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Computer simulations were used to study the gel transition occurring in colloidal systems with short-range
attractions. A colloid-polymer mixture was modeled and the results were compared with mode coupling theory
(MCT) expectations and with the results for other systéhasd-spheres system and Lennard-Jones system
The self-intermediate scattering function and the mean squared displacement were used as the main dynamical
quantities. Two different colloid packing fractions have been studied. For the lower packing frac8oaling
holds and the wave-vector analysis of the correlation function shows that gelation is a regular nonergodicity
transition within MCT. The leading mechanism for the novel nonergodicity transition is identified as the bond
formation caused by the short-range attraction. The time scale and diffusion coefficient also show qualitatively
the expected behavior, although different exponents are found for the power-law divergences of these two
guantities. The non-Gaussian parameter was also studied and a very large correction to Gaussian behavior was
found. The system with higher colloid packing fraction shows indications of a nearby high-order singularity,
causinga scaling to fail, but the general expectations for nonergodicity transitions still hold.
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I. INTRODUCTION pling theory (MCT) for nonergodicity transition$10—-12.
This approach views the gel as particles trapped by a net-
Colloidal suspensions are often referred to as model syswork of bonds which hinders the particle motion, resulting in
tems for studying fundamental problems in condensed mattex nonergodic state. Thus, gelation is caused by formation of
physics[1]. Most of the properties of colloidal systems are long lived bonds, whose collective arrest is described as a
similar to those of simple liquids, except for the difference innormal nonergodicity transitiorfThis is distinct from many
the time scales involved in the processes in liquids or colearlier approaches whereby the bonds were assumed to form
loids, making the latter more useful in the study of someirreversibly from the outsetln the present simulation study
basic questions. Moreover, the interaction forces betweewe want to test this suggestion critically, thereby establishing
particles in a colloidal system are easily tailorezlg., by the existence or otherwise of a nonergodicity transition cor-
adding salt or polymegr However, there are some features responding to bonding network formation.
found only in colloids, such as aggregation or gelation, Also present in colloidal systems is the equivalent of the
which makes the study of these systems even more fascinaisual glass transition in simple liquids, which occurs at high
ing. densities, and is driven by steric imprisonment. This transi-
Gel formation, or gelation, is seen in systems with strongtion has been studied experimentally and compared to MCT
short-range attractions, and is a universal phenomenon olhoroughly[13—-16. When two different nonergodicity tran-
served experimentally in many different systems, rangingsitions are observed in a system, MCT predicts a high-order
from colloid-polymer mixture$2,3] to charged systenigl], singularity in the region where the driving mechanisms for
or to globular protein systeni§]. Gelation is the formation both transitions are preseft7-19. Therefore, a higher-
of a percolating networktypically fracta) of dense and order transition is expected at high attraction strength and
more dilute regions of particles with voids that coarsen up tchigh density in colloidal systems with attractive interactions
a certain size and freeze when the gel is formed. This proce$40,20,21.
is observed in the structure factor as a Iqugcattering peak Computer simulations have been used to test the expecta-
that moves to loweq, increasing its height, and then arreststions from the MCT in many different systems, such as a
[6—8]. Description of this phenomenon has been attemptedlennard-Jones liquif22—-25, water[26,27, polymers[28—
with percolation theories, theories of phase separation foB1] and strong glass formef82—34. The tests have shown
states inside the liquid-gas binodathich is metastable with that the predictions from the MCT are correct, not only
respect to fluid-solid coexistence for short interaction rapgesqualitatively but also, in part, quantitative[{83,35. How-
or in terms of a glass transition of a cluster of partij@®].  ever, these have also pointed out some differences, especially
Recently, acknowledging its nonequilibrium character, ge4in the spatial correlations of particle mobilifg6—39. In
lation has been interpreted using the formalism of mode courone of these simulated systems, however, did gelation oc-
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cur, presumably because the attractions were not shothis equation for the long-time limit ofg(t—«)=f3, the
ranged enough. so-called nonergodicity parameterlt describes the glass
In this work we have used molecular dynamics simula-structure and may also be callédmb-Mssbauer factar
tions to study the properties of the gel transition, and comThe glass transition is marked bygenerally discontinuous
pared them with the predictions from the MQthis was  transition from the unique trivial solution in the liquidy
initiated in Ref.[40] where some further results may be — g, to multiple solutions in the glast;>0, where only the
found) We take the numerous universal predictions of thenighest solution is physical. Glass transitions can be classi-
theory to test the scenario qualitatively. Comparing Withfieq according to the numbdr—1 of nontrivial solutions
quantitative predictions available for systems of hard sphereg,erging with the highest one, and the type of transition is
[41,42, spheres with short-range attractidd®-12,21, and  poted asA, .
the mentioned simulation studies, we identify the mechanism oy Jiquid states close to the glass, a two-step decay is

driving the nonergodicity transition, which is the cause of jpsanved for the correlator; the plateau isféttand signals

gelation for moderately dense suspensions. Molecular dythe roximity of the glass transition. Around this plat
namics were used instead of Brownian dynamics because tl% P y 9 ’ P e@jl

choice of microscopic dynamics does not affect the relax—%ows some universal properties, depending on the type of

ational dynamics of a system close to a nonergodicit tran'gransition. For the most common type of transitiap, the
- y y =19 Yy decay to the plateau and that from the plateau, can both be
sition[24]. By means of the Asakura-Oosawa interaction po-

