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Local elastic constants in thin films of an fcc crystal
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In this work we present a formalism for the calculation of the local elastic constants in inhomogeneous
systems based on a method of planes. Unlike previous work, this formalism does not require the partitioning
of the system into a set of finite volumes over which average elastic constants are calculated. Results for the
calculation of the local elastic constants of a nearest-neighbor Lennard-Jones fcc crystal in the bulk and in a
thin film are presented. The local constants are calculated at exact planeg@dihéace of the crystal. The
average elastic constants of the bulk system are also computed and are consistent with the local constants.
Additionally we present the local stress profiles in the thin film when a small uniaxial strain is applied. The
resulting stress profile compares favorably with the stress profile predicted via the local elastic constants. The
surface melting of a model for argon for which experimental and simulation data are available is also studied
within the framework of this formalism.
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[. INTRODUCTION In this work, we are interested in the local elastic con-
stants and surface melting of thin crystalline films. Specifi-
Knowledge of the local elastic constants in inhomoge-cally, we present a formalism in which the local elastic con-
neous systems is of significant theoretical, experimental, angtants are calculated at precise planes in the system, as
industrial interest. As nanofabrication technologies improveopposed to small volumes or slabs. In the bulk, the calcu-
and allow for the design and construction of nanoscopic delated local elastic constants are verified by averaging over
vices, understanding the mechanical response of materials &€ entire system and comparing the results to the bulk value.
nanometer length scales will become increasingly important!he local elastic constants in the film are verified by com-
In particular, deviations from bulk, continuum behavior mayparing the local stress profiles that arise from uniaxial strain
lead to complications in the manufacturing of such devicesand those calculated directly from the elastic constants.
For example, in the microelectronics industry, the mechani-
cal collapse of photoresist structures below 100 nm may
limit the ultimate density of memory storage devices or the
performance of microprocessdrs—3|. In a homogeneous material, applying a homogeneous
In nanoscopic structures, interfaces are likely to play astrain necessarily results in a homogeneous stress. The stress
major role in apparent deviations from bulk, continuum be-is given by
havior[4]. The interface could either weaken or reinforce the
overall mechanical behavior of the structure, depending on
the nature of interactions between adjacent domains and the
size of the structure. Understanding how mechanical proper-
ties vary near interfaces or free surfaces would provide inwhereCj; is the bulk elasticity tensor, and where the indi-
sights into such phenomena. ces represent the Cartesian coordinates in three dimensions.
Knowledge of interfacial behavior is crucial for under- When a homogeneous strain is applied to an inhomoge-
standing the adhesion of thin polymer films, where the interneous system, the resulting stress is also inhomogeneous.
diffusion of the polymers and the molecular mobility near The local stress is then given by
the film boundaries play a significant roJ&]. Properties
s_uch as a_dhesmn, dewetting, and surface melting in thin 73 (N =Cija (N €, )
films are likely to be controlled by processes that occur
within the first few nanometers of the interface. It would, ) o ) )
therefore, be beneficial to have the ability to meagooem- whereCijy (r) is thelocal elast|C|ty tensor. The relatlonshllp
putationally or experimentallyphysical properties with mo- between the local and bulk elasticity tensors can be written
lecular spatial resolution. as
A microscopic definition for local elastic constants has
been proposed in the literatuf®,7]. Implementation of that
formalism requires thatayer-averagedlocal elastic con- Cijk|=vf Cija (r)dr, Q)
stants be determined. For inhomogeneous systems, the re- v
sults from averaging over a particular layer depend strongly
on the size and position of that layer. This is particularly truewhereV is the volume of the system.
in an interfacial region or near a free surface, where material The bulk elasticity tensor can be expressed in terms of the
properties can change significantly over short distances. fluctuations of stress according (i8]

Il. THEORY

aij = Ciji €1k » 1

1063-651X/2003/6(8)/0316017)/$20.00 67 031601-1 ©2003 The American Physical Society



K. VAN WORKUM AND J. J. de PABLO PHYSICAL REVIEW E67, 031601 (2003

Cijki = 2pkgT[ & Sj+ Sk Sj1 ] whereA is the cross-sectional area of the film a@dis the
v Heaviside step function. The first term in E¢) can then be
written for inhomogeneous systems as
__kBT[<PijPkl>_<Pij><PkI>]+Bijkly 4) A g y
:?k|(z):2P(Z)kBT[5i|5jk+ Sik Sji - 9

wherep is the densityd;; is the Kronecker deltaR;; is the
pressure tensor, anll;, is the so-called Born term. The
pressure tensor is given by

