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Dynamical transition induced by large bubbles in two-dimensional foam flows
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We study the dynamical behavior of a large bubble embedded in the plug flow of an ordered two-
dimensional foam. At a critical velocity, the foam structure becomes instable and the large bubble migrates
through the foam faster than the mean flow. This size segregation is due to viscous effects and happens only for
flow velocities larger than a given threshold. We present analytical and numerical predictions for the pressure
field, the velocity threshold, and the relative velocity of the large bubble. We show that the phenomenon can
induce flow destabilization with dramatic effects on foam transport.
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Foams are important industrial materials. Their flows ex-identical for each bubble. As discussed later, this force is
hibit complex behavior involving elastic, plastic, and viscousrelated to the friction between the films and depends on the
effects. So far, their rheology has defied attempts to derivéow velocity. It is balanced by a uniform pressure g
general constitutive relations. Since they can be more easiljetween two successive bubbles in the flow directiiy.
observed and modeled, the flows of two-dimensiofz)  1). Creating a large bubble by the removal of films sup-
foams have stimulated experimental and theoretical interegtresses pressure jumps. In order to balance the macroscopic
[1-6]. A monodisperse foam subject to a pressure gradient ipressure gradient imposed on the foam, such removal must
a Hele Shaw cell with smooth lateral boundaries gives rise tde compensated by larger pressure gaps distributed in a
a simple plug flow. In contrast, in case of a polydispersea priori unknown way through the adjacent films, as de-
foam, the plug flow undergoes a sharp dynamical transitiompicted in Fig. 1. As this paper will show, the elastic network
at a critical velocity threshol@,. Larger bubbles insinuate distortion adjusts to compensate for this force discrepancy at
themselves through the foam faster than the mean flow, déw velocity, and the plug flow is maintained. Past a critical
shown by Lordereau’s experimenfg]. Once fully devel- threshold, the plastic limit is reached and the compensation
oped, this instability induces strong spatial pressure fluctuas driven instead by viscous forces, thus making these films
tions leading to films breakage. It may have dramatic consemove faster than the mean flow. This qualitative description
quences for foam flows in fracture, as encountered irof the features illustrates the crucial role of dissipative pro-
enhanced oil recovery. This phenomenon cannot be exeesses being the driving force behind large bubble migration.
plained with a quasistatic point of view. In fact, unlike shearTheir competition with surface tension effects leads to the
flows, no external constraint enforces bubble reorganizatioripstability threshold.
and changes in the foam structure are intrinsically related to The dissipation is localized near the Plateau borders and
dissipative processes. A large bublfleB) gives rise to a is associated with fluid viscosity8]. The no-slip condition
smaller local film density and, consequently, to a low effec-imposes large velocity gradients in regions in contact with
tive viscosity averaged on a mesoscopic scale. As for théhe glass boundary. Additionally, because the typical bubble
Saffman Taylor instability, large bubbles migration is drivensize is much larger than the gap between the two plates, these
by viscosity contrast. However, the coupling with the elastoregions of high gradient constitute the major part of the Pla-
plastic response of the film network leads to subtle specifi¢eau borders. Consequently, the dissipation is dominated by
behaviors. This paper is devoted to the determination o¥iscous friction between the film and the plate and thus de-
similarity laws for the instability threshold and for the large pends on the local film velocity and not on the velocity dif-
bubble asymptotic velocity in the case of a single large
bubble gmbedded in an ordered fogm. We es_tabllsh analytical P1: Vo P2
expressions for the pressure, tension, and viscous forces be- :
low the velocity threshold. These results agree well with nu-
merical simulations and account for the experimental obser-
vations qualitatively.

We consider a dry soap froth organized as a monolayer
between two horizontal glass plates. The froth experiences a
steady push through the cell by newly produced bubbles.
Inertial terms are negligible and the force balance on each
film involves surface tension, gas pressure, and viscous
forces. In a monodisperse regular foam, plug flow occurs
without bubble deformation and the viscous force is thus

FIG. 1. Schematic view of the pressure field. In order to fulfill
the boundary condition®; and P,, the pressure gapsP; across
*Email address: isabelle.cantat@univ-rennesl.fr films around LB must be larger than the referedée
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ference between neighboring bubbles. This viscous force
may follow various velocity power laws, depending on the
local geometry and on the flow raf8,10]. For the sake of
simplicity we assume a linear dependence of the force and a
constant overall mobility parametey, as already proposed

in Ref.[3]. This does not affect the qualitative features of our
results. The dissipation function is th@= [ nv?dl, where

v is the velocity norm of the soap films. The 2D dry foam is
described on an overhead view by a line network on which
the integral is performed.