tential [43], we simulate the behavior of a colloid-polymer ﬁéﬁﬁ?}?d&f&ggﬁer—s& %xpansmns. In particular, the decay
mixture, which is a well-understood systeff4—47. For P 9 y
short interaction ranges, this system exhibits a fluid-crystal
transition, at intermediate densities and increasing attraction
strength, with a liquid-gas transition metastable to the fluid-
crystal one. In our simulations, the system was modified tovith h{ andh{?) being amplitudes and being the final or
prevent both of these phase transitions from occurring, ire-relaxation time scaleb is known as the von Schweidler
order to be able to study the transition from the fluid to theexponent, which depends on the details of the interaction
nonequilibrium states. Another detailed analysis of the drivpotential. Expressioi3) implies time scaling for the decay
ing mechanisms for gels and glasses has been performed fi®m the plateau, called decay, for different states close to
Ref.[48], where a system of square well particles was simuthe glass transition. The time scatediverges as the glass
lated and isotherm and isodiffusivity lines were studied.  transition is approached according to a power law, with an
This paper is organized as follows: Section Il describesxponenty, which can be related to the von Schweidler
some results from MCT which will be used in the subsequenexponent:z~|a|~?, with o being the distance to the transi-
analysis of the simulation results. In Sec. Il the simulationtion [49,50. On the other hand, the wave-vector dependence
method is presented and the details are given. Section 1'¥f the nonergodicity parameter and amplitudes gives some
deals with the results and is divided into four subsectiongionuniversal properties of the transition, providing informa-
studying (i) the correlation function(ii) the time scale and tion about the mechanism causing the nonergodicity transi-
the diffusion coefficient(iii ) the mean squared displacement, tion.
and(iv) a higher colloid concentration. Finally, in Sec. V we  For high-order singularities, the fluid states close by show

d3(t)=f3—h{P(t/ 1)+ hP(t/ 1) ®+0((t/7)%) ()

present the conclusions of this work. again a two-step decay in the correlation function, but the
decays to and from the plateau are no longer power-law ex-
Il. MODE COUPLING THEORY pansions. Instead, logarithmic laws are obtaif&8,19. A

) ) ) . salient feature is that a logarithmic decay around the plateau
In this section we will present the most important MCT s predicted:

results on nonergodicity transitions. MCT attempts a descrip-

tion of 'Fhe density correlator and its sglf—part, in terms of a q)é(t):fé’*— CqIn(t/ty), @)
fluctuating-force correlatof49,50. In this paper, only the
self-part of the density correlator will be studied, which is

defined as wherefg is the nonergodicity parameter of the high order

singularity, C, is an amplitude and, is a time scale(the
<I>§(t):<exp{|q[rj(t)—rj(O)]}>, (1) time when the correlatorilles on the platgau .

The mean squared displaceméMSD) can be studied
where the brackets denote average over parjielad time instead of the correlation function, obtaining a similar two-
origin, andq is the wave vector. The equation of motion of step behavior. Similar asymptotic laws to describe the decay
@7 in Brownian (coarse graineddynamics is given by to and from the plateau can be derived, and the parameters
and exponents can be related to those of the correlation func-
tion [42]. The value of the plateau in the MSD defines the
localization lengthand is a measure of the size of the cage.
However, it should be noticed that the cage, as formed by
wherer is a single-particle diffusive time scale ang(t) is  other particles, is constantly restructuring cooperatively.
a mode coupling kernel that describes the cage effetk Only when the particles have broken free of their cages,
Within MCT, glass states are given by nonzero solutions ofliffusive motion is observed, with a self-diffusion coefficient

t
70 Pg(t) + Pg(1) + fomq(t—t’)at@g(t’)dt’=0, 2
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D, that tends to zero as the glass transition is approached ¢ 10— |
D¢~|o|? for the usualA, transitions. B

Two different nonergodicity transitions have been found 751
in colloidal systems with a short-range attractid®,21]: a -
steric hindrance driven glass transition and an attraction 5[
driven gel transitiof10—12. While the first is found at high
densities and is qualitatively similar to the glass transition in _ 25-
the hard-sphere systetHSS or Lennard-Jones system =7
(LJS), the gel transition occurs at high attraction strength for 0
all volume fractions. Different properties for these two tran-
sitions are predicted, the main difference arising from the -25
driving mechanism: the localization length is shorter in the
gel than in the glass, resulting in higher nonergodicity pa- 5
rameters. Also, a smaller von Schweidler exponent for the - ‘
gel than for the glass is expected, implying a higher value of 75 ; ' —_— : — ' —_—
v, i.e., the transition as observed byor D is more abrupt. ' r/a

The actual shape of the nonergodicity transition line de- o _ _ .
pends on the details of the interaction potential, although FIG. 1. Total pair interaction potentiad, as a function of the
some general features can be found. From lower to highdfdia! distance =|r,—ry| for three different particle pairs; a pair of
interaction strength, the glass line is slanted to higher conParticles with minimal radia, =a,=a~— 4, one with average radii
centrations, showing that a weak attractifinidizes the 21~ 32=@, and one with maximah,=a,=a+ ¢ (from left to
glass. However, at even higher interaction strengths, the gé'lght)' The inset shows the enlarged region of the_ attractive mini-
transition occurs at a lower colloid density the higher the M- Crosses mark where the parabolic minimum smoothly

. LS . matches Eq(6).
attraction strength. As a result, a reentrance transition Is ob- CI( )

tained at high colloid volulme f_ractlons. The Ilne_ may befor r=2(ap+ &) and O for larger distances. Herey

wedge shaped or curved in this region, depending on the = _ )

range of the interaction. If the line is wedge shaped, a high=&i/& 7=(71+ 72)/2, and ¢, is the volume fraction of

order transition(genericallyAs) is present near the corner, the polymer. Note that the range of the potential is given by

whereas none exists if the line is smoothly continuous. Arfn€ polymer size¢ and its strength is given by, . This

A, singularity appears right at the vanishing of thepoint  Potential was modified arourrd=a, to ensure that the mini-

when the line first becomes smodtdd]. mum of the total potential\(sc+Vag) Occurs at this point:
for r=<2a,,+ &/5 a parabolic form that connects analytically
to Vo at 2a,,+ &/5 and has a minimum in&, was used. In

IIl. SIMULATION DETAILS our simulations, the range of the interactio§ ®as set to

Equilibrium molecular dynamics simulations mimicking a 0-22 Which would correspond to polymers witt,/a=0.1
colloid-polymer mixture were performed for a system com-"WNeréRy is the radius of gyration. ,
posed of 1000 soft-core polydisperse colloidal particles. The, A long-range repulsive barrier was added to the interac-

core-core interaction between particles was modeled by ~ tON potential in order to prevent liquid-gas separatias
shown below. The barrier had a maximal height okdgT