The second term in Ed4) arises from bulk stress fluc-
tuations; it accounts for the nonzero temperature contribution
to the elastic constants. We are interested in relating the local
stresso(z) to a bulk homogeneous strain. Therefore, instead
of including the bulk-stress correlation, we use the correla-
tion between the local stress and the average bulk stress. The
second term can then be written as

1 1
Pij:v ; paipai/ma_aZb rabluabrabirabj . (5

The potential energy between interaction sitesind b is Vv

denoted byu,p, I 4p is the distance between thep, andm, cilucinn = — 1P (2P —(P:(2)NPu)]. (10
are the momentum and mass of siterespectively, and the i (2) kBT[< 1(DPw) = (Py(2)(Par]. (10
prime indicates a derivative with respectrtg,. The Born

term is related to the first and second derivatives of the polNote that the volum& in Eq. (10) cancels that in Eq5) and
tential energy of interaction by there also is no explicit volume dependence in the MOP

expression foiP;;(z).
" , The Born term, Eq(4), can be calculated at planes using
EJ @ R IR I (6) the MOP in the same way the local stress is determined, i.e.,
3 | abiabjiabcab /- Eqg. (8). We have for the Born term in inhomogeneous sys-
tems

BijkI:%< >

a<b

2
Iab lab

films having a planar symmetry; the films are assumed inho- B. 1 (2)= E
mogeneous only in the direction perpendicular to the film, 1kl A
i.e., z. Equation(4) must, therefore, be modified to calculate

the elasticity tensor at precise planes within the system, with- 2,—2
out need for bins or small volumes. To this end, we use the ®(
method of plane$MOP) [9] and obtain an expression for the

local elasticity tensor. . .
. . . . I As before, this expression does not depend on the volume of
The first term in Eq(4) is the ideal gas contribution to the the system or théarbitrary size of a bin.

elasticity tensor. The kinetic energy is homogeneously dis- The final expression for the local elasticity tensor in inho-

tributed, even in inhomogeneous systems, and the tempera- : -
ture is independent af However, the density can vary in the ﬁlogeneous systems with planar symmetry is given by

z direction. The density profile(z) could be calculated by Cii(2)=Cl% (2)+CM(2) + By (2). (12)
dividing the system into many small bins and counting the . ikl ikl .

average number of particles per unit volume in the bins. Theye emphasize again that this expressiondgg (2) is valid
density would then explicitly depend on the size of the binstor inhomogeneous systems and is an average only over a
used. Alternatively, one can use the fact that for a free standross sectiorfa plang of the system, not a discrete volume.
ing film the total normal pressure,,=p(2)ksT+P;(2) is  |t, therefore, relates the local streg z) to a homogeneous
constant throughout the systef0]. In vacuum, we then strain. Also note that Lutsket al.[6] have presented a deri-

In this work, we focus on the elastic properties of thin <

ureoul 1 z—z
2 {Tab_ ab] ( a)

a<b b I’_gb |Zab| Zap

ab

)rabirabjrabkrab|> . (11)

have for the density profile vation for the local elasticity tensor, but they averaged over a
subvolume in order to facilitate the computations. It can be
Py(2) seen that by integrating over the entire system, one recovers
P(Z)Z—kB—T, (1) the bulk elasticity tensor, Eq4). We also note that this

expression does not require the use of any dynamic variables

u . . . I but only requires ensemble averages taken from system con-
whereP;(2) is the configurational contribution to the local g, rations. It, therefore, is useful in either molecular dynam-
pressure tensor. The local pressure tensor is the sum of ide@k . Monte CarlogMC) simulations.

and configurational terms, and can be calculated according t0 \y,e note that other valid definitions of the local stress

[10,17] tensor have been presentgl?2—14 and discussed exten-
sively in the literaturg10,15. These definitions would in

1 Fab, ab; , principle lead to different expressions for the local elasticity
Pij(2)=p(2)keT— 1 > U (rap) tensor. Regardless of the definition, one should expect to
a<b ab .. .
recover the bulk elasticity tensor after averaging over the
1 7—7 27 entire system. The definition used in this work is that of
X ( a) C ( ) (8) Irving and Kirkwood[11]. This definition was chosen here
|Zab| Zab Zab
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TABLE I. Values of the three independent elastic constants of 20r——F7———F——F———T——T7T—T120
the bulk fcc crystal in dimensionless Lennard-Jones units. The las 175'_
column is the average value of eight atomic layers of(061) face
in the bulk from Eq.(12). 150} 415

