the(symmetrig periodic solutions are born they =0.1. The dashed line gives the fieddand the solid line the field
inherit the instability of the NRs with respect to symmetry ¢.
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D,=0.2, D,=05, =05, »=0.6. (24

The positive value fow indicates that we deal with frequen-
cies above the codimension-2 point, where the zigzag insta-
bility of NRs is not operativd11,16,17,24,2b

In order to check the stability of the symmetric periodic
solutions found in the preceding section against two-
dimensional perturbations we have performed a numerical
Floguet analysis. Thus we write the perturbatieng of a
periodic solutionA (x), ¢, (x) with periodL as

Mot

a(x,y,t)=e’t*isyy > g expizanx/L), (25
n=—o

FIG. 5. A nonperiodic solution foD;=0.2 andh=0.1. The
dashed line gives the field and the solid line the field). A *
o(x,y,t)=e’" s > o expi2mnx/l),  (26)
Ref.[22]. There is no definite distance between the walls and n=-«

there seems to be no repeated structure. The state can b . . .
spatially chaotic. w‘ﬁerean , @, are constants. We linearize Ed8) and(4) in

) o . the perturbations and expand the coefficient functions in the
Equation(17) indicates thak, diverges atr=racce- FOI  jinearized equation, which have the periodicityalso in a

h=0 one finds from Eq(19) Fourier series. After truncation a system of linear equations
2(1+ D) is obtained, which can be solved numerically to give the

TacceE ———~——— (22 growth ratec(s,) for the linear mode with wave vectsy .
Dy The indexi runs over the number of Fourier modes used. The

number of modes necessary to achieve a prescribed accuracy
is found easily by numerical experimentation.

We have focused on periods which lie between the limits
L, andL, in Fig. 3, i.e., to solutions that are stable with
respect tax perturbations. For parameter valu@g) our re-
sults are included in Fig. @lashed ling The thin dashe&or
7.5<L=13) indicate a short wave instability of the corre-
sponding period when crossing the line to the left. The thick
dashegfor 5.7<L=<7.5) indicate a long wave instability. It
is most interesting that the present instabilities occur for a
value ofh considerably smaller tham,g, which means that

IV. 2D SOLUTIONS there are stable periodic solutions for valueshdbr which
A. Stability of 1D modulations in the plane the ARs are unstable.
. . . o We give the numerical values for the stability limits and
In view of the experimental observation of periodic e \aye vectos, of the unstable mode for some periodic

modulations it is essential to study the stability of the solu-gq|tions that we typically use in the simulations of this sec-
tions discussed in the preceding section in the context of thg, (they fit into our typical system length of B4

full Egs. (3) and (4) in two dimensions. In order to reduce

Computer simulations show that the static wall is unstable
for 7= 71,.ce, t0 @ steadily traveling wall. One sees that on
crossing the valuer,.. the wall is accelerated while the
direction of motion is spontaneously chog@3]. No further
study of moving walls will be given in this paper. We find
numerically thatr,..e, as calculated from E@18), increases
With h [ 7acce(h=0)=12,73cce(h=0.1)=16.6;73.cc(h=0.5)
=26.6 forD;=0.2]. One could see this also by inspecting
the form of the walls.

the number of parameters we will, in this section, consider period 8: 0.23h<0.67, s,=0.67,
the casec;=c,=1 appropriate for homeotropic systems.
Some results on the case whenis smaller than 1 will be period 9.14: 0.36h<0.74, s,=0.69,
given in the following section.
For AR solution(8) one can go through a standard linear period 12.8: 0.42h<0.85, s,=0.66.
stability analysis, which gives in the long wavelength limit (27

that, for v>0, ARs become unstable against zigzag pertur-
bations ath=2/3[11,17,21. We should also recall that ARs The lower limit corresponds to the short wave instability
are born from NRs as a stable statehat1, which means @along they direction with wave vectos, . The upper limit is

that they exist stably for d)ue to the instability along the direction (curvel, in Fig.
3).
2 _ We conclude that by decreasing the paramétéwhich
har= 3 h<1. (23 corresponds to increasing the voltage or decreasing the mag-

netic field in a relevant experimenvelow h,g the ARs be-
The valueh,g is denoted by a dash-dotted line in Fig. 3. We come unstable but periodic states with certain periods remain
use in this paper parameter values typical for the standarstable. They are then expected to be observable under appro-
substance MBBA. Specifically we také&7] priate experimental conditions. As an example we quote the
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experiments of Ref.14] for which the appropriate parameter - e W W W W
values are close to E@24) that we use throughout this sec- E - & s s s =
tion. It is reported that for a control parameter corresponding T B B B B
to h=0.4 in our theory, periodic modulations of the director " B R N R

