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Simulation study of nonergodicity transitions: Gelation in colloidal systems
with short-range attractions
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Computer simulations were used to study the gel transition occurring in colloidal systems with short-range
attractions. A colloid-polymer mixture was modeled and the results were compared with mode coupling theory
~MCT! expectations and with the results for other systems~hard-spheres system and Lennard-Jones system!.
The self-intermediate scattering function and the mean squared displacement were used as the main dynamical
quantities. Two different colloid packing fractions have been studied. For the lower packing fraction,a-scaling
holds and the wave-vector analysis of the correlation function shows that gelation is a regular nonergodicity
transition within MCT. The leading mechanism for the novel nonergodicity transition is identified as the bond
formation caused by the short-range attraction. The time scale and diffusion coefficient also show qualitatively
the expected behavior, although different exponents are found for the power-law divergences of these two
quantities. The non-Gaussian parameter was also studied and a very large correction to Gaussian behavior was
found. The system with higher colloid packing fraction shows indications of a nearby high-order singularity,
causinga scaling to fail, but the general expectations for nonergodicity transitions still hold.
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I. INTRODUCTION

Colloidal suspensions are often referred to as model
tems for studying fundamental problems in condensed ma
physics@1#. Most of the properties of colloidal systems a
similar to those of simple liquids, except for the difference
the time scales involved in the processes in liquids or c
loids, making the latter more useful in the study of som
basic questions. Moreover, the interaction forces betw
particles in a colloidal system are easily tailored~e.g., by
adding salt or polymer!. However, there are some featur
found only in colloids, such as aggregation or gelatio
which makes the study of these systems even more fasc
ing.

Gel formation, or gelation, is seen in systems with stro
short-range attractions, and is a universal phenomenon
served experimentally in many different systems, rang
from colloid-polymer mixtures@2,3# to charged systems@4#,
or to globular protein systems@5#. Gelation is the formation
of a percolating network~typically fractal! of dense and
more dilute regions of particles with voids that coarsen up
a certain size and freeze when the gel is formed. This pro
is observed in the structure factor as a low-q scattering peak
that moves to lowerq, increasing its height, and then arres
@6–8#. Description of this phenomenon has been attemp
with percolation theories, theories of phase separation
states inside the liquid-gas binodal~which is metastable with
respect to fluid-solid coexistence for short interaction rang!
or in terms of a glass transition of a cluster of particles@8,9#.

Recently, acknowledging its nonequilibrium character,
lation has been interpreted using the formalism of mode c
1063-651X/2003/67~3!/031406~13!/$20.00 67 0314
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pling theory ~MCT! for nonergodicity transitions@10–12#.
This approach views the gel as particles trapped by a
work of bonds which hinders the particle motion, resulting
a nonergodic state. Thus, gelation is caused by formatio
long lived bonds, whose collective arrest is described a
normal nonergodicity transition.~This is distinct from many
earlier approaches whereby the bonds were assumed to
irreversibly from the outset.! In the present simulation stud
we want to test this suggestion critically, thereby establish
the existence or otherwise of a nonergodicity transition c
responding to bonding network formation.

Also present in colloidal systems is the equivalent of t
usual glass transition in simple liquids, which occurs at h
densities, and is driven by steric imprisonment. This tran
tion has been studied experimentally and compared to M
thoroughly@13–16#. When two different nonergodicity tran
sitions are observed in a system, MCT predicts a high-or
singularity in the region where the driving mechanisms
both transitions are present@17–19#. Therefore, a higher-
order transition is expected at high attraction strength
high density in colloidal systems with attractive interactio
@10,20,21#.

Computer simulations have been used to test the expe
tions from the MCT in many different systems, such as
Lennard-Jones liquid@22–25#, water@26,27#, polymers@28–
31# and strong glass formers@32–34#. The tests have shown
that the predictions from the MCT are correct, not on
qualitatively but also, in part, quantitatively@33,35#. How-
ever, these have also pointed out some differences, espec
in the spatial correlations of particle mobility@36–39#. In
none of these simulated systems, however, did gelation
©2003 The American Physical Society06-1
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cur, presumably because the attractions were not s
ranged enough.

In this work we have used molecular dynamics simu
tions to study the properties of the gel transition, and co
pared them with the predictions from the MCT.~This was
initiated in Ref. @40# where some further results may b
found.! We take the numerous universal predictions of
theory to test the scenario qualitatively. Comparing w
quantitative predictions available for systems of hard sphe
@41,42#, spheres with short-range attractions@10–12,21#, and
the mentioned simulation studies, we identify the mechan
driving the nonergodicity transition, which is the cause
gelation for moderately dense suspensions. Molecular
namics were used instead of Brownian dynamics because
choice of microscopic dynamics does not affect the rel
ational dynamics of a system close to a nonergodicity tr
sition @24#. By means of the Asakura-Oosawa interaction p
tential @43#, we simulate the behavior of a colloid-polyme
mixture, which is a well-understood system@44–47#. For
short interaction ranges, this system exhibits a fluid-cry
transition, at intermediate densities and increasing attrac
strength, with a liquid-gas transition metastable to the flu
crystal one. In our simulations, the system was modified
prevent both of these phase transitions from occurring
order to be able to study the transition from the fluid to t
nonequilibrium states. Another detailed analysis of the d
ing mechanisms for gels and glasses has been perform
Ref. @48#, where a system of square well particles was sim
lated and isotherm and isodiffusivity lines were studied.

This paper is organized as follows: Section II describ
some results from MCT which will be used in the subsequ
analysis of the simulation results. In Sec. III the simulati
method is presented and the details are given. Section
deals with the results and is divided into four subsectio
studying~i! the correlation function,~ii ! the time scale and
the diffusion coefficient,~iii ! the mean squared displaceme
and~iv! a higher colloid concentration. Finally, in Sec. V w
present the conclusions of this work.