Cij Ref.[25] Eq. (4) Z7'fC}(2)dz

Ci 43.35 43.22 43.37

Cy 19.01 19.45 19.22

Cu 22.50 22.60 22.35
because it has been shown to be a physically valid stres 0 LR m ol
tensor[15] and it can be used in MC simulations. z

FIG. 1. C%(2) (solid line) as a function of for the bulk system
from Eq.(12). The density profile,(z) is shown as the dotted line.
Il. SIMULATIONS

To demonstrate the calculation of the local elasticity ten- Cu Cu G 0 0 0
sor, we employ the widely used nearest-neighbor Lennard- Cau Cuy Cx 0 0 O
JonegNNLJ) fcc crystal mode[16—21]. In what follows, all Cs; Cg Caz O 0 0
results will be reported in dimensionless Lennard-Jones C= (14
units 0 0 0 Cy O 0

A bulk system consisting of 1000 particles with periodic 0 0 0 0 Cyu O
boundary conditions in all three dimensions was investigated 0 0 0 0 0 Ceg

first. This system was simulated in the canoni@@nstant

NVT) ensemble at a temperature B#0.3 using a simple Local properties of the film and the bulk system were
MC method. The density was chosen such that the averaggyculated from Eq(12) at planes of constart with each
bulk pressure is zero. The center of mass of one atomic laygjlane being separated by a distance of 0.02 in both the thin
was held fixed az=0. The average bulk elastic constants forfilm and bulk systems. The average elastic constants were
this system have been calculated previously and are listed iflso calculated in the bulk system from Eg).

Table |. Reported elastic constants, stresses and strains areAn additional simulation of the thin film was performed
represented using Voigt notati¢@2]. For bulk fcc systems, in which a homogeneous, tensile, and uniaxial strain was
there are three groups of nonzero, independent elements applied in thex direction,e;=0.010 05. The strain is defined

the elastic constant matrix

[Cyy Cy Cy» O 0 O
Ca Cun Cy 0 0
o Cy Cy Cy O 0 O w3
0 0 0 C4u O O
0 0 0 0 Cyu O
L0 0 0 0 0 Cu

as[23]

1
€1=4

. , 15)

L\ ?

| 1

L)(
whereL, is the length of the simulation cell in thedirection
andLg is its original length. Since the strain is homogeneous,
it is known that the average strain in a plane of atoms paral-

lel to the free surface is equal to the applied stf&i]. The
resulting stress profiles were then calculated using (Bx.

The stress profiles were also calculated directly from the
elastic constants using E(R).

Second, we also consider a free standing film of 450 par-
ticles. The free surfaces correspond to the (001) face of the
fcc crystal. This system was also simulated in the canonical
ensemble using a conventional MC method. In this case the The local elastic constant profiles f@%;(z) and C5y(2)
cross-sectional area was held constant with the same dimefit the bulk system are shown in Fig. 1 and Fig. 2, respec-
sions as the bulk system. The film had nine atomic layerdively. The density profilep,(2) is also shown in these fig-
parallel to the free surfaces. The temperature was the same #ees. Each peak in the profile &3,~175 andCj~150
in the bulk, i.e.,T=0.3. The center of mass of the film was corresponds to the center of mass of each atomic layer. Each
held fixed atz=0. For an fcc film with free surfaces normal minimum atC;~22.5 andC3,~0 corresponds to the mid-
to the z axis, there are six groups of nonzero, independenpoint between each atomic layer. The local elastic constant
elements of the elastic constant matrix profile for C%, is similar toC5; and is not shown. The aver-

IV. RESULTS
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FIG. 2. Cgl(z) (solid line) as a function of for the bulk system FIG. 4. Cgl(z) (solid line) as a function ofz for the thin film

from Eq.(12). The density profile,(z) is shown as the dotted line. from Eq.(12). The density profilep;(z) is shown as the dotted line.

age bulk elastic constants can be calculated from the localrofiles also become broader near the free surfaces. The de-
constants using crease of the local elastic constants is an indication of the
enhanced atomic mobility at the surfaces.
b 1 b In order to investigate the effect of film thickness, a film
Cij :ZJ'ZCii(Z)dL (16 consisting of 17 atomic layers was also simulated. Figure 5
shows the local elastic constant profile tbh(z) in the film

whereZ is the width of the system. In this example, we Eet with 17 layers. The effect of the free surface is limited to the
to the width of eight atomic layers in the bulk. The averagefirst two atomic layers for both this system and that shown in
bulk elastic constants calculated from Edj6) are given in Fig. 3. The elastic constant profiles for both film thicknesses
Table I. The bulk elastic constants from Hd) and the lit-  aré consistent with one another. The local stress profiles are
erature value§25] are also given in Table I. All three values Shown in Fig. 6 foro(z) and in Fig. 7 foroy(z) after a