orientation are observed. Indeed this value falls into the .
range where ARs are unstable but some periodic states are - & & &= & & =
expected to be stable. Concerning the periodicity, the ten- Fr - . = = = W= =

dency towards shorter wavelengths with increasing voltage - e e 8 8 = =
reported in Ref[14] is consistent with our results. "B B B B B OB O
[ B I O B B e
B. 2D modulated structures B - . - . = W 9
We now proceed to investigate how the system evolves - . . @ = '4 L
once the periodic states are destabilized at small valubs of F - & = = = = 3
that is, once we cross to the left of the dashed line in Fig. 3. - .- . . . . .
For this purpose we have used a pseudospectral algorithm & @& & & & & & &
that simulates the time evolution of Eq8) and(4), which - = - o e

we describe briefly in the following. The linear part of the

equation Is _tran]‘ormed |ntp Fqur_|er Space anc_j the analytl%ut defects from a simulation of Eg&) and (4) for the parameter
fF’rm“'a for its tlmg evolution is Implemented in the alg(?- values(24), c;=c,=1, andh=0.28. Initial conditions: a slightly
rithm. For the nonlinear part we work in real space and In'perturbed periodic modulation state with period 9.14. Shown is a

tegrate it in time using a variation of the Euler method. Wegay scale representation of the fiéi|. White corresponds to the
use periodic boundary conditions in both space dimensiongyaximum value [(A|=0.85) and black corresponds to the minimum
which are practically enforced by the use of Fourier modes(|A| =0.12). The physical dimensions of the space are 64 and

We typlcally use 128 128 modes in the two space directions we have used periodic boundary conditions.
while our physical space has dimensions<@&# units. Due
to the special treatment of the linear part, pseudospectrdtre of Fig. 8. Finally, in Fig. 9 we give the field of the
algorithms allow for a relatively large time step. We typically defect lattice of Fig. 8. The field is predominantly varying
take 5t=0.05 when we use parameter valuygd). in the x direction with small modulations ig.

We start a simulation of Eq$3) and(4) with a state that On further reducing the parametetthe resulting pattern
is periodic inx, e.g., with period 9.14. The state is stable inbecomes progressively more disordered. A defect chaotic
the parameter range given in E®7). When we reduce the state is eventually obtained for small values of the parameter.
field h slightly below the value 0.30, we find that the patternIn Fig. 10 we show such a state for=0.1. These defect-
is destabilized and modulations along thdirection appear. chaotic states deserve to be studied on their own right but a
The pattern becomes periodic in both spatial dimensions. WelII investigation of this problem is beyond the scopes of the
give an example of such a state in Figs. 6 and 7, where theresent paper.
fields|A| and ¢ are shown, respectively. The state describes It is not easy to predict in what way the states that we
modulations in 2D and has no defects. It was obtained foptudy here would appear in an experiment. Details of the
h=0.28. We note that the state in Figs. 6 and 7 is not fully

static. It persist for a long time but it is eventually modified ‘
through the creation of defects. The system presents persis- ‘
tent dynamics until the end of our simulation, nevertheless, . ‘
the 2D correlations are preserved to a large extent.
In general, the 2D modulated states reached slightly be- |
low the destabilization of 1D periodic modulations are deli-
cate and we have not been able to find a truly static one. The ‘
near-periodicity of the final states in both spatial directions is 1
readily seen in the figures resulting from our simulations. ‘ |
An interesting point is that the defects that are typically ‘
created in these processes also show strong 2D correlations. '
In fact a slightly disordered defect lattice is the usual out-
come of such numerical simulations. An example of a rea- ‘
sonably developed defect lattice is presented in Fig. 8 |
through the field A|. It was obtained by starting the simula-
tion with a periodic state with period 9.14. We used the value 4 i

h=0.27 and the other parameters as in E4). The initial

1D periodic state is then unstable and evolves into the defect FIG. 7. The fields for the state of Fig. 6. White corresponds to
lattice. The time evolution shows that the state has somehe maximum value and black corresponds to the minimum value
substantial dynamics but it always remains close to the pict¢,,= +0.998).

FIG. 6. A two-dimensional periodically modulated pattern with-
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FIG. 8. A reasonably developed defect lattice from simulations FIG. 10. A disordered state: gray-scale representation of the
of Egs.(3) and (4) for the parameter value®4), c,=c,=1, and field |A|. The parameter values used d&), c;=c,=1 andh
h=0.27. Initial conditions: a slightly perturbed periodic modulation =0.1. The space dimension are>684 and we have used periodic
state with period 9.14. Shown is a gray-scale representatioh|of  boundary conditions.