II. MODE COUPLING THEORY

In this section we will present the most important MC
results on nonergodicity transitions. MCT attempts a desc
tion of the density correlator and its self-part, in terms o
fluctuating-force correlator@49,50#. In this paper, only the
self-part of the density correlator will be studied, which
defined as

Fq
s~ t !5^exp$ iq@r j~ t !2r j~0!#%&, ~1!

where the brackets denote average over particlej and time
origin, andq is the wave vector. The equation of motion
Fq

s in Brownian ~coarse grained! dynamics is given by

tq] tFq
s~ t !1Fq

s~ t !1E
0

t

mq~ t2t8!] t8Fq
s~ t8!dt850, ~2!

wheretq is a single-particle diffusive time scale andmq(t) is
a mode coupling kernel that describes the cage effect@51#.
Within MCT, glass states are given by nonzero solutions
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this equation for the long-time limit ofFq
s(t→`)5 f q

s , the
so-called nonergodicity parameter. It describes the glass
structure and may also be calledLamb-Mössbauer factor.
The glass transition is marked by a~generally! discontinuous
transition from the unique trivial solution in the liquid,f q

s

50, to multiple solutions in the glass,f q
s.0, where only the

highest solution is physical. Glass transitions can be cla
fied according to the numberl 21 of nontrivial solutions
merging with the highest one, and the type of transition
noted asAl .

For liquid states close to the glass, a two-step deca
observed for the correlator; the plateau is atf q

s and signals
the proximity of the glass transition. Around this plateau,Fq

s

shows some universal properties, depending on the typ
transition. For the most common type of transitionA2, the
decay to the plateau and that from the plateau, can both
expressed as power-law expansions. In particular, the de
from the plateau is given by

Fq
s~ t !5 f q

s2hq
(1)~ t/t!b1hq

(2)~ t/t!2b1O„~ t/t!3b
… ~3!

with hq
(1) andhq

(2) being amplitudes andt being the final or
a-relaxation time scale.b is known as the von Schweidle
exponent, which depends on the details of the interac
potential. Expression~3! implies time scaling for the deca
from the plateau, calleda decay, for different states close t
the glass transition. The time scalet diverges as the glas
transition is approached according to a power law, with
exponentg, which can be related to the von Schweidl
exponent:t;usu2g, with s being the distance to the trans
tion @49,50#. On the other hand, the wave-vector depende
of the nonergodicity parameter and amplitudes gives so
nonuniversal properties of the transition, providing inform
tion about the mechanism causing the nonergodicity tra
tion.

For high-order singularities, the fluid states close by sh
again a two-step decay in the correlation function, but
decays to and from the plateau are no longer power-law
pansions. Instead, logarithmic laws are obtained@18,19#. A
salient feature is that a logarithmic decay around the plat
is predicted:

Fq
s~ t !5 f q

sA2Cq ln~ t/t1!, ~4!

where f q
sA is the nonergodicity parameter of the high ord

singularity, Cq is an amplitude andt1 is a time scale~the
time when the correlator lies on the plateau!.

The mean squared displacement~MSD! can be studied
instead of the correlation function, obtaining a similar tw
step behavior. Similar asymptotic laws to describe the de
to and from the plateau can be derived, and the parame
and exponents can be related to those of the correlation f
tion @42#. The value of the plateau in the MSD defines t
localization lengthand is a measure of the size of the cag
However, it should be noticed that the cage, as formed
other particles, is constantly restructuring cooperative
Only when the particles have broken free of their cag
diffusive motion is observed, with a self-diffusion coefficie
6-2
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Ds that tends to zero as the glass transition is approache
Ds;usug for the usualA2 transitions.

Two different nonergodicity transitions have been fou
in colloidal systems with a short-range attraction@10,21#: a
steric hindrance driven glass transition and an attrac
driven gel transition@10–12#. While the first is found at high
densities and is qualitatively similar to the glass transition
the hard-sphere system~HSS! or Lennard-Jones system
~LJS!, the gel transition occurs at high attraction strength
all volume fractions. Different properties for these two tra
sitions are predicted, the main difference arising from
driving mechanism: the localization length is shorter in t
gel than in the glass, resulting in higher nonergodicity p
rameters. Also, a smaller von Schweidler exponent for
gel than for the glass is expected, implying a higher value
g, i.e., the transition as observed bytq or Ds is more abrupt.

The actual shape of the nonergodicity transition line
pends on the details of the interaction potential, althou
some general features can be found. From lower to hig
interaction strength, the glass line is slanted to higher c
centrations, showing that a weak attractionfluidizes the
glass. However, at even higher interaction strengths, the
transition occurs at a lower colloid density the higher t
attraction strength. As a result, a reentrance transition is
tained at high colloid volume fractions. The line may
wedge shaped or curved in this region, depending on
range of the interaction. If the line is wedge shaped, a hi
order transition~genericallyA3) is present near the corne
whereas none exists if the line is smoothly continuous.
A4 singularity appears right at the vanishing of theA3 point
when the line first becomes smooth@21#.

III. SIMULATION DETAILS

Equilibrium molecular dynamics simulations mimicking
colloid-polymer mixture were performed for a system co
posed of 1000 soft-core polydisperse colloidal particles. T
core-core interaction between particles was modeled by

Vsc~r !5kBTS r

a12
D 236

, ~5!

where a125a11a2, with a1 and a2 being the radii of the
interacting particles. A flat distribution of radii with a widt
of d50.1a, wherea is the mean radius, was used. The e
ponent inVsc was selected high enough to avoid proble
related to the softness of the potential@52#. The polymer
induces an attractive depletion interaction between the
loidal particles, which was modeled by the Asakura-Oosa
interaction potential@43,47#. The extension of this potentia
to take polydispersity into account reads@53#

VAO~r !52kBTfpH F ~ h̄11!32
3r

4j
~h̄11!21

r 3

16j3G
1

3j

4r
~h12h2!2F ~ h̄11!2

r

2jG2J ~6!
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for r<2(a121j) and 0 for larger distances. Here,h i

5ai /j; h̄5(h11h2)/2, andfp is the volume fraction of
the polymer. Note that the range of the potential is given
the polymer sizej and its strength is given byfp . This
potential was modified aroundr 5a12 to ensure that the mini-
mum of the total potential (Vsc1VA0) occurs at this point:
for r<2a121j/5 a parabolic form that connects analytical
to VAO at 2a121j/5 and has a minimum in 2a12 was used. In
our simulations, the range of the interaction 2j was set to
0.2a, which would correspond to polymers withRg /a50.1
whereRg is the radius of gyration.