for each elastic constant agree well with one another. ThBOmMogeneous uniaxial strain was applied. The local stress
local elastic constant profiles fa!,(z) and Cly(z) in the  Profiles in the film were calculated from E) using the

thin film are shown in Fig. 3 and Fig. 4, respectively. The local elasticity tensor measured at zero strain. The local
density profile p;(z) is also shown in these figures. The StesS profiles were also calculated in the strained film as
peaks corresponding to the atomic layers in the center of the ()= —[P.(7 _p(z 1

film (z=0) have approximately the same maximum values 7i(2) [Pi( )|E:E:L (Dl e=ol. (a7

as in the bulk system, .eCj;(0)~Cjj(0). However, the \inere we used Eq®8) for P,(z). The results are shown in
minimum values between each layer _nearfthe center of thejgs 6 and 7. The fact that the two methods for calculating
film are less than in the bulk. Interestingly,,(z) exhibits  the |ocal stress profiles give the same result is reassuring and
negative values between each layer. The meaning of thesgsmonstrates that the response to the applied strain is linear.

negative values is discussed below. For a,(2), we find that the tensilépositive) uniaxial strain
The peak values of the elastic constants decrease from the x direction causes a negative stress in the region

center of the film as the free surfaces are approached. The

200 T T L B B B
20— 7T 1 —— 1 — 71 20 3 1
r 1751 =
175 L .
150\ 15 1sop ]
1251 125 ]
8 r - S) 100l
100k 1108 . =100 .
‘_U._. 100 I 10 a @) L
751 751 .
50 -5 50 .
251 - —
| = |JULUUUUULUUUUULY -
0 . 0 . | | | | | | ] \ ] \ ] \ ] )
4 0 4 =4 2 0 2 4 6
z z
FIG. 3. Cfll(z) (solid line) as a function of for the film system FIG. 5. Cfll(z) as a function ofz for a film with 17 atomic

from Eq.(12). The density profile¢(z) is shown as the dotted line. layers.
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. ) o FIG. 8. The shear moduli profiles in a thin film of argon at four
FIG. 6. Profiles forory in the thin film after a small homogenous temperatures. The solid line is the and the dotted line i .
uniaxial straine, is applied. The solid line is calculated from the

elastic constants and E€R), and the dotted line is calculated di-

s . ; Consistent with Eerdent al., we have 32 atoms in each
rectly from the simulation using E{8).

layer of the crystal and use films consisting of 16 layers. The
elastic constants are calculated at planes in the top half of the
film separated by a distance dz=0.02. At each tempera-
ture, the lateral dimensions of the simulation cell were taken
from the average size of a bulk simulation cell at zero pres-
V. SURFACE MELTING sure. The surface of the film was aligned perpendicular to the
z axis and the center of mass was fixedzatO.
Analogous to the definition of the average lateral shear

modulus for a slab betweenandz’ (u“[z,z']) by Eerden

t al, we define the local lateral shear modulus at a plane

S

between the atomic laye(Fig. 7). This is directly related to
the negative elastic constants seerCin(z).

In order to study the melting behavior of a thin crystalline
film, we adopt the model for argon used by Eerdsral.
[26]. As before, we study th€001) surface of the crystal.
The interaction is described by the truncated LJ potentia
given by

1
ran| 2 (Tan| ° 0.250 (D=5 2 2 [Cuppa(?)+Capap(?)~ Cuapp(2)].
uab_4.5695[(ab) —(ab) Xexp{). H 8 «Sky By pe pab pe
g rab72.50 (19)
(18)

_ _ _ Note that this definition is a projecte@nto thexy plang
Eerdenet al. report the bulk elastic properties for this sys- version of the usual shear modulus for an isotropic salid

tem. Since we are interested in the melting behavior of an aniso-
tropic solid, another useful definition of the local lateral
20— — T T T T T shear modulus is
f 4
— Cy@¢ Ha(2)=Cegg(2). (20)
51 Y R S N 0'2(1) ]