White corresponds to the maximum value and black corresponds to
the minimum (A|=0). The state is dynamic but always remains
close to that shown. The physical dimensions of our space ar
64X 64 and we have used periodic boundary conditions.

tions are performed on a 8464 domain. We start at a field
aboveh,g (h=0.7) with small spatially random initial
conditions of the fieldsA,¢. Experimentally this corre-

experimental procedure could be important and the final reSPONds to jumping from below the EC threshold directly into
sult can be complicated as is indicated, e.g., by Fig. 7 in Reftn€ region of stable ARs. Typically, large domains with both
[14], where roughly periodic states without defects are”AR states appear, separated by walls in xfairection. We
found. In order to observe defect lattices in homeotropicthen jump toh=0.4, where ARs are destabilized while de-
cells, one should remain at small values ofso that the fects are created and a state with 2D correlations sets in. The
director angle does not become very large. Otherwise a trariinal state is roughly periodic with period 12.8 in thelirec-
sition to CRAZY rolls occurs first, which entails formation tion (5 periods in the domajnand 16 in they direction (4

of disclinations in the director fielfil5,14]. Also, at higher periods in the domajn The defects are also roughly ordered
values ofe, mean-flow effects not included in our simple in a lattice. After this we increask gradually in steps of
description become important. 6h=0.02 and let the system relax in every step for 1000 time

Let us describe the protocol of a numerical simulation,units. Although the system never relaxes to a static state, we
which may give some guidance for experiments. The simuebserve clearly correlations in both spatial directions with
the defects approximately ordered in arrays umti0.44 is
reached. Foh=0.46 the defects annihilate and the system
relaxes to a static 1D periodic state with period 12.8. The
process described above seems robust in our simulations.
Note the interesting fact that there is a range of stable coex-
istence of the fully ordered 1D stat# is stable down tch
=0.42) and the 2D solution.

Defect lattices have in fact been observed in planar EC
[26,27] at fairly high frequencies. A theoretical description
for these systems by a much more elaborate quantitative
theory has been developed receriij].

V. STATIC CHEVRONS

Here we will relax the conditiort;=c,=1 by reducing
c, (slightly) below 1. This has no influence on the 1D solu-
tions and their stability with respect todependent fluctua-
tions and increases the range of stability with respegt to
variations. In fact the critical value ¢f for the zigzag desta-
FIG. 9. The field¢ for the state of Fig. 8. White corresponds to bilization of the periodic solution&dashed line in Fig. Bis
the maximum value and black corresponds to the minimum valuereduced. For example, the period 9.14 is stable in the range
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topological charge and this is alternating from band to band.
The dark regions between defect bands imply a small value
of |A|. As one sees from Fig. 12 the fieltl varies periodi-
cally essentially only irx, and thus is very reminiscent of the
1D patterns discussed before. We call these new patterns
“static chevrons.” They are formed from random initial con-
ditions.

The static chevrons persist for small nonzero values of the
parameter. If we let the chevron states be created For
=0 and then increask the static chevrons persist up o
=0.015 for the parameters used here. Increasirfgrther
(h=0.02) we observe that more defect bands are created,
that is, we have chevrons with a shorter period, but these are
now the dynamic chevrons presented previously dpe 1
[17,28. For even larger values df one reaches the much
less correlated defect chaotic state discussed beforecqFor
closer to 1 the correlations become weaker.

To gain an understanding of static chevrons we first note
that the states between the defect bands should be interpreted
as (approximately homogeneous states with nonzero wave
numberP in they direction, i.e., with complex amplitude

FIG. 11. Static chevron state, gray-scale representation of th
field |A|. The parameter values used #2d), c;=0.9,¢c,=1, and
h=0. The physical dimension is 6464 and we have used periodic
boundary conditions.

A=A e™PY, (29)
0.19%<h<0.74, whenc;=0.9, c,=1, (28

. where the sign in the exponent alternates between neighbor-
which should be compared to E(7). For values of be- g regions and the magnitude Bfis related to the number
yond the instability the states that we obtain are similar to defectsp per unit length in one band through the relation
those found above foc;=1. Namely, we observe states

with 2D order close to the instability poiritvith some hys- [s)

teresig, which get progressively less ordered lass de- p=—
creased. When, is decreased further the stable range of the m

periodic solutions extends to progressively lower valuels of s tollows directly from the fact that each defect contrib-

In fact, for c;<<0.77 the 1D solutions with period 9.14 are utes a phase change ¢f27, depending on its topological

stable down tch=0. . . o charge. In the simulations we find thétand P take values
For h=0 we obtain a static pattern containing lines close to

bands, i.e., multiple lingsof defects along the direction,
which resemble the usual chevron states, except that those 1
are dynamic. In Figs. 11 and 12 such a solution is presented dp=*
for c;=0.9. The defectézeros oflA|) are located at the dark 1-c
points in Fig. 11. Within one band, all defects have the same
in the region between the defect bands, whileis small as
was already mentioned.