R according to a fourth-order polynomial
Vedr)=kgT| — , 5
sd1)=ka (312) ® r—ry\? r—rqy\2
Vpar(r)=kgT -2 +1 )
lo—r lro—r

wherea,,=a;+a,, with a; anda, being the radii of the
interacting particles. A flat distribution of radii with a width for r y<r<r, and zero otherwise. The limits of the barrier
of 6=0.1a, wherea is the mean radius, was used. The ex-yere set ta =2 (a,+ £) andr,=4a, which was enough to

ponent inVs. was selected high enough to avoid problemsprevent phase separation. The maximum height of the barrier
related to the softness of the potentjal]. The polymer equals the depth of the depletion interaction at contact for
induces an attractive depletion interaction between the col¢p:o_0625, much lower than the values where the gel tran-
loidal particles, which was modeled by the Asakura-Oosawasjtion takes place. The resulting total interaction potential

Interaction potentla[43,4ﬂ. The extension of this potentlal Viot=Vsct Vao+ Viar is ana|ytica| everywhere_ It is shown

to take polydispersity into account regds] in Fig. 1, where, in order to indicate the spread induced by
polydispersity, the potentials among three different pairs with
_ 3r _ r3 differing radii are plotted.
Vao(r)=—KkgTepy | (7+ 13— —(9+1)%+ — In our simulations, lengths were measured in units of the
4¢ 16&3 . A :
mean radiusa and time in units of\4a%/3v?, where the

3¢ r 2 thermal velocityv was set toy4/3. Equations of motion
+ (=722 (g+1)— _} ] (6)  were integrated using the velocity-Verlet algorithm, in the
4r 2¢ canonical ensembl@&onstantNTV), to mimick the colloidal
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dynamics. Evenyn, time steps, the velocity of the particles
was rescaled to ensure constant temperature. No effegt of
was observed for well equilibrated samples. The time step
was set to 0.0025. Equilibration of the systems was tested by
monitoring the total energy, and other order paramefsze
below), and by measurin@g(t) and the MSD at different
initial times. When the order parameters were constant and
the (I)g(t) and MSD curves showed no dependence on the
initial time (ageing, the system was considered to be equili-
brated.

The volume fraction of the colloidal particlesg,
=4mra’[1+(8/a)?]n., with n. being the colloid number
density, and the polymer volume fractigi) were the control
parameters used to identify the states in the phase diagram.

In order to explore the whole,— ¢ plane in search of
the gel transition, phase transitions that forbid aco@ss
equilibrium) to important parts of the plane must be pre-
vented. Several order parameters were used to identify dif-
ferent kinds of ordering in our system and to monitor
whether unwanted liquid-gas or fluid-crystal transitions were
taking place. First, the onset of phase separation involving
states of different density can be detected by dividing the
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FIG. 2. Demixing @,) and orientational Q) parameters for

box. The “demixing” order parameter is defined as the stan-#c=0.40 and increasing polymer fractiaf), for different systems:

dard deviation of the distribution of densities:
n3
Vo= (p=p)?, (8)

where p is the density of particles in bok and;is the

monodisperse without long-range barri@quares polydisperse
without barrier(circles, and polydisperse with long-range barrier
(crosses

energy of a dense phase is raised, and demixing is thus en-
ergetically unfavorable. Figure 2 shows that liquid-gas sepa-
ration is indeed inhibited by the repulsive barrier. Instead,

mean density. This parameter is close to zero for an homdhdividual voids of finite size are created in the system, caus-

geneous system and increases if it demixes into phases B9

different density. In our casé has been set to 4, implying
64 boxes, and a box edge of abowt Eepending ong,).
On the other hand, the orientational order param@&gras

a lowq peak in the structure factd(q) presented in
Fig. 3. ThereS(q) is shown for different polymer fractions,
ranging from no attractions,=0) to the closest state to the
gel we have accessedf=0.425).

defined by Steinhardt and co-worke4,55, signals the In the inset to Fig. 3, the pair distribution functiogyr),

presence of an ordered phase and is used to detect crystalli-
zation.

The phase diagram was probed using these parameters.
Fig. 2 the results are presented for a bare sygtonodis-
perse and without the long-range baryjex polydisperse sys-
tem without the long-range barrier, and the final system with
both polydispersity and barrier. In this figure, the colloid 2
volume fraction is constant).=0.40, and the polymer con- &
centration varies; an isochore is studied. The sudden increas® 1.5
in both¥, andQg occurring at¢,= 0.20 for the bare system
signals the crystallization boundary, in accordance with Dijk- 1
straet al. [47]. Because of the short range of the potential,
this system has no liquid phase, i.e., the liquid-gas coexist-
ence is metastable with respect to the crystal-gas transition

When polydispersity is introduced in the system, crystal-
lization is prevented, as indicated by the constant trend of
both parameters close ,=0.20. However, as the system
now does not crystallize, the liquid-gas transition can be riG. 3. structure factors for different polymer fractions dat
reached upon increasing the strength of the interaction. This g 40: ¢p,=0 gray line, ¢,=0.2 dashed lineg,=0.35 dotted
demixing is signaled by an increase ¥,, not involving |ine, and¢,=0.425 solid black line. Note the log-peak rise ag,
local ordering. In order to avoid this separation, a long-ranges increased. Inset: Pair distribution functigfr) for the same
barrier has been introduced in the interaction potential. Thetates.