At equilibrium, bubble walls are cylindrical, with the cur-
vature in the plane of the glass. In contrast, out of equilib-
rium films have two nonzero and nonuniform radii of curva-
ture and the very complex resulting shape will be
disregarded in our model. Numerically, vertical Plateau bor-
ders and bubble walls are represented, respectively, by points
at positions'; (vertices and by segments; connecting these
vertices(edge$ as done in Refl4]. The equations of motion
derive from the following energy equation in variational
form:

FIG. 2. Large bubble shape in the stationary regimamerical
JdQ oH simulation. The foam flows downwards ang,>v,. Crystalline
07_1)-+ ar. =0, 1) organization is recovered behind the large bubble.
| I

whereuv; is the velocity of thaéth vertex. The dissipatio® is lar almond shape oriented along the fiésee Fig. 2 Plug

expressed as a discrete sum of contributions from vertex p

sitions (%rates, the large bubble reaches a veloeity>v, for ve-

locities faster than a threshold~ y/(%D).

flows are observed at low velocity. However, as Fig. 3 illus-

Q=5 2 5 (W2

1)

NI

wherei varies over all vertices ang represents the three

neighbors of vertex. The energyH is

H:’}/Z lij_z PkAk-
i>] k

The first sum is the total interface length, wherés related
to the physical surface tension, and to the Hele Shaw cell
thicknessh using y=2hvy,. The second term is a sum over
all bubbles. The Lagrange multiplid?,, associated to the
kth bubble ared\,, enforces the conservation of the latter. It ' ' ' ' ' ' ' '
is related to the physical bubble pressg, by the relation

It makes its way through two small bubble columns, sepa-

(2 rating bubbles ahead, and restoring the connections behind.

Thus, swapping occurs mainly around two “fracture points.”

The leading point propagates the fracture and the trailing one
heals it. After the transient, the migration of the large bubble
does not leave any defect in the foam. However, this simple
migration can become more complex in two ways. First, de-

(3) pending on the aspect ratio/d, a large bubble may carry a

few small ones in its wake. Second, it may also entrain dis-
locations created during the transient. In this case, the initial
bubble connections are shifted after the large bubble passes.
This behavior creates a rich dynamical phase diagram, which
we will analyze further in the future.

Px=hPg) and will be called a pressure. Time scales are too
short for gas diffusion to take place, and films do not rupture. ~
This model is the simplest to capture qualitatively the phe-'=
nomenon of interest. =
The numerical simulation is performed in a periodic array < |
and the initial condition is an ordered monodisperse foam of;a>
bubbles with uniform sizal and a single LB of sizédD at '3
positionr,. At each time step, a bubble line far from LB is > os
pushed at constant velocityu, , and other vertices are dis-
placed as prescribed by E@L), which provides an explicit
expression for the velocity as a function of the positions. A 04

L5

neighbor swapping evenfl(l processis performed when 0 ' N ' > ' 3 ' ; ' 5

two vertices become closer than a given vadde wheree V./(y/mD)
- 9L . 0
represents the square root of the liquid fraction. After a tran-
sient depending on the initial large bubble shape, a stationary FIG. 3. Large bubble migration velocity. Aspect ratid/d
regime is reached in which the large bubble exhibits a regu=3.5, e=0.1.
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We now develop an analytical prediction of the viscous, 2 1 T T = TR+ © =~ T =
tension, and pressure force fields exerted on the foam films + bubble line : y/d = 0

below the velocity threshold. From these, we deduce the mi- .| |7 f€) = 1(5

. S - >1"| « bubble line : y/d = 10
gration threshold. At equilibrium, the whole pressure field ey ENERL] A
can be determined from a visualization of the film network — fQ=8E+7.4)

[11]. Since in a nonquasistatic flow regime, viscous forces,>
induce a finite curvature in planes normal to the transparen€
plates, it is virtually impossible to infer the pressure differ- 2
ence from images of the flow. Consequently, analytical pre-~
dictions for the pressure field represent an interesting resul
by itself.

Below the threshold, all velocities conform to=vqu,.
Outside the large bubble, the total film length i per unit 05
surface of the 2D foam, disregarding a geometrical prefactor 55— "% 0 10 o
close to unity. The viscous force per unit surface, averagec x/d
on the scale of a bubble, is thus

0

FIG. 4. Pressure for two representative bubble columns oriented
Foo— ﬂu 4) along the flow, oncePq and the average pressure gradient have
vise d * been subtracted, for a velocity ratig/v,=0.95 and an aspect ratio
D/d=3.5. Symbols are numerical predictions at the positions
The large bubble induces a friction deficlf=n»nvodu,  shown and lines are mathematical functions indicated on the legend.
proportional to the numbem of missing soap films. Fob  The theory of Eq.(10) predicts a function of similar shapi(£)
>d, nis on the order oD% d% Rearranging Eq(4) and  =1.9/[&*+(y/d)?].
assuming that the deficit is concentrated atry, we write
nvoD?
d

nv OX

g +P |+ uVX=—8(r—ro)

771.)0D2 -V ux ’ (8)

X
Y0 +8(r—rp) d Uy . (5)

d

Fise=—V

Forvy>wv,, the large bubble migration modifies the velocity V-X=0. ©

field and induced 1 events that increase the dissipation rate.