As the crystal nears its melting point it becomes less aniso-
tropic and we expegt7 to approachuy . The melting point
is defined, here, as the temperature at which and u{
vanish. The shear moduli as a function of position in the film
are shown in Fig. 8 at four different temperatures. The den-
sity profiles at these temperatures are shown in Fig. 9. The
density profile has units of~2 and its integral over the
entire systemA [ ,p(z)dz, gives the total number of particles
in the film. In the following discussion, we will refer to the
. . . . . . . . layers starting with the surface layer as layer 1, layer 2, etc.
4 3 2 -1 0 1 2 3 4 The behavior at the lowest temperatUfgig. 8@a)] T
z =0.4 is similar to that of the NNLJ film, having bulk behav-
FIG. 7. Profiles fow, in the thin film after a small homogenous 1°F in the center of the film and decreasing moduli in the
uniaxial straine, is applied. The solid line is calculated from the layers near the surface. The difference betwggnand ug
elastic constants and E(R), and the dotted line is calculated di- reflects the fact that the crystal is anisotropic, even in the
rectly from the simulation using E¢8). layer nearest to the surface, layer 1. This is also evident in
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FIG. 9. The density profiles in a thin film of argon at four
temperatures.

FIG. 10. The average lateral shear moduli in a thin argon film as
a function of temperature.

the density profil§Fig. (@], where all the atomic layers of A jayer thicknessAz must first be defined in order to per-
the crystal are separated by regions of empty space. At tMsrm the integration. We arbitrarily chooge for the surface
peratures abova@=0.4, isolated atoms have sufficient en- layer to be the distance between the peaks in the density

ergy to escape layer 1 and occupy positions outside the fiII'Erofile of layer 1 and layer 2 at each temperature. In(2#),
(layer 0. This additional layer can be seen as the very smal . is the location of the minimum density between layer 1
peak centered &=6.82. The additional layer, however, has 5 layer 2 and

a zero shear modulus.
At T=0.5, the shear modulFig. 8b)] of each layer have
decreased from those @t=0.4, indicating a softening of the

max= Zmin T AZ.
The results forw;” and ug of the surface layer are shown
in Fig. 10 for temperatures up t®=0.575. Both shear

. - i moduli decrease sharply with increasing temperature and
crystal. The difference betweenj” and ., has decreased vanish atT=0.575, indicating melting of the surface layer.

considerably in layer 1, indicating nearly isotropic behawor.l_his is in agreement with the literature value B 0.576.

near the melting temperature. The number of atoms, whic . _
escape from layer 1 has increased, indicated by the Iargtlj-rhe bulk melting temperature 1 =0.601[26].

peak or shoulder in the density profil&ig. Ab)] at z
=6.82.

In Fig. 8(c) and Fig. 9c) (T=0.575), the behavior of the
layers near the surface has changed significantly. Bdth A formalism for calculation of the local elastic constants
andug are essentially zer@ndicating isotropy and melting in inhomogeneous systems based on the method of planes
at layer 1 even though the density profile exhibits some rehas been presented. Unlike previous work, this formalism
maining structure in that region. Between layer 1 and layer 2loes not require the partitioning of the system into a set of
and between layer 2 and layer 3, the density is nonzero ydinite volumes or “slabs” over which average elastic con-
the shear modulus is zero. A small amount of argon exists astants are calculated. As a demonstration of the technique,
a fluid between these layers. Layer 0 contains even morblonte Carlo simulations of the nearest-neighbor Lennard-
atoms at this temperature and shows a flat density shouldelpnes fcc crystal in the bulk and in thin film geometries have
which decays to zero, indicating a loss of structure at thdeen presented.
film-vacuum interface. At temperatures just beloWw The local atomic structure of the crystals was evident in
=0.575 and above, the delineation of layer thickness bethe local elastic constants calculated at precise planes. In the
comes ambiguous and the use of a layer-averaged shethin film, the elastic constants are decreased from the corre-
modulus becomes questionable. The method of planes preponding bulk values, especially near the free surfaces. This
posed here eliminates that ambiguity. decrease near a free surface is expected to give rise to appar-

At T=0.6, the shear modulus of the entire film is zeroent deviations from bulk continuum behavior in thin films
and the density profile is flat. The film is a liquid throughout and nanoscopic structures.
and has none of the structure originally present in the crys- The melting behavior of argon in a thin film was also
talline film at lower temperatures. An average shear modulugvestigated within the context of this formalism. Results
for the surface layer can be defined by integrating the profileshow how the shear modulus profile of the surface layer of
in Fig. 8. The average shear modulus is given by atoms vanishes below the melting temperature of the core of
the film. Below the melting temperature of the film, the free
surface allows sufficient thermal motion for the surface at-
oms to reach an isotropic liquid state prior to the bulk of the
film.

VI. CONCLUSION

— 1 (Zmax
M :EszinM (z)dz. (21)
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