2.5
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is presented for the same states as the structure factor. The 1 - - Y SRR B R
value at contactt =2, increases continuously as the attrac- I
tion strength grows, signaling increased local contact prob- i 7
abilities. This process will be shown to be responsible for the |
" . . . : 0.6 .

gel transition. InS; it becomes evident as an increase in the et
oscillations for largey. S al qa=69 i

The low-q peak in the structure factor resembles the low- L ' _
angle peak observed in light scattering experiments with col- 0.0k _
loidal gels[6,8]. However, whereas the peak in our system is L
an equilibrium property, induced by the specific shape of the 0
interaction potential, the experimental peak has a nonequilib- I
rium origin. We also checked for the possibility of mi- 06 _____ 7
crophase separation, which in some cases can be inducedby | 7773
a repulsive barrief56]. In our case, the small angle peak o L o04b |
continuously increases witl,, but stays finite and smaller S
than the neighboring peak as we approach the gel transition.
We interpret this to indicate that we do not have microphase 021 ga=15 7
separation, and we also observed no other signs of such or-
dering. Furthermore, since the relevant wave vectors in the ol sl ol v vl ol sl el
MCT calculation of the gel transition are the high ones 100 107 10 10t/110 107 100 10

(around 27/ ), the change in the low-region in the struc-
ture factor is expected to have little effect on the gel transi- FIG. 4. Intermediate scattering functidself-par} D3 vs re-
tion. scaled time with thex-time scaler, for different statesi.=0.40
and ¢,=0.375,0.39,0.40,0.41,0.415,0.42,0.425 from right to left.
Two different wave vectors are studieg= 6.9 (upper pangland
IV. RESULTS AND DISCUSSION g=15 (lower pane), with the KWW fits (dashed lingincluded.

This system has been previously shown to undergo both
the glass and gel transitions as stated by MCT. It also exhibin the « decay, a clear plateau is not observed, although a
its a logarithmic decay in the correlation function at high slowing down of more than four decades is studied. Never-
colloid and polymer concentrations, indicating a high-ordertheless, extrapolating the relaxation curves to extract plateau
singularity in that regioi40]. In this section we will discuss Vvalues, much higher values are found than at the glass tran-
the properties of the gel transition, and compare them witlsition in the HSS or the LJS. The same problem with the
MCT and with those of the HSS and other systems, whictplateau was reported in R¢#8]. The nonergodicity param-
are similar to the glass transition at high colloid concentra-€ters were obtained from Kohlrausch fittings in that case.
tions. We test for differences by comparing quantitatively the We have analyzed the statg.=0.40 and¢,=0.42 in
nonuniversal features of the transition, which will aid in themore detail, which shows four decades of slowing down
identification of the driving mechanism. compared to the purely repulsive situation upon turning on

The gel line is predicted to extend to low packing frac-the attraction. Because scaling is observed in Fig. 4, studying
tions with the same qualitative properties. In order to tespnly one state is enough to analyze telecay of the cor-
these properties, we have performed simulations at two difrelation function. The slowest statg,=0.425 was not cho-
ferent colloid concentrationg).=0.40 andg.=0.50, where  sen because it strongly deviates from the expected behavior
the gel line is far away from the percolation one. At high of 74 vs ¢, (see Fig. 8 and discussion thereaftdihe cor-
concentration, the higher-order singularity is expected to afrelation functions at different wave vectors for statg
fect the equilibrium states, disturbing some features of the=0.40 and¢,=0.42 are presented in Fig. 5. The range of
gel transition. wave vectors studied, where the plateau height changes, is
much wider than the range for a similar changd jnat the
glass transition of hard spheres or Lennard-Jones particles.
This feature indicates that the relevant distances for the gel

The scaling prediction for the-decay of states close to a transition are much shorter than for the usual glass transition
nonergodicity transition is tested in Fig. 4 for constant col-[40,48.
loid packing fractiong.=0.40. Two different representative  The correlation functions were measured until the average
wave vectors are presented in this figures=6.9 andq particle displacement wasa5 which is one-fourth of the box
=15. As observed at the glass transition in the HSS andize (21.98). Thus, extending this measurement to longer
many other different systemg22,23,27,31,34,40 the times in order to observe the whote decay at lowq is
a-scaling property holds. In comparing these correlationtroublesome. If the diffusion coefficient diverges at the same
functions with those typical for the HSS or LJS, it is noticed rate as thex-time scalgas predicted by MCJ this problem
that in Fig. 4 thex decay of the correlators is more stretched,would not appear. Thus, we are also observing a discrepancy
implying a smaller von Schweidler exponent at the gel tranbetween both time scale divergences, which will be further
sition than at the glass transition. Because of this stretchindiscussed below.

A. Self-intermediate scattering function
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FIG. 5. Intermediate scattering functigeelf-pary ®; for the _FIG. 6. Nonergodicity parametefi; (open circles and first-
stated,=0.40 and¢,=0.42, for different wave vectordrom top (filled circles and second-ordefdiamond$ amplitudes from the
to bottom: q=3.9,6.9,9.9,15,20,25,30,35,40,50. The dashed "negittings in Fig. 5 withb=0.37 for all wave vectors. The lines give
are fittings from Eq.(3) up to second order, with the same von the Gaussian approximation from E®) fitted to all wave vectors
Schweidler exponent for ad. (solid line) and the three lowest wave vectqdashed ling

nhas a typical distance much smaller than in the case of glass

The impossibility of observing a clear plateau, as me . ; . .
tioned above, makes it more difficult to analyze the correlalransitions in the HSS or the LJS. This agrees with the ob-

tors, since\‘f1 cannot be fixed priori. Therefore, ther decay scfe:xaﬂg; and td Iscussion abomét tt)hf he:ght (6)f t\;]vi plateatuhs, and
of the correlation functions has been fitted using expressio | et : er_sn q.rthgeljg\éelred .Yq mb 9. ©. ereasl e
3), with £3, hgl) and hff) as fitting parameters. The von glass transition in the is driven by core-core repulsions,