A long-range repulsive barrier was added to the inter
tion potential in order to prevent liquid-gas separation~as
shown below!. The barrier had a maximal height of 1kBT
according to a fourth-order polynomial

Vbar~r !5kBTH S r 2r 1

r 02r 1
D 4

22S r 2r 1

r 02r 1
D 2

11J ~7!

for r 0<r<r 1 and zero otherwise. The limits of the barrie
were set tor 052(a121j) andr 154a, which was enough to
prevent phase separation. The maximum height of the ba
equals the depth of the depletion interaction at contact
fp50.0625, much lower than the values where the gel tr
sition takes place. The resulting total interaction poten
Vtot5Vsc1VAO1Vbar is analytical everywhere. It is show
in Fig. 1, where, in order to indicate the spread induced
polydispersity, the potentials among three different pairs w
differing radii are plotted.

In our simulations, lengths were measured in units of
mean radiusa and time in units ofA4a2/3v2, where the
thermal velocityv was set toA4/3. Equations of motion
were integrated using the velocity-Verlet algorithm, in t
canonical ensemble~constantNTV!, to mimick the colloidal

FIG. 1. Total pair interaction potentialVtot as a function of the
radial distancer 5ur12r2u for three different particle pairs; a pair o
particles with minimal radiia15a25a2d, one with average radii
a15a25a, and one with maximala15a25a1d ~from left to
right!. The inset shows the enlarged region of the attractive m
mum. Crosses mark where the parabolic minimum smoot
matches Eq.~6!.
6-3
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dynamics. Everynt time steps, the velocity of the particle
was rescaled to ensure constant temperature. No effectnt
was observed for well equilibrated samples. The time s
was set to 0.0025. Equilibration of the systems was teste
monitoring the total energy, and other order parameters~see
below!, and by measuringFq

s(t) and the MSD at different
initial times. When the order parameters were constant
the Fq

s(t) and MSD curves showed no dependence on
initial time ~ageing!, the system was considered to be equ
brated.

The volume fraction of the colloidal particles,fc
5 4

3 pa3@11(d/a)2#nc , with nc being the colloid number
density, and the polymer volume fractionfp were the control
parameters used to identify the states in the phase diagr

In order to explore the wholefp2fc plane in search of
the gel transition, phase transitions that forbid access~in
equilibrium! to important parts of the plane must be pr
vented. Several order parameters were used to identify
ferent kinds of ordering in our system and to monit
whether unwanted liquid-gas or fluid-crystal transitions w
taking place. First, the onset of phase separation involv
states of different density can be detected by dividing
system inton3 boxes and measuring the density in eve
box. The ‘‘demixing’’ order parameter is defined as the sta
dard deviation of the distribution of densities:

Cn5 (
k50

n3

~rk2 r̄ !2, ~8!

where rk is the density of particles in boxk and r̄ is the
mean density. This parameter is close to zero for an ho
geneous system and increases if it demixes into phase
different density. In our case,n has been set to 4, implying
64 boxes, and a box edge of about 5a ~depending onfc).
On the other hand, the orientational order parameterQ6, as
defined by Steinhardt and co-workers@54,55#, signals the
presence of an ordered phase and is used to detect crys
zation.

The phase diagram was probed using these paramete
Fig. 2 the results are presented for a bare system~monodis-
perse and without the long-range barrier!, a polydisperse sys
tem without the long-range barrier, and the final system w
both polydispersity and barrier. In this figure, the collo
volume fraction is constant,fc50.40, and the polymer con
centration varies; an isochore is studied. The sudden incr
in bothC4 andQ6 occurring atfp50.20 for the bare system
signals the crystallization boundary, in accordance with D
stra et al. @47#. Because of the short range of the potent
this system has no liquid phase, i.e., the liquid-gas coex
ence is metastable with respect to the crystal-gas transit

When polydispersity is introduced in the system, cryst
lization is prevented, as indicated by the constant trend
both parameters close tofp50.20. However, as the system
now does not crystallize, the liquid-gas transition can
reached upon increasing the strength of the interaction. T
demixing is signaled by an increase inC4, not involving
local ordering. In order to avoid this separation, a long-ran
barrier has been introduced in the interaction potential. T
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energy of a dense phase is raised, and demixing is thus
ergetically unfavorable. Figure 2 shows that liquid-gas se
ration is indeed inhibited by the repulsive barrier. Inste
individual voids of finite size are created in the system, ca
ing a low-q peak in the structure factorS(q) presented in
Fig. 3. There,S(q) is shown for different polymer fractions
ranging from no attraction (fp50) to the closest state to th
gel we have accessed (fp50.425).

In the inset to Fig. 3, the pair distribution function,g(r ),

FIG. 2. Demixing (C4) and orientational (Q6) parameters for
fc50.40 and increasing polymer fractionfp for different systems:
monodisperse without long-range barrier~squares!, polydisperse
without barrier~circles!, and polydisperse with long-range barrie
~crosses!.

FIG. 3. Structure factors for different polymer fractions atfc

50.40: fp50 gray line, fp50.2 dashed line,fp50.35 dotted
line, andfp50.425 solid black line. Note the low-q peak rise asfp

is increased. Inset: Pair distribution functiong(r ) for the same
states.
6-4
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is presented for the same states as the structure factor.
value at contact,r 52, increases continuously as the attra
tion strength grows, signaling increased local contact pr
abilities. This process will be shown to be responsible for
gel transition. InSq it becomes evident as an increase in t
oscillations for largeq.

The low-q peak in the structure factor resembles the lo
angle peak observed in light scattering experiments with
loidal gels@6,8#. However, whereas the peak in our system
an equilibrium property, induced by the specific shape of
interaction potential, the experimental peak has a nonequ
rium origin. We also checked for the possibility of m
crophase separation, which in some cases can be induce
a repulsive barrier@56#. In our case, the small angle pea
continuously increases withfp , but stays finite and smalle
than the neighboring peak as we approach the gel transi
We interpret this to indicate that we do not have microph
separation, and we also observed no other signs of such
dering. Furthermore, since the relevant wave vectors in
MCT calculation of the gel transition are the high on
~around 2p/j), the change in the low-q region in the struc-
ture factor is expected to have little effect on the gel tran
tion.