The uniform solutions are described by equating the right-
hand sides of Eqg7) to zero. The resulting cubic equation
for ¢y can be written as

(¢0_Czp)g_2¢o(1_0102)(¢’0_czp)2
+[(1+¢5—2¢1C;) ¢~ C51(do—CoP) +hc5ho=0.
(32

(30

> and Po=Cy¢a (31)
1

In the limit h— 0 one of the solutions tends to

1+c3—2c,c,
C—%fr/’g, $o=Pc; (33

Aj=1-

and the other two tend to

_ _ 2
FIG. 12. The fieldg for the static chevron state of Fig. 11. Ao=0, ¢o=C{P*1-P?*(1-ci). (34)
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Thus, asc, approaches 1 the defect bands become broader
_—>B (the separation between defects inside a band is rather inde-
| pendent of parameterdn the limitc;—1, one expects ex-
7/ h=0 istence of an infinite lattice of defects with the same polarity,
r //,/h=°/-1 1 but this is not accessible numerically, and presumably also
& | not experimentally. On the other hand, @asdecreases, the
© 0 < . number of defects per unit length decreases quickly reaching
4 a situation with a single chain in a band. Decreasindur-
| ther one reaches a critical value below which no defects are
oy 4 created. Instead one has the 1D periodic modulations without
Ll | defects, which are here stable also izt 0 (see above
- We have mentioned already that static chevrons persist to
‘ ‘ ‘ ‘ slightly nonzeroh. In order to understand the defect-free
= A 0 1 2 regions for this case we have studied the homogeneous so-
lutions as obtained from Eq34). In Fig. 13 we also show
FIG. 13. The solutions of Eq(32) (with A2>0) in the P ¢, for the casen=0.1 (dashedl Analyzing the stability we
— ¢g) plane for two values of the fielti=0 (solid line) and h found that there is a small interval around the states with
=0.1 (dashed ling The parameter values acg=0.9¢,=1. The = maximal|¢.|, which are stable. This shows that the disap-
point A has coordinatesha=1/\/1—c2,Px=c; ¢, and the poinB pearance of static chevrons for increasinig not a result of
has¢g=C,//1+C3—2¢,Cy, Pg= g /Co. the homogeneous regions becoming unstable, but rather the
defect bands destabilize, which is also observed in simula-
Here one has to impose the additional restriction thations.
do!(po—Cc,P)>0, since otherwisé\g is not positive forh
slightly away from zero. In Fig. 13 is sketched for these VI. CONCLUDING REMARKS
limiting solutions as a function oP (solid lineg. Solution
(33) is the continuation of the NRs to nonzero Similarly, Motivated in particular by experiments in electroconvec-
Eq. (34) represents the continuation of ARs. The two linestion in homeotropically aligned nemati¢44,15. We have
join at pointB in Fig. 13. studied some classes of modulated solutions of the Ginzburg-
We can now see that the states between the defect bantlandau equation for the complex order paraméteiescrib-
given in Eq.(31) correspondapproximately to the contin-  ing the bifurcation to a stationary roll pattern, coupled to a
ued ARs of Eq(34) with the maximal|¢,|. Thus the defect weakly dampedor even undampgchomogeneous modé
bands connect between the two symmetry degenerate vetlescribing the orientation of the in-plane director, see Egs.
sions of this state. A simple stability analysis explains why(1) and(2) (unscaleglor Egs.(3) and(4) (scaled. The most
this state is selected. We wrife=A,+a and¢= ¢+ ¢ and  important parameteh in these equations gives the ratio of
linearize Egs(3) and(4) in a,¢. For A;=0 the two equa- the aligning torque on the director over the destabilizing
tions separate and we obtain the following expression for théorque of normal rolls. The latter is proportional to the su-
growth rate of the mode involving: percriticality parametes. Another important parameterin
the equations characterizes the action of the gradient of the
in-plane director on the phase of the rolls, which can be
controlled experimentally by varying the frequency. Our
study is relevant fow>0, which is the case in the upper-
One ea.S”y checks that all states are unstable against ﬂUCtUﬁequency conduction range and presumab|y also in the di-
tions alongy except for state(31), which is marginally glectric rangd 18].
stable. The latter is denoted by the letéem Fig. 13. The solutions we considered are characterized by modu-
The static chevron states that are periodic and describgtions in the direction perpendicular to normal rajarallel
spatial oscillations between stat¢3l) need not be them- tg the wave vector There exists a surprisingly rich spectrum
selves marginally stable. On the contrary, they are numeripf stable solutions of this type even in the range of control
cally found to be quite robust. This observation is in agreeparameter, where most homogeneous states have lost stabil-
ment with the results of Sec. IV A that the 1D pel’iOdiC Statesty_ The Simp'est type has 0n|y variations in the direction of
are stable even for parameter values for which the uniformnhe wave vectof1D structures When such variations arise
states are unstable. they lead to the creation of defects, except in a small control
The effect of the value of; on the chevron states is parameter region, where 2D defect-free modulations may ex-
rather profound. This is seen by tit@pproximatg relation st metastably. The solutions with defects range from essen-
giving the density of defects in the chevrons, which can beially fully spatially ordered defect lattices to defect chaos
found using Eqs(30) and (31): with various degrees of spatial correlations. Their detailed
study appears interesting, but is beyond the scope of this
paper. The complexity of the solutions, as well as their dy-
p=—. (36) namics, generally increase with decreadingor very small
myl-cy values ofh, however, defects show the tendency to order