The spatial distribution of the surface tension stress is An analytical solution of these equations exists for a
more complex. Even at equilibrium the large bubble inducepoundless domainsee Ref.[12]), with the asymptotic
network distortion and inhomogeneities in surface tensiorboundary conditioryv x/d+ P=0, which corresponds to a
stress which are balanced by the equilibrium pressure distrivanishing influence of the large bubble at infinity. For our
bution P¢4. This inhomogeneities are intrinsically related to purpose, the determination of the whole displacement field is
the foam topology: on an average, a bubble is overpressunseless and will be detailed in a future work. The pressure
ized if it has less than six neighbors, and underpressurizefield expression is
otherwise[1]. So, in term of resulting equilibrium surface
force, the surface tension contributiéi, counterbalanceds B
the pressure contribution Fey. During the flow, in a frus- P=-—
trated attempt to make its way through the foam, the large
bubble induces new deformations. Below the threshold, the
foam exhibits a linear elastic response. The induced out oéxcept for the large bubble, for which only the first term
equilibrium tension stress is related to the bubble displaceapplies. Figure 4 compares valuesRf (v ,x/d) obtained
mentX from the equilibrium position through an elastic co- by the full numerical simulation and the solution of E0).
efficient u. Since the foam is incompressibf,: X=0 and  The theoretical predictions of the latter capture well the func-
the elastic surface force B=wV?X. Then, the total contri-  tional relationship. Hiding the influence of the large bubble

U oX 7]UoD2 X—Xpo
d 2md (r—rO)Z,

(10

bution of the tension to the surface force is anisotropy, the artificial localization of the missing viscous
) forces through the distributiod is presumably responsible
Frens=Feqt #VX, ®)  for the small scale discrepancies obtained in ytairection

Finallv. th ¢ d din th (see Fig. 4 and captignThe uncertainty on the prefactor is
inally, t e'pressure orces. are ecompoge in the S"’m}ﬁainly due to the approximate value wfthat can be easily
way. We define the dynamical pressure field BssP  cured at the price of the generality. Finally, the use of peri-

—Peq- Unlike Pgg, P is smooth even at the bubble scale odic conditions for the numerical simulation induces a small
and its gradient is meaningful, so overestimation of the dynamical pressure field at a long dis-
o tance due to the influence of the large bubble periodic im-

Foress —Feq— VP. (7) ages.

The pressure discontinuity at the large bubble boundary is
We combine Eqs(5)—(7) and find the equation of motion given by the last term in Eq$10), with r=D/2u, and must
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be counterbalanced by the tension stress. At the migrationoomes hard to ensure. Future experimental investigations
threshold, this value thus reaches the plastic threshold of theill determine if this regime is reached before other mecha-

order of y/d [13] :

mw{D?2 vy
27d D d- 1y
The velocity threshold is thus
Y
U™ 77_D . (12)

For small aspect ratio, the exact value foin Eq. (5) must
be used leading to a diverging threshold o+ D. Numeri-
cally, the threshold depends linearly on the parametgov-
erning theT1 transformations. An extrapolation a&=0
gives a good agreement with analytical predictions.

nisms, such as film ruptures, strongly modify the flow nature.
In conclusion, our study explains the origin of the insta-

bility giving rise to the large bubble migration. It predicts the
existence of the instability threshold and produces analytical
expressions for the corresponding velocity and for the pres-
sure field. A numerical model of an ordered foam agreed well
with the predictions. This study naturally leads to new ques-
tions on the dynamic interactions between several large
bubbles in a bidisperse foam. In particular, we have experi-
mentally observed the formation of long streamwise chains
of large bubbles percolating through the Hele Shaw cell. This
phenomenon has profound effects on the flow. These chains
transport the major part of the volume flux at high speed. The
soap films involved are submitted to high stresses, and ava-

For larger velocities, a stationary regime is reached withanches of film breakages occur frequently, thus destroying

periodic motion. Elastic energy storage alternates with dissisuddenly the whole column and short circuiting the overall

pativeT1 transformations localized near the large bubble. Aspressure drop until a new foam fulfills again the free passage.
the tension forces are limited by the plastic thresholdThis process related to the large bubbles interactions and
whereas viscous and pressure forces increase linearly withyganization is highly undesirable in industrial flow and fur-

vo, it becomes thus negligible in Eq9). We get P ther studies of this phenomenon are thus of practical interest.
~ nuox/d and the pressure gap on the films at the front andrhe force fields determined in this paper can be easily gen-
at the rear of the large bubble scalesMB~ nvoD/d. We  eralized for sparse large bubbles of various sizes if their ef-
deduce the asymptotic velocity law as a function of the dif-fects are additive. An interesting open question is whether a

ferent physical parameter:

D
ULBNUOE' (13)

The asymptotic behavior is difficult to observe numeri-

linear elastic coupling generates the interaction observed be-
tween large bubbles, or if nonlinear effects dominate. In case
of continuous size distribution, we expect very rich dynami-
cal behaviors that remain to be explored.
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