IV. RESULTS AND DISCUSSION

This system has been previously shown to undergo b
the glass and gel transitions as stated by MCT. It also ex
its a logarithmic decay in the correlation function at hi
colloid and polymer concentrations, indicating a high-ord
singularity in that region@40#. In this section we will discuss
the properties of the gel transition, and compare them w
MCT and with those of the HSS and other systems, wh
are similar to the glass transition at high colloid concent
tions. We test for differences by comparing quantitatively
nonuniversal features of the transition, which will aid in t
identification of the driving mechanism.

The gel line is predicted to extend to low packing fra
tions with the same qualitative properties. In order to t
these properties, we have performed simulations at two
ferent colloid concentrations,fc50.40 andfc50.50, where
the gel line is far away from the percolation one. At hig
concentration, the higher-order singularity is expected to
fect the equilibrium states, disturbing some features of
gel transition.

A. Self-intermediate scattering function

The scaling prediction for thea-decay of states close to
nonergodicity transition is tested in Fig. 4 for constant c
loid packing fractionfc50.40. Two different representativ
wave vectors are presented in this figure,q56.9 and q
515. As observed at the glass transition in the HSS
many other different systems@22,23,27,31,34,40#, the
a-scaling property holds. In comparing these correlat
functions with those typical for the HSS or LJS, it is notic
that in Fig. 4 thea decay of the correlators is more stretche
implying a smaller von Schweidler exponent at the gel tr
sition than at the glass transition. Because of this stretch
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in the a decay, a clear plateau is not observed, althoug
slowing down of more than four decades is studied. Nev
theless, extrapolating the relaxation curves to extract plat
values, much higher values are found than at the glass t
sition in the HSS or the LJS. The same problem with t
plateau was reported in Ref.@48#. The nonergodicity param
eters were obtained from Kohlrausch fittings in that case

We have analyzed the statefc50.40 andfp50.42 in
more detail, which shows four decades of slowing do
compared to the purely repulsive situation upon turning
the attraction. Because scaling is observed in Fig. 4, study
only one state is enough to analyze thea decay of the cor-
relation function. The slowest statefp50.425 was not cho-
sen because it strongly deviates from the expected beha
of tq vs fp ~see Fig. 8 and discussion thereafter!. The cor-
relation functions at different wave vectors for statefc
50.40 andfp50.42 are presented in Fig. 5. The range
wave vectors studied, where the plateau height change
much wider than the range for a similar change inf q at the
glass transition of hard spheres or Lennard-Jones partic
This feature indicates that the relevant distances for the
transition are much shorter than for the usual glass transi
@40,48#.

The correlation functions were measured until the aver
particle displacement was 5a, which is one-fourth of the box
size (21.95a). Thus, extending this measurement to long
times in order to observe the wholea decay at lowq is
troublesome. If the diffusion coefficient diverges at the sa
rate as thea-time scale~as predicted by MCT!, this problem
would not appear. Thus, we are also observing a discrepa
between both time scale divergences, which will be furth
discussed below.

FIG. 4. Intermediate scattering function~self-part! Fq
s vs re-

scaled time with thea-time scaletq for different states:fc50.40
and fp50.375,0.39,0.40,0.41,0.415,0.42,0.425 from right to le
Two different wave vectors are studied:q56.9 ~upper panel! and
q515 ~lower panel!, with the KWW fits ~dashed line! included.
6-5
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The impossibility of observing a clear plateau, as me
tioned above, makes it more difficult to analyze the corre
tors, sincef q

s cannot be fixeda priori. Therefore, thea decay
of the correlation functions has been fitted using express
~3!, with f q

s , hq
(1) and hq

(2) as fitting parameters. The vo
Schweidler exponent was also fitted but was kept ident
for different wave vectors. It was found asb50.37, and the
other results for the fitting parameters are shown in Fig
The trends of these parameters are similar to that of the g
transitions in both HSS and LJS, but over a widerq range in
the gel case. This indicates that the localization length
quite different in the present system. The nonergodicity
rameter exhibits a bell shaped curve, whereas the first-o
amplitude describes a maximum. The latter is determi
from the fit up to a prefactor that depends on the choice ot
in Eq. ~3!. As an estimate, we have usedtq for q59.9 @tq is
defined by Fq

s(tq)5 f q /e], which yields values that are
similar ~in magnitude! to the HSS. The second amplitud
shows a monotonically increasing behavior withq, in accor-
dance with the HSS, but it is always positive, unlike the H
where it goes through zero at the peak ofhq

(1) .
The nonergodicity parameterf q

s can be approximated us
ing the Gaussian expression

f q
s'exp$2q2r l

2/6%, ~9!

where r l is the localization length. This approximation
known to be valid for low wave vectors, and important d
viations from the Gaussian behavior are expected close to
glass transition. However, the value for the localizati
length obtained from fitting this curve~solid line in Fig. 6!
can be used as an estimate of that in the MSD.

The localization length so obtained isr l
250.0126a2,

which is much smaller than for the HSS or the LJS, wherer l
is of the order of the Lindemann distance. This feature sho
that the process causing the nonergodic transition in our

FIG. 5. Intermediate scattering function~self-part! Fq
s for the

statefc50.40 andfp50.42, for different wave vectors~from top
to bottom!: q53.9,6.9,9.9,15,20,25,30,35,40,50. The dashed li
are fittings from Eq.~3! up to second order, with the same vo
Schweidler exponent for allq.
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has a typical distance much smaller than in the case of g
transitions in the HSS or the LJS. This agrees with the
servation and discussion about the height of the plateaus,
of the differentq range covered byf q

s in Fig. 6. Whereas the
glass transition in the HSS is driven by core-core repulsio
the gel transition is caused by the short-range attract
therefore bybondsbetween particles~see inset to Fig. 3!
whose size is of the order of the interaction range. An int
esting analogy has been established between the mechan
driving the formation of gels and glasses and the freez
transition@57#.