Schweidler exponent was also fitted but was kept identicaﬁhe gel wransition is caused by. the short-range a_ttractlon,
. herefore bybondsbetween particlegsee inset to Fig. )3
for different wave vectors. It was found &s=0.37, and the h e is of the order of the i , .
other results for the fitting parameters are shown in Fig. gWwhose S|ze|.\ is oht ebor er o E)l_er:ntderbacnon rar;]ge. Anhmte_r-
The trends of these parameters are similar to that of the glaszss.tmg ar;]a ofgy as ee? esfa |sde | etween(tj ehmefc anisms
transitions in both HSS and LJS, but over a wideange in fiving the formation of gels and glasses and the freezing
L ' R . transition[57].
the gel case. This indicates that the localization length is . .
N . - The o decay of near-nonergodic states can be also studied
quite different in the present system. The nonergodicity P& ing the Kohlrausch-Williams-Wat@&KWW) stretched ex-
rameter exhibits a bell shaped curve, whereas the firSt'Orderongntial The KWW exoression is given b
amplitude describes a maximum. The latter is determined ' P 9 y
from the fit up to a prefactor that depends on the choice of ¢ | Pa
in Eq. (3). As an estimate, we have l_Jse&ifor q=9.9[74is <I>§(t)=Aq ex _<_K> , (10)
defined bytbg(q-q)zfq/e], which yields values that are Tq
similar (in magnitud¢ to the HSS. The second amplitude _ _
shows a monotonically increasing behavior wighin accor- ~ Where is known as Kohlrausch exponent, which has been
dance with the HSS, but it is always positive, unlike the HSSshown to coincide with the von Schweidler exponent at high
where it goes through zero at the peakh{fr). wave vectord58]. This expression has been fitted to very
The nonergodicity parametég can be approximated us- different systems_, and desqubes thedecay _down to zero.
ing the Gaussian expression We have fitted this expression to thedecay in our system.
However, since the correlators in Fig. 5 do not show the
famexp[—qzrlzlfs}, (99  completea decay, we have fitted expressiti0) to the mas-
ter curve, obtained from the rescaling. Two of these fittings
wherer, is the localization length. This approximation is @ré presented in Fig. 4 by the dashed lines, showing that the
known to be valid for low wave vectors, and important de-KWW stretched exponential describes well thedecay in
viations from the Gaussian behavior are expected close to tH8IS system. .
glass transition. However, the value for the localization The fitting parameterd,, B4, and 7, are presented in
length obtained from fitting this curvesolid line in Fig. §  Fig. 7 and are compared with the corresponding parameters
can be used as an estimate of that in the MSD. in the von Schweidler formalism. In such a way, is com-
The localization length so obtained i=0.0126&2, ~ Pared with the nonergodicity parametg, is compared with
which is much smaller than for the HSS or the LJS, where the von Schweidler exponent, and thgé is compared with
is of the order of the Lindemann distance. This feature shows;. As expected, the height of the plateau can be determined
that the process causing the nonergodic transition in our casually well both by the KWW or von Schweidler analysis.
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FIG. 7. Parameters used in the KWW fittings and comparison i °
with the an Schweidler fitting. Main figureﬁq (closed circle}:and FIG. 8. Wave-vector-dependent time Sc@&e/s (l)g’— d’p for the
fa (open circley B, (crossep andb (horizontal dashed lifelnset:  jsochores,=0.40 for different wave vectors; symbols from top to
T§ (closed circlesand 7, (open circle bottom correspond ta@=3.9,6.9,9.9,15,20,25,30. The lines are

power-law fittings togq= 3.9 andq=30. In all casesy keeps close
The same holds for the time scalé§"" and ;. The Kohl- 10 these two values.
raush exponent is expected to tend to 1 at low wave vector
and to the value of the von Schweidler exponent at lijigh . ) o

Lo . e L . divergence. In such a way, we are testingdbenpatibilityof
The lowq limit is explained because diffusion is the domi- the MCT oredictions with our data
nant process over long distances, whereas at short distancgg . P ’ .
Figure 8 shows the wave-vector-dependent time scale

(comparable to the cage sjze dynamics is dominated by G_ o for diff i i E
the cooperative local rearrangements. This behavior is prelS ¢p - ¢p for different wave vectors. For every wave vec-

dicted from MCT[58], and has been observed in different O 7q” Was extrapolated to zero, yiglding a value for the
systems, such as molecular glass fornj&@, and in simu-  Polymer fraction at the gel transitioms,"?. The final value
lations of polymer melt§31] and of wateff60]. In our case, Of ¢, used in Fig. 8, was calculated as the average value
the low4 limit is not observed, buB rises as the wave for all wave vectors studied. The linear trends in Fig. 8 for
vector decreases, indicating that the expected behavior mayﬁ— $hp>5X 102 show the power-law behavior predicted
appear at a loweqy below the small angle peak B(q). Ata by MCT, with exponentgy=3.1 and¢§=0.4265. The clos-
high wave vector, the Kohlraush exponent crosses the voest state to the gel transitioi,=0.425 deviates from the
Schweidler value, but stays close to it. Although an exacpower-law behavior observed for lower polymer fractions.
agreement is not observed, we may conclude that the correSimilar deviations have been observed in the HSS and LJS

%articular value of the exponent looked for the power-law

general trend is obtained. and can tentatively be attributed to thermally activated pro-
cessegor hopping evenis[61].
B. Time scale and diffusion coefficient As shown in Eq(11), MCT predicts a power law for the

self-diffusion coefficientDg with the same exponent as the
divergence of the time scale. Simulations on HSS and LJS
have shown that a power-law divergence is indeed obtained,
but with a different exponent than in the casergf Using
the same procedure as described aljoaéculatingy from b
Tq= (43— bp) "7 and D~ (S~ )", (11 and extrapolatingd; *” to obtain b3) yields ¢S=0.4519,
with the samey as for the time scale. This value ¢§ is too
where¢>§ is the polymer volume fraction where the gel tran- far from that obtained using, . Therefore, we cannot have
sition occurs. The relation between exponerand the von  similar 4)? andy to explain the behavior of both, andDs,
Schweidler exponenb is also universally established by implying that the MCT prediction, Eql11), is violated.
MCT [50]. In Fig. 9, we preseriD, vs ¢5 — ¢, using for ¢ both the
Testing of the power-law divergendand measuring of = value estimated from, and that fronD. We consider more
y) is usually carried out plottingrq as a function of¢;  desirable to have similag;; to explain the behavior of,
— ¢, for different values oquff, looking for a straight line. andD,, even though this implies two different y=3.1 for
This method is cumbersome, even more as deviations from i, and y=1.23 forD. As obtained in other nonergodicity
are expected for states close to the transition, and precisgansitions[22,31,34, the y exponent is lower in the diffu-
values fory andq&ﬁ,3 cannot be given. To avoid this difficulty, sion coefficient than in the time scale, although the differ-
we have calculategt from b, as given by MCT, and with this ence between both values ¢fis bigger in our case.