To=1-S;—S5+2C1CohoS, — Co b5 (35)

C1
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along chains(or bandsg yielding chevron structures. One Equations(3) and (4) also allow for solutions that are
mechanism for the generation of dynamic chevrons has beanodulated only along the rollgperpendicular to the pre-
related to a Turing instabilitf27,28. We have found for alignment of the in-plane director, giving rise to a “splay”
c;<1 a new type of fully ordered, static chevrons that ap-distortion). Then the phase of the patterning mdde., the
pear more related to the 1D structures. phase ofA) comes into play, and the periodic solutions in

Focusing on the in-plane<(c) director field, the modu- fact correspond to zigzag patterns. Such states are of rel-
lations occur along the direction of prealignment of the in-evance for smaller values of in particular forv<0. Near
plane director(from this point of view they give rise to the zigzag instability of normal rolls, which occurs fat 1
“bend” distortions). In fact, there is a long history of obser- — v, and thus precedes the transition to abnormal rolls for
vations of such modulated states under an electric field i<<O, the periodic patterns are unstable. For smaller values
highly doped MBBA[29-37 and other nematic materials Of h (largere) there are various types of periodic patterns.
[33,34 at high frequency, often without detectable convec-The scenario is enriched by the fact that the usual defects
tion rolls. They come under the name of “wide domains” (point dislocationscan extend in the direction perpendicular
[29,30,33 or “prechevrons”[31,32. Since such structures to the rolls to form phase slip lind21].
cannot be explained purely statically, it seems reasonable to In order to extend the treatment to largeone has to use
assume that they are secondary structures of the type digiore complicated equations derivable from an extended non-
cussed here. The mechanism for the generation of the prlinear analysis, which includes in particular mean flow. For
mary roll pattern, which may not be visible, is presumablyplanar convection in the conduction regime the analysis has
different from the usual Carr-Helfrich mechanism. In fact, it been carried out and relevant solutions involving in particu-
was shown that the driving mechanism persisted above thiar realistic defect lattices have been studj@d]. For the
nematic-isotropic transitiof32]. Moreover, in Ref[33] it dielectric regime an extended weakly nonlinear study was
was shown that a treatment of the bounding plates by terpresented in Ref[18]. The system appears interesting in
sides led to a considerable increase of the frequency rangeiew of its parameters, = c,= »=0.98 calculated under ne-
where the wide domains appeared. These findings, which aglect of flexoelectric effects, which are of more relevance in
consistent with some old resul35], indicate that an isotro- the dielectric regiménote that in Ref[18] thec; correspond
pic mechanism with rolls confined to the boundaries is in-to ourC;). There is hope to find static chevrons if the align-
volved. ing torque could be made sufficiently small by applying a

It was found that even after the wide domains havedestabilizing magnetic field. One might use this technique
formed the usual electroconvection would set in at the exalso in the conduction range, wherg is substantially
pected thresholf31,32. In the dielectric regime this would smaller than 120]. However, one may then have to include
lead directly to perfectly ordered chevrons that have an aphigher-order terms in Eq4).
pearance like the static chevrons presented above.
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