Thea decay of near-nonergodic states can be also stu
using the Kohlrausch-Williams-Watts~KWW! stretched ex-
ponential. The KWW expression is given by

Fq
K~ t !5Aq expH 2S t

tq
KD bqJ , ~10!

wherebq is known as Kohlrausch exponent, which has be
shown to coincide with the von Schweidler exponent at h
wave vectors@58#. This expression has been fitted to ve
different systems, and describes thea decay down to zero.
We have fitted this expression to thea decay in our system
However, since the correlators in Fig. 5 do not show
completea decay, we have fitted expression~10! to the mas-
ter curve, obtained from thea rescaling. Two of these fittings
are presented in Fig. 4 by the dashed lines, showing that
KWW stretched exponential describes well thea decay in
this system.

The fitting parametersAq , bq , andtq , are presented in
Fig. 7 and are compared with the corresponding parame
in the von Schweidler formalism. In such a way,Aq is com-
pared with the nonergodicity parameter,bq is compared with

the von Schweidler exponent, and thetq
K is compared with

tq . As expected, the height of the plateau can be determ
equally well both by the KWW or von Schweidler analysi

s

FIG. 6. Nonergodicity parameterf q
s ~open circles! and first-

~filled circles! and second-order~diamonds! amplitudes from the
fittings in Fig. 5 withb50.37 for all wave vectors. The lines giv
the Gaussian approximation from Eq.~9! fitted to all wave vectors
~solid line! and the three lowest wave vectors~dashed line!.
6-6
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SIMULATION STUDY OF NONERGODICITY . . . PHYSICAL REVIEW E67, 031406 ~2003!
The same holds for the time scalestq
KWW andtq . The Kohl-

raush exponent is expected to tend to 1 at low wave vect
and to the value of the von Schweidler exponent at highq.
The low-q limit is explained because diffusion is the dom
nant process over long distances, whereas at short dista
~comparable to the cage size! the dynamics is dominated b
the cooperative local rearrangements. This behavior is
dicted from MCT @58#, and has been observed in differe
systems, such as molecular glass formers@59#, and in simu-
lations of polymer melts@31# and of water@60#. In our case,
the low-q limit is not observed, butb rises as the wave
vector decreases, indicating that the expected behavior
appear at a lowerq below the small angle peak inS(q). At a
high wave vector, the Kohlraush exponent crosses the
Schweidler value, but stays close to it. Although an ex
agreement is not observed, we may conclude that the co
general trend is obtained.

B. Time scale and diffusion coefficient

An important universal prediction of MCT is the exis
tence of power-law divergences for both the time scalet and
the inverse of the self-diffusion coefficientDs , with the
same exponent in both cases,g:

tq;~fp
G2fp!2g andDs;~fp

G2fp!g, ~11!

wherefp
G is the polymer volume fraction where the gel tra

sition occurs. The relation between exponentg and the von
Schweidler exponentb is also universally established b
MCT @50#.

Testing of the power-law divergence~and measuring of
g) is usually carried out plottingtq as a function offp

G

2fp for different values offp
G , looking for a straight line.

This method is cumbersome, even more as deviations fro
are expected for states close to the transition, and pre
values forg andfp

G cannot be given. To avoid this difficulty
we have calculatedg from b, as given by MCT, and with this

FIG. 7. Parameters used in the KWW fittings and compari
with the von Schweidler fitting. Main figure:Aq ~closed circles! and
f q

s ~open circles!, bq ~crosses!, andb ~horizontal dashed line!. Inset:

tq
K ~closed circles! andtq ~open circles!.
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particular value of the exponent looked for the power-la
divergence. In such a way, we are testing thecompatibilityof
the MCT predictions with our data.

Figure 8 shows the wave-vector-dependent time scaletq

vs fp
G2fp for different wave vectors. For every wave ve

tor, tq
1/g was extrapolated to zero, yielding a value for t

polymer fraction at the gel transition,fp
G,q . The final value

of fp
G , used in Fig. 8, was calculated as the average va

for all wave vectors studied. The linear trends in Fig. 8
fp

G2fp.531023 show the power-law behavior predicte
by MCT, with exponentsg53.1 andfp

G50.4265. The clos-
est state to the gel transitionfp50.425 deviates from the
power-law behavior observed for lower polymer fraction
Similar deviations have been observed in the HSS and
and can tentatively be attributed to thermally activated p
cesses~or hopping events! @61#.

As shown in Eq.~11!, MCT predicts a power law for the
self-diffusion coefficientDs with the same exponent as th
divergence of the time scale. Simulations on HSS and L
have shown that a power-law divergence is indeed obtain
but with a different exponent than in the case oftq . Using
the same procedure as described above~calculatingg from b
and extrapolatingDs

21/g to obtainfp
G) yields fp

G50.4519,
with the sameg as for the time scale. This value offp

G is too
far from that obtained usingtq . Therefore, we cannot hav
similar fp

G andg to explain the behavior of bothtq andDs ,
implying that the MCT prediction, Eq.~11!, is violated.

In Fig. 9, we presentDs vs fp
G2fp using forfp

G both the
value estimated fromtq and that fromDs . We consider more
desirable to have similarfp

G to explain the behavior oftq

andDs , even though this implies two differentg: g53.1 for
tq and g51.23 for Ds . As obtained in other nonergodicit
transitions@22,31,34#, the g exponent is lower in the diffu-
sion coefficient than in the time scale, although the diff
ence between both values ofg is bigger in our case.

n

FIG. 8. Wave-vector-dependent time scaletq vs fp
G2fp for the

isochorefc50.40 for different wave vectors; symbols from top
bottom correspond toq53.9,6.9,9.9,15,20,25,30. The lines a
power-law fittings toq53.9 andq530. In all casesg keeps close
to these two values.
6-7



-

.
T

th

s

th
tio
n
ith
e
m
ed

e
u
ne

im
io
ic
ed
m
ts

n

i-
ve

er
po-

the
dler

in
red
ne.
at

e-
hey
he
ori-
ld

re
e-
wn
SD
the
.
e
c-
re-

em
ns
ed

th

r

-
iors

PUERTAS, FUCHS, AND CATES PHYSICAL REVIEW E67, 031406 ~2003!
In order to stress the differentg exponents in the diver
gence of the time scale and 1/Ds , we have plottedDstq as a
function of fp for different wave vectors in the inset to Fig
9. This product, which should be constant according to MC
diverges as the polymer fraction approachesfp

G . The diver-
gence follows a power law with the exponent equal to
difference between both values ofg.