An important universal prediction of MCT is the exis-
tence of power-law divergences for both the time seadad
the inverse of the self-diffusion coefficieg, with the
same exponent in both cases,
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FIG. 10. (Inse} Time scaler, as a function of the wave vector
FIG. 9. Self-diffusion coefficienDg vs ¢‘p3—¢p for two values g for different states close to the gelp,=0.42 (circles, ¢,
of ¢ 1 ¢5=0.4519(closed circlepand ¢ =0.4265(open circles  =0.415 (squarel ¢,=0.41 (diamonds, ¢,=0.40 (upward  tri-
The dashed lines are the power-law fittings to the data, with thengles, ¢,=0.39 (left-ward triangle and ¢,=0.375(downward
exponent shown in the figure. Ins@;7, vs polymer fraction for  triangles. Main body: same data, rescaled to collapse in thedow-
different wave vectors. Symbols as in Fig. 8. power-law behavior. The dashed lines show power-law behaviors
with exponents 2Agray line and 3.3(black line.

In order to stress the different exponents in the diver-
gence of the time scale anddly, we have plotted 7, as a
function of ¢,, for different wave vectors in the inset to Fig.

9. This product, which should be constant according to MCTWhiCh however is not the one explained by MCT. At higher

divergefs I?S the polymerl fractiprrw] aﬁproacldés The di\ller- hed another power-law trend is observed, with a higher expo-
gence follows a power law with the exponent equal t0 the,o¢. =33 The crossover from the low-behavior to the

difference between both values of high-g one compares nicely with the wave vector where the

. The maximum in the self-diffusion coefficieriupper- Kohlraush exponent becomes equal to the von Schweidler
right corner of Fig. 9is a consequence of the reentrant glass

transition at high packing fractionp48,62—64. A weak one (Fig. 7. The exponent of the higg-region yieldsb

. ; i =0.30, lower than the value obtained from the analysis in
short-range attraction at first destabilizes the cage and thL|§1g 5. However, this value is quite close to the measured

fch_e_ glass transition moves to highe_r particle concentration,, g eidier value and much smaller than the HSS one.
mma!ly, as the pqumer frgcuqn IS mcrgased. AL constant e, iations from this power-law behavior are observed at
colloid concentration the diffusion thus first speeds up W|thhigh q for the loweste, presented in the figure. These de-
incrgasir_lg%, until for intermediate attragtion strengths the viations are caused bF;/ the microscopic dynamics, as they
ge{ “ni\lts ai)%rzgcfgﬁd, \INher? the_spppsﬂeﬂ:renfd then domd50cur whenr, is lower than a certain value, regardless the
nates. Al =0.40, the glass transition is rather far remove polymer fraction. This value, presented in the inset as a hori-

and thus has Ilttle_effe_ct, but the_ increaselns still mea- zontal line, isty~ 0.6, which agrees with the time one would
surable and the diffusion coefficient can be used as a Me3timate from the correlators in Fig. 5

sure of the distance to the closest transition. The maximum
thus indicates the reentrant shape of the nonergodicity line.
The wave-vector dependence of the time seglean also
be compared with theoretical predictions. At lgywthe time We turn now our attention to the MSD curves, which were
scale is expected to behave @s?, corresponding to a dif- partially analyzed to obtain the diffusion coefficients pre-
fusive process over large distances. Yet, because the simaented in Fig. 9. We are only interested in the slowing down
lated scattering functions exhibit nonexponential relaxatiorclose to the gel transition and thus we do not show the MSD
even for the smallest wave vectors, this simple theoreticalor low polymer fractions, where the attraction speeds up the
scenario is not expected to appear in our case. At intermeddynamics and increases the diffusivisee Fig. 9 and Refs.
ate wave vectors, where the Kohlrausch exponent becomé¢48,62,64). The MSD, after a short initial regime of free
comparable to the von Schweidler one, the theory predicts flight sr2«=t?, slows down because of the particle interac-
decrease ag P, whereas at even higher the distances tions and takes longer and longer to reach the long-time re-
involved are dominated by the microscopic dynamics, andjime diffusive, wherer2=6Dt. An important feature that
corrections to this behavior are expec{@&®]. The inset to can be obtained from the MSD of the particles in the system
Fig. 10 showsr, for different states close to the gel transi- is the localization length, where the particle interactions
tion. In order to make clear common properties the curvehinder particle motion most strongly and, in the idealized

have been scaled vertically to collapgeain figure.
It can be seen in this figure that the behaviorrgfat low
wave vectorgbelow q=10), indeed shows g 2 behavior,

C. Mean squared displacement
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FIG. 11. Mean squared displacement of the particles as the EFig 12. Non-Gaussian parametes as a function of time for

gel transition is approached. Black curves from left to right: giates approaching the gel transition at the same states as Fig. 11.
$=0.30,0.325,0.35,0.375,0.39,0.40,0.41,0.415,0.42,0.425.  Gle¥ne maximum increases with increasitig.

curve: ¢,=0. The dashed horizontal lines indicate the localization

length corresponding to the glass transitishort dashin the HSS ;g collective restructuring of the system fluidizes it and
and the estimate from Fig. @ong dash. Dotted curve: mean \oqiores ergodicity, which cannot occur in the frozen system,
squared displacement for a single particle in a frozen enwronmeq}vhere the particles are not able to diffuse even at very long
at ¢,=0.425. imes.

glass state, arrest it. It can be compared with the estimate Y& turn now back to the Gaussian approximation and its
using the Gaussian approximatitsee Fig. 6. In Fig. 11 we accuracy. Usually, this is tested by measuring the non-
present the MSD for increasing polymer volume fractions.Gaussian parameter defined as

As the gel transition is approached, the localization length

shows up as an indication of a plateau, signaling the bond _ 3(ré(n) _ 12
. . . . dp= 2 2 ( )
formation. As discussed abowvg,is much shorter than in the 5(r3(t))
HSS glass transitiofupper dashed line in Fig. Llbecause
of the driving mechanisr48]. where the averages imply ensemble averaging. This param-