The maximum in the self-diffusion coefficient~upper-
right corner of Fig. 9! is a consequence of the reentrant gla
transition at high packing fractions@48,62–64#. A weak
short-range attraction at first destabilizes the cage and
the glass transition moves to higher particle concentra
initially, as the polymer fraction is increased. At consta
colloid concentration the diffusion thus first speeds up w
increasingfp , until for intermediate attraction strengths th
gel line is approached, where the opposite trend then do
nates. Atfc50.40, the glass transition is rather far remov
and thus has little effect, but the increase inD is still mea-
surable and the diffusion coefficient can be used as a m
sure of the distance to the closest transition. The maxim
thus indicates the reentrant shape of the nonergodicity li

The wave-vector dependence of the time scaletq can also
be compared with theoretical predictions. At lowq, the time
scale is expected to behave asq22, corresponding to a dif-
fusive process over large distances. Yet, because the s
lated scattering functions exhibit nonexponential relaxat
even for the smallest wave vectors, this simple theoret
scenario is not expected to appear in our case. At interm
ate wave vectors, where the Kohlrausch exponent beco
comparable to the von Schweidler one, the theory predic
decrease asq21/b, whereas at even higherq the distances
involved are dominated by the microscopic dynamics, a
corrections to this behavior are expected@65#. The inset to
Fig. 10 showstq for different states close to the gel trans
tion. In order to make clear common properties the cur

FIG. 9. Self-diffusion coefficientDs vs fp
G2fp for two values

of fp
G : fp

G50.4519~closed circles! andfp
G50.4265~open circles!.

The dashed lines are the power-law fittings to the data, with
exponent shown in the figure. Inset:Dstq vs polymer fraction for
different wave vectors. Symbols as in Fig. 8.
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have been scaled vertically to collapse~main figure!.
It can be seen in this figure that the behavior oftq at low

wave vectors~below q510), indeed shows aq22 behavior,
which however is not the one explained by MCT. At high
q, another power-law trend is observed, with a higher ex
nent: q23.3. The crossover from the low-q behavior to the
high-q one compares nicely with the wave vector where
Kohlraush exponent becomes equal to the von Schwei
one ~Fig. 7!. The exponent of the high-q region yieldsb
50.30, lower than the value obtained from the analysis
Fig. 5. However, this value is quite close to the measu
von Schweidler value and much smaller than the HSS o
Deviations from this power-law behavior are observed
high q for the lowestfp presented in the figure. These d
viations are caused by the microscopic dynamics, as t
occur whentq is lower than a certain value, regardless t
polymer fraction. This value, presented in the inset as a h
zontal line, ist0;0.6, which agrees with the time one wou
estimate from the correlators in Fig. 5.

C. Mean squared displacement

We turn now our attention to the MSD curves, which we
partially analyzed to obtain the diffusion coefficients pr
sented in Fig. 9. We are only interested in the slowing do
close to the gel transition and thus we do not show the M
for low polymer fractions, where the attraction speeds up
dynamics and increases the diffusivity~see Fig. 9 and Refs
@48,62,64#!. The MSD, after a short initial regime of fre
flight dr 2}t2, slows down because of the particle intera
tions and takes longer and longer to reach the long-time
gime diffusive, wheredr 256Dst. An important feature that
can be obtained from the MSD of the particles in the syst
is the localization length, where the particle interactio
hinder particle motion most strongly and, in the idealiz

e

FIG. 10. ~Inset! Time scaletq as a function of the wave vecto
q for different states close to the gel:fp50.42 ~circles!, fp

50.415 ~squares!, fp50.41 ~diamonds!, fp50.40 ~upward tri-
angles!, fp50.39 ~left-ward triangles!, andfp50.375~downward
triangles!. Main body: same data, rescaled to collapse in the lowq
power-law behavior. The dashed lines show power-law behav
with exponents 2~gray line! and 3.3~black line!.
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SIMULATION STUDY OF NONERGODICITY . . . PHYSICAL REVIEW E67, 031406 ~2003!
glass state, arrest it. It can be compared with the estim
using the Gaussian approximation~see Fig. 6!. In Fig. 11 we
present the MSD for increasing polymer volume fractio
As the gel transition is approached, the localization len
shows up as an indication of a plateau, signaling the b
formation. As discussed above,r l is much shorter than in the
HSS glass transition~upper dashed line in Fig. 11!, because
of the driving mechanism@48#.

The lower dashed line in this figure is the localizati
length, as estimated from the nonergodicity parameter u
the Gaussian approximation (r l

250.0126). Although a clea
plateau has not fully developed in our curves, its hei
seems to be above that estimate by a factor;1.5–2. Since
the Gaussian approximation works very well in the case
the HSS, this suggests big non-Gaussian corrections a
gel transition. Before testing the Gaussian approximation,
stress that the localization length gives a typical size of
mesh of bonds formed between neighboring particles,
that the slow structural units are continuously and coope
tively rearranging. In order to test this idea about a correla
region that cooperatively rearranges with and around e
particle, a single mobile particle is considered in a fixed
vironment. A well equilibrated system withfp50.425 is fro-
zen, and only one particle is allowed to move. This mob
particle now explores afrozen environment, providing the
structural size of the region it is confined to. The mea
squared displacement so obtained is given in Fig. 11~dotted
line!. Some particles~1.6%! were able to break their bond
and diffuse freely in the frozen environment. For the p
ticles that stay localized, it can be observed that the lengt
the frozen bonds is much smaller than the localizat
length. This fact demonstrates that the structure of bon
such as the repulsive cage at the glass transition in the
or LJS, is dynamic and constantly rearranges cooperativ

FIG. 11. Mean squared displacement of the particles as
gel transition is approached. Black curves from left to rig
fp50.30,0.325,0.35,0.375,0.39,0.40,0.41,0.415,0.42,0.425. G
curve:fp50. The dashed horizontal lines indicate the localizat
length corresponding to the glass transition~short dash! in the HSS
and the estimate from Fig. 6~long dash!. Dotted curve: mean
squared displacement for a single particle in a frozen environm
at fp50.425.
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This collective restructuring of the system fluidizes it a
restores ergodicity, which cannot occur in the frozen syst
where the particles are not able to diffuse even at very lo
times.

We turn now back to the Gaussian approximation and
accuracy. Usually, this is tested by measuring the n
Gaussian parameter defined as

a25
3^r 4~ t !&

5^r 2~ t !&2
21, ~12!

where the averages imply ensemble averaging. This par
eter measures the deviation of the probability density fu
tion for the single-particle motion from the Gaussian beh
ior, and vanishes for diffusive motion. Special care must
taken when performing the ensemble averages in poly
perse systems, as pointed out in Ref.@66#. The non-Gaussian
parameter must be calculated for every particle~the averages
in the definition above thus implying time-origin averagin
only!, and particle averaging is taken on the values ofa2 ~so
long as long enough time intervals are studied, each par
will sample the distribution relevant to its own size in a
ergodic fashion!. The non-Gaussian parameters for sta
with increasingfp are presented as a function of time in Fi
12. At short timesa2 tends to zero, since the system sho
Gaussian behavior during its unhindered ballistic regime.
long times, when the particles break free from their bon
and hydrodynamic diffusion holds,a2 again goes back to
wards zero. At intermediate times, corresponding to the p
teaus in both the correlation function and the mean squa
displacement,a2 grows, since the single-particle motion hin
dered by bonding is not Brownian. As a result,a2 shows a
maximum, whose height and position grow in time, beca
the particles take longer and longer to break free and s
diffusing.

The behavior of the simulateda2 obeys the general ex
pectations@36,37,39#, but important differences are observe
in comparison with the results for the HSS or LJS. Where

e
:
ey

nt

FIG. 12. Non-Gaussian parametera2 as a function of time for
states approaching the gel transition at the same states as Fig
The maximum increases with increasingfp .
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PUERTAS, FUCHS, AND CATES PHYSICAL REVIEW E67, 031406 ~2003!
in those cases the height of the maximum for similar~or even
higher! a-relaxation times is around 2, at the gel transiti
much higher values are measured. Another interesting di
ence is the failure of the short-time scaling, observed bot
the HSS and LJS. Both effects can be rationalized consi
ing that the cage is indeed a network of bonds in the cas
a gel, rather than being a cavity. The strength of these bo
is given by the intensity of the interaction and, thus, it
modified for different states, disabling the short-time c
lapse. Because the bonds are short ranged, they affec
particle motion from very short times onward, so that t
particles feel the hindrance much longer in the gel case.

It can be concluded that the non-Gaussian corrections
very important in the gel transition. Therefore, the localiz
tion length estimated from the nonergodicity parameter m
be inaccurate, as discussed above. However, it still prov
an indication of how small the localization length is. A bett
indication ofr l can be obtained within the Gaussian appro
mation if only low wave vectors are used in fitting expre
sion ~9!. The fitted curve is presented in Fig. 6 by the dash
line, where only the three lowestq’s are fitted. The estimated
f q

s deviates from the data at higher wave vectors, show
high non-Gaussian corrections. The localization length
higher than the previous value:r l

250.0162. Thus, this fitting
provides data more consistent with the MSD curves and
non-Gaussian parameter.

D. Higher colloid volume fraction

We move now to a higher colloid volume fraction:fc
50.50. These results are presented to supplement the
ings at the lower packing fraction and test for the predict
of stronger stretching closer to the higher-order singular
As indicated in the theoretical section, MCT predicts
higher-order singularity in the vicinity of the junction of th
gel and glass lines, i.e., at high polymer and colloid densit
In this particular system we found clear indications of th
singularity in simulations atfc50.55 andfp50.375 @40#.
The isochore under study now,fc50.50, could be close
enough to the higher-order singularity to show some effe

In Fig. 13 we present the correlation functions for incre
ing polymer fractions at the same wave vectors as Fig
rescaled to collapse in the long-time decay. It is interestin
note that the polymer concentrations studied in this case
lower than those studied at the lower colloid volume fra
tion. In accordance with experiments and theory, this in
cates that the gel transition takes place at lower polym
fractions the higher the colloid concentration.

In Fig. 13, it can be observed that the correlators do
collapse over the wholea decay, but only in the end. Thes
deviations are expected because of the higher-order sing
ity, which is at higher densities. However, we stress t
although this singularity has clear effects on the correlat
functions, they do not show so clear signatures as that of
fc50.55 isochore@40#. At this high concentration, a loga
rithmic decay was observed, with a wave vector-depend
extension.

Because these corrections affect the earlya decay, ana-
lyzing the correlation functions is difficult. Furthermore, th
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plateau is not observed and the von Schweidler analys
thus extremely difficult. In order to analyze the se
intermediate scattering function, we compare the stretch
of the curves atfc50.40 andfc50.50; in Fig. 13 thea
decay master function of thefc50.40 state, as parametrize
by the KWW fitting, is included. It can be seen that th
curve can be rescaled to collapse onto thea decay of the
correlators atfc50.50 for both wave vectors at long time
This indicates not only that the von Schweidler exponen
very similar in both cases, but also points out the effect
the high-order singularity. According to MCT,b should de-
crease as the singularity is approached, but this behavio
not observed in our case. Comparison of thea decays by
fitting the KWW stretched exponential to the master functi
is troublesome, since only the late decay is obtained un
biguously.