The lower dashed line in this figure is the localization eter measures the deviation of the probability density func-
length, as estimated from the nonergodicity parameter usingon for the single-particle motion from the Gaussian behav-
the Gaussian approximatiom’=0.0126). Although a clear ior, and vanishes for diffusive motion. Special care must be
plateau has not fully developed in our curves, its heightaken when performing the ensemble averages in polydis-
seems to be above that estimate by a faetdr5-2. Since perse systems, as pointed out in R66]. The non-Gaussian
the Gaussian approximation works very well in the case oparameter must be calculated for every partitie averages
the HSS, this suggests big non-Gaussian corrections at th the definition above thus implying time-origin averaging
gel transition. Before testing the Gaussian approximation, w@nly), and particle averaging is taken on the valuespfso
stress that the localization length gives a typical size of théong as long enough time intervals are studied, each particle
mesh of bonds formed between neighboring particles, anwill sample the distribution relevant to its own size in an
that the slow structural units are continuously and cooperaergodic fashion The non-Gaussian parameters for states
tively rearranging. In order to test this idea about a correlateavith increasingg,, are presented as a function of time in Fig.
region that cooperatively rearranges with and around each2. At short timesx, tends to zero, since the system shows
particle, a single mobile particle is considered in a fixed enGaussian behavior during its unhindered ballistic regime. At
vironment. A well equilibrated system wih,=0.425 is fro-  long times, when the particles break free from their bonds
zen, and only one particle is allowed to move. This mobileand hydrodynamic diffusion holdsy, again goes back to-
particle now explores drozen environment, providing the wards zero. At intermediate times, corresponding to the pla-
structural size of the region it is confined to. The mean teaus in both the correlation function and the mean squared
squared displacement so obtained is given in Fig(dbtted displacementy, grows, since the single-particle motion hin-
line). Some particle$1.6%) were able to break their bonds dered by bonding is not Brownian. As a resutt, shows a
and diffuse freely in the frozen environment. For the par-maximum, whose height and position grow in time, because
ticles that stay localized, it can be observed that the length dhe particles take longer and longer to break free and start
the frozen bonds is much smaller than the localizationdiffusing.
length. This fact demonstrates that the structure of bonds, The behavior of the simulated, obeys the general ex-
such as the repulsive cage at the glass transition in the H3®ectation§36,37,39, but important differences are observed
or LJS, is dynamic and constantly rearranges cooperativelyn comparison with the results for the HSS or LJS. Whereas

031406-9



PUERTAS, FUCHS, AND CATES PHYSICAL REVIEW B7, 031406 (2003

in those cases the height of the maximum for simitareven 1
highep a-relaxation times is around 2, at the gel transition i
much higher values are measured. Another interesting differ- 08
ence is the failure of the short-time scaling, observed both in 06'
the HSS and LJS. Both effects can be rationalized consider- o o |
ing that the cage is indeed a network of bonds in the case of o 04
a gel, rather than being a cavity. The strength of these bonds L
is given by the intensity of the interaction and, thus, it is 0.2
modified for different states, disabling the short-time col- L
lapse. Because the bonds are short ranged, they affect the 0
particle motion from very short times onward, so that the I
particles feel the hindrance much longer in the gel case. 0.6
It can be concluded that the non-Gaussian corrections are
very important in the gel transition. Therefore, the localiza- © 04
tion length estimated from the nonergodicity parameter may S
be inaccurate, as discussed above. However, it still provides
an indication of how small the localization length is. A better 0.2
indication ofr; can be obtained within the Gaussian approxi-
mation if only low wave vectors are used in fitting expres- 0 .
sion(9). The fitted curve is presented in Fig. 6 by the dashed 10° 10" 10° t"/)i 107 10" 10

line, where only the three lowegts are fitted. The estimated
fg deviates from the data at higher wave vectors, showing FIG. 13. Correlation functions fap.=0.50 and different poly-
high non-Gaussian corrections. The localization length isner concentrations. From left to righ#h,=0.35,0.36,0.375,0.38,
higher than the previous valuqz.z 0.0162. Thus, this fitting 0.385,0.39. Two wave vectors are studied, as labeled in the figures.
provides data more consistent with the MSD curves and théhe dashed lines represent the KWW fittings to ¢he=0.40 cor-
non-Gaussian parameter. relation functions.

plateau is not observed and the von Schweidler analysis is
thus extremely difficult. In order to analyze the self-
We move now to a higher colloid volume fractiogi,  intermediate scattering function, we compare the stretching
=0.50. These results are presented to supplement the fin@f the curves aip.=0.40 and¢.=0.50; in Fig. 13 thea
ings at the lower packing fraction and test for the predictiondecay master function of thé.=0.40 state, as parametrized
of stronger stretching closer to the higher-order singularityby the KWW fitting, is included. It can be seen that this
As indicated in the theoretical section, MCT predicts acurve can be rescaled to collapse onto thelecay of the
higher-order singularity in the vicinity of the junction of the correlators ak.=0.50 for both wave vectors at long times.
gel and glass lines, i.e., at high polymer and colloid densitiesThis indicates not only that the von Schweidler exponent is
In this particular system we found clear indications of thisvery similar in both cases, but also points out the effect of
singularity in simulations at.=0.55 and¢,=0.375[40]. the high-order singularity. According to MC®, should de-
The isochore under study nows.=0.50, could be close crease as the singularity is approached, but this behavior is
enough to the higher-order singularity to show some effectsiot observed in our case. Comparison of thelecays by
In Fig. 13 we present the correlation functions for increasditting the KWW stretched exponential to the master function
ing polymer fractions at the same wave vectors as Fig. 4is troublesome, since only the late decay is obtained unam-
rescaled to collapse in the long-time decay. It is interesting tdiguously.
note that the polymer concentrations studied in this case are The similarity of botha decays was used in the von
lower than those studied at the lower colloid volume frac-Schweidler analysis of the correlation function, and only the
tion. In accordance with experiments and theory, this indi-nonergodicity parameter and amplitudes were fitted. Since
cates that the gel transition takes place at lower polymethe upper part of the decay is known to be affected by the
fractions the higher the colloid concentration. higher-order singularity close by, that part must be discarded
In Fig. 13, it can be observed that the correlators do notn the fittings. The correlation functions and fittings are pre-
collapse over the whole decay, but only in the end. These sented in Fig. 14 for the staté.=0.50 and¢,=0.39, for
deviations are expected because of the higher-order singulahe same wave vectors as in Fig. 5. The main conclusion is
ity, which is at higher densities. However, we stress thathat the latea decay at all wave vectors can be correctly
although this singularity has clear effects on the correlatiordescribed by the von Schweidler decay, with the same expo-
functions, they do not show so clear signatures as that of theent as the state ai.=0.40. The nonergodicity parameters
¢.=0.55 isochord40]. At this high concentration, a loga- obtained from the fitting are slightly lower than those of
rithmic decay was observed, with a wave vector-dependent.=0.40, but similar within the error bars. According to
extension. MCT, fg decreases when approaching the glass part of the
Because these corrections affect the earlgecay, ana- nonergodicity line(signaling an increase in the localization
lyzing the correlation functions is difficult. Furthermore, the length. Our result is thus consistent with this prediction.

D. Higher colloid volume fraction
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ficientDg can be analyzed and is presented in the inset to this
figure. A power law is observed in this case, with an expo-
nenty=1.92, which, again in contradiction to MCT, leaves
us with a big difference between the two valuesyof

The diffusion coefficients in the inset of Fig. 15 again
indicate the reentrant glass transition. They describe a maxi-
mum, more pronounced than that observed in Fig. 9, because
the glass line is closer to thé,=0.50 isochore. The mini-
mum in7,, which is observed only foi=3.9, in an equiva-
lent way indicates the shape of the nonergodicity transition
line. At higher wave vectors, the glass transition causes very
low fz and the time scales merge with the microscopic tran-
sient and thus this feature is suppressed.

The wave vector dependencegfcan also be studied, as
done for the lower concentration, yielding another estimate
of b. In this case, a similar plot as Fig. 10 is obtained, where

. . . . 72 .
FIG. 14. Intermediate scattering functi¢self-parj @ for the the lowq region is compatible with @~ behavior, and a

same wave vectors as in Fig. 5 fgr,.=0.50 and¢,=0.39. The h'ﬁ.her lexp_on.ent at higheg, Y'ﬁlc::ng .a value 0f_b—0.§>8.
dashed lines are fittings from E(B) up to second order, with the This value is in agreement_wn the nice Compar.lson etween
same von Schweidler exponent és=0.40. the ¢.=0.40 and¢.=0.50 isochores, but not witly or the_
MCT prediction. We may then conclude that an analysis of
) o this state is extremely difficult, but our indications state that
With these values of the nonergodicity parameter, one caghe yon Schweidler exponent is similar for both packing frac-
define also the wave-vector-dependent time seglas dis-  tjons, but probably slightly lower in the higher concentration.
cussed above. In order to test the value of the von Fingjly, we would like to point out that the non-Gaussian
Schweidler exponent, using E¢L1) we have performed a parameter at this packing fraction shows a behavior similar
three-parameter fitting to obtaipand ¢y . In Fig. 15,74 iS o that shown in Fig. 12, i.e., the peak is as high, and no
presented as a function Qfg— ¢, for different wave vec-  short-time scaling is observed.
tors. The power-law fittings for two wave vectors are also

plotted and the critical polymer fractioqbg is given. V. CONCLUSIONS
The values ofy obtained from this analysis for different ] ) i
wave vectors range fromy=3.37 to y=3.82; the mean In this paper, by means of simulations, we have tested the

value beingy=3.70. This value ofy implies a smaller von universal predictions of MCT for gelation in colloidal sys-
Schweidler exponerti=0.33, in disagreement with our pre- tems, viewed as an attra_ct|on-dr|ven glass transition. The
vious estimate, but backing the MCT prediction. Using theself-parts o_f the |nt9rmed|ate scattering function for states
same value ofsC, the vanishing of the self-diffusion coef- close to this transition have been analyzed and the results
P were compared with the theoretical predictions. For ¢ghe

=0.40 isochore, which is far enough from the high-order
— singularity, the correlation functions can le scaled. The

EE time scale of thew decay was shown to obey a power-law
divergence, with an exponenty related to the von
Schweidler exponent, obtained from the eatlglecay. Both
features are predicted by MCT for all nonergodicity transi-
L tions. Also, the wave vector analysis of the time scale fol-
G 3 lows the behaviors predicted by MCT, with a small differ-
N ACEN ence in the value of the von Schweidler exponent.

o v=34 3 The wave-vector analysis of the correlation functions de-
o pends on details of the interaction potential, and thus pro-
vides information about the mechanism, leading to the tran-
. E sition. In our case, it establishes that the gel transition is
 oopa driven by a short-range mechanism, namely, bond formation,
A L Nk é gg X3 as observed in the pair distribution function. Additionally, it
10 102 107 ) has been shown that the KWW stretched exponential can
0 - 0, account for thea decay of the correlation functions, as in

other nonergodicity transitions.

FIG. 15. Wave-vector-dependent time scajevs ¢g_¢p for We have also tested the Gaussian approximation, which
different wave vectors; symbols from top to botton correspond toworks very well for the HSS. The non-Gaussian parameter
g=3.9,6.9,9.9,15,20,25,30. The lines are power-law fittinggjto a, establishes that this approximation is much worse in the
=3.9 andg=30. ¢S and y were fitted. case of the gel transition than for the glass transition. It was
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also tested when comparing the estimated localization length different exponent and the non-Gaussian parameter reaches
from the nonergodicity parameter with the MSD of the par-values similar to theb.=0.40 case.

ticles. The diffusion coefficient has been also studied. It Therefore, our main conclusion is that MCT accounts for
tends to zero as the transition is approached following anost features of the simulated systems on approach to the
power law, with an exponent much lower than in accor-  gel transition, but the discrepancies already found in other
dance with simulations of glass transitions in other systemsjonergodicity transitiongsuch as the repulsion-driven glass
but in disagreement with MCT, where both exponents ardransition in hard-sphere systen@e also obtained here.

equal.
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