The similarity of botha decays was used in the vo
Schweidler analysis of the correlation function, and only t
nonergodicity parameter and amplitudes were fitted. Si
the upper part of the decay is known to be affected by
higher-order singularity close by, that part must be discar
in the fittings. The correlation functions and fittings are p
sented in Fig. 14 for the statefc50.50 andfp50.39, for
the same wave vectors as in Fig. 5. The main conclusio
that the latea decay at all wave vectors can be correc
described by the von Schweidler decay, with the same ex
nent as the state atfc50.40. The nonergodicity paramete
obtained from the fitting are slightly lower than those
fc50.40, but similar within the error bars. According t
MCT, f q

s decreases when approaching the glass part of
nonergodicity line~signaling an increase in the localizatio
length!. Our result is thus consistent with this prediction.

FIG. 13. Correlation functions forfc50.50 and different poly-
mer concentrations. From left to right:fp50.35,0.36,0.375,0.38
0.385,0.39. Two wave vectors are studied, as labeled in the figu
The dashed lines represent the KWW fittings to thefc50.40 cor-
relation functions.
6-10
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SIMULATION STUDY OF NONERGODICITY . . . PHYSICAL REVIEW E67, 031406 ~2003!
With these values of the nonergodicity parameter, one
define also the wave-vector-dependent time scaletq as dis-
cussed above. In order to test the value of the v
Schweidler exponent, using Eq.~11! we have performed a
three-parameter fitting to obtaing andfp

G . In Fig. 15,tq is
presented as a function offp

G2fp for different wave vec-
tors. The power-law fittings for two wave vectors are a
plotted and the critical polymer fractionfp

G is given.
The values ofg obtained from this analysis for differen

wave vectors range fromg53.37 to g53.82; the mean
value beingg53.70. This value ofg implies a smaller von
Schweidler exponentb50.33, in disagreement with our pre
vious estimate, but backing the MCT prediction. Using t
same value offp

G , the vanishing of the self-diffusion coef

FIG. 14. Intermediate scattering function~self-part! Fq
s for the

same wave vectors as in Fig. 5 forfc50.50 andfp50.39. The
dashed lines are fittings from Eq.~3! up to second order, with the
same von Schweidler exponent asfc50.40.

FIG. 15. Wave-vector-dependent time scaletq vs fp
G2fp for

different wave vectors; symbols from top to botton correspond
q53.9,6.9,9.9,15,20,25,30. The lines are power-law fittings toq
53.9 andq530. fp

G andg were fitted.
03140
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ficient Ds can be analyzed and is presented in the inset to
figure. A power law is observed in this case, with an exp
nentg51.92, which, again in contradiction to MCT, leave
us with a big difference between the two values ofg.

The diffusion coefficients in the inset of Fig. 15 aga
indicate the reentrant glass transition. They describe a m
mum, more pronounced than that observed in Fig. 9, beca
the glass line is closer to thefc50.50 isochore. The mini-
mum intq , which is observed only forq53.9, in an equiva-
lent way indicates the shape of the nonergodicity transit
line. At higher wave vectors, the glass transition causes v
low f q

s and the time scales merge with the microscopic tr
sient and thus this feature is suppressed.

The wave vector dependence oftq can also be studied, a
done for the lower concentration, yielding another estim
of b. In this case, a similar plot as Fig. 10 is obtained, wh
the low-q region is compatible with aq22 behavior, and a
higher exponent at higherq, yielding a value ofb50.38.
This value is in agreement with the nice comparison betw
the fc50.40 andfc50.50 isochores, but not withg or the
MCT prediction. We may then conclude that an analysis
this state is extremely difficult, but our indications state th
the von Schweidler exponent is similar for both packing fra
tions, but probably slightly lower in the higher concentratio

Finally, we would like to point out that the non-Gaussia
parameter at this packing fraction shows a behavior sim
to that shown in Fig. 12, i.e., the peak is as high, and
short-time scaling is observed.

V. CONCLUSIONS

In this paper, by means of simulations, we have tested
universal predictions of MCT for gelation in colloidal sys
tems, viewed as an attraction-driven glass transition. T
self-parts of the intermediate scattering function for sta
close to this transition have been analyzed and the res
were compared with the theoretical predictions. For thefc
50.40 isochore, which is far enough from the high-ord
singularity, the correlation functions can bea scaled. The
time scale of thea decay was shown to obey a power-la
divergence, with an exponentg related to the von
Schweidler exponent, obtained from the earlya decay. Both
features are predicted by MCT for all nonergodicity tran
tions. Also, the wave vector analysis of the time scale f
lows the behaviors predicted by MCT, with a small diffe
ence in the value of the von Schweidler exponent.

The wave-vector analysis of the correlation functions d
pends on details of the interaction potential, and thus p
vides information about the mechanism, leading to the tr
sition. In our case, it establishes that the gel transition
driven by a short-range mechanism, namely, bond format
as observed in the pair distribution function. Additionally,
has been shown that the KWW stretched exponential
account for thea decay of the correlation functions, as
other nonergodicity transitions.

We have also tested the Gaussian approximation, wh
works very well for the HSS. The non-Gaussian parame
a2 establishes that this approximation is much worse in
case of the gel transition than for the glass transition. It w

o
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also tested when comparing the estimated localization len
from the nonergodicity parameter with the MSD of the p
ticles. The diffusion coefficient has been also studied
tends to zero as the transition is approached followin
power law, with an exponent much lower thang, in accor-
dance with simulations of glass transitions in other syste
but in disagreement with MCT, where both exponents
equal.

Finally, when the colloid concentration is increased,
system shows signatures of the high-order singularity nea
and little can be discussed about the exponentsb or g. How-
ever, only slight changes in the numbers are expected, s
the qualitative behavior is reproduced, except for thea scal-
ing. Also, the diffusion coefficient follows a power law wit
a-

.L

v.

s.

on

ys

rry

ys

03140
th
-
It
a

s,
e

e
y

ce

a different exponent and the non-Gaussian parameter rea
values similar to thefc50.40 case.

Therefore, our main conclusion is that MCT accounts
most features of the simulated systems on approach to
gel transition, but the discrepancies already found in ot
nonergodicity transitions~such as the repulsion-driven glas
transition in hard-sphere systems! are also obtained here.
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