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Structure of random monodisperse foam
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The Surface Evolver was used to calculate the equilibrium microstructure of random monodisperse soap
froth, starting from Voronoi partitions of randomly packed spheres. The sphere packing has a strong influence
on foam properties, such &s(surface free energynd(f) (average number of faces per ¢elThis means that
random foams composed of equal-volume cells come in a range of structures with different topological and
geometric properties. Annealing—subjecting relaxed foams to large-deformation, tension-compression
cycles—provokes topological transitions that can further redard(f). All of the foams havéf)<14. The
topological statistics and census of cell types for fully annealed foams are in excellent agreement with experi-
ments by Matzke. Geometric properties related to surface area, edge length, and stress are evaluated for the
foams and their individual cells. Simple models based on regular polygons predict trends for the edge length
of individual cells and the area of individual faces. Graphs of surface area vs shape anisotropy for the cells
reflect the geometrical frustration in random monodisperse foam, which is epitomized by pentagonal dodeca-
hedra: they have low surface area but do not pack to fill space.
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[. INTRODUCTION system[12], and geometrically frustrated materfdl3]. Un-
derstanding the structure of foam is prerequisite to predicting
Matzke’'s experimental studyl] of bubble shapes in properties.
monodisperse foam is a landmark in foam science. In sharp From a geometric point of view, the microstructure of all
contrast with Kelvin's classic theorj2] on the structure of (liquid and solid foams is built on a skeleton of polyhedra
perfectly ordered foam, Matzke did not find a single Kelvin packed to fill space, and soap froth has the simplest structure
cell, showed that pentagonal faces were the most commoof all. In the hypothetical dry limit where liquid volume frac-
(the Kelvin cell only has quadrilateral and hexagonal faces tion is zero, thin liquid films degenerate to minimal surfaces
and also showed that foams exhibit topological disorder evethat form the faces of polyhedral cells. Under conditions of
when all of the cells have the same volume. Kelvin’s seminamechanical equilibrium where the surface free energy is
work has spawned the Kelvin problef8], which refers to  minimized, the local foam geometry obeys Plateau’s laws
“the partitioning of three-dimensional space into cells of [14,15: (1) each face has constant mean curvature to balance
equal volume and minimum surface area.” The Weaire-the pressure difference between adjacent c@)ghree faces
Phelan foan{4] has less surface area than the Kelvin cell, meet at equal dihedral angles of 120° at each cell edge; and
but whether it is the best monodisperse foam remains afB) four edges join at equal tetrahedral angles of ¢os
open questionThe analogous two-dimensional problem, the (—1/3)=109.47° at each cell vertex. This local, film-level
honeycomb conjecture, has only recently been prdégd  organization is found in all dry soap foams under static con-
In this study, we take a broad view of the Kelvin problem ditions.
and turn from the idealized world of ordered foams to inves- The Kelvin cell can be modified to form a different 14-
tigate the cell-level structure of random monodisperse foanmedron that contains mostly pentagons; the resulting Will-
through numerical simulation. iams cell[16] has two quadrilaterals, eight pentagons, and
“We live in a universe inundated with foarf6].” This four hexagons. Layers of these cells alternate orientation in
form of soft condensed matter has broad practical applicaan ordered foam structure. The Weaire-Phelan foam belongs
tion, exhibits fascinating physical phenomena, and pose® a class of crystal structures known as tetrahedrally close
challenging scientific questioriZ—9]. Dry soap foam, com- packed(TCP) [17], which include the Frank-Kasper phases
monly referred to as soap froth, is a prototypical randon{18]. Two dozen or so basic TCP structures and countless
heterogeneous materigl0], complex fluid [11], jammed hybrids[19] contain up to four different polyhedra with 12,
14, 15, or 16 faces. Thedehedra have unique topology:
there are 12 pentagonal facds;12 hexagons, and no two
*Electronic address: amkrayn@sandia.gov hexagons share an edge. The Weaire-Phelan foam contains
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two pentagonal dodecahedra and six 14-hedra known as Monnereauet al. [24] used optical tomography to inves-

Goldberg polyhedra. The TCP foams have i&3f)  tigate the topology and coarsening of slightly polydisperse
foam, prepared by bubbling nitrogen into surfactant solu-
tions. Cell volumes were calculated from Surface Evolver
. . | [25] models of reconstructed foam. The cell statistics were
property of foamsp is surface tension anfilis surface area  cqngistent with Matzke, but the samples were smaller. It is

per unit volume. The natural scale féris alV', whereVis _noteworthy that the foam topology did not change during the
the cell volume. ¥ is replaced by the average cell V°|“T/‘3e N first several hours of an experiment. Matzke’s foams were
polydisperse foams. Crude bounds onE are (36r) probably even more stable against gas diffusion because his
=4.8360<E<6, which correspond to a spherical bubble 5555 solutions contained higher concentrations of glycerine,
and cubic cell, respectively. It is somewhat surprising that,nq therefore were more viscous and had lower gas perme-
the densest packing of uniform sphef@6] does not lead to ability.

an ordered foam structure that is stable. The polyhedron as- |4 the current study, random foams are modeled as spa-
sociated with face-centered-cultfcc) packing is a rhombic a1y periodic structures, but unlike the ordered systems, the
dodecahedron, which violates a topological requirement IMiepresentative volum@nit cell) contains a large number of
plied by Plateau’s laws: individual foam cells must be triva-y pples jammed together in a disordered packing. The cells
lent polyhedrathree edges meet at each cojn@he ordered 4 constrained to have equal volumes so these systems lack
foams gg\ve lower energy than the rhombic dodecahedroRy|ymetric disorder but do possess other characteristics of
E=3(2"")=5.3454, and the range of energies is narmrow:ea| foam. These include topological disorder and statistical
Weaire-Phelan is the lowed6.2883 and Sadoc-Mosseri ariation in geometric properties related to cell area and edge
[21] is the highest(5.342; Kelvin (5.3063 and Williams |ength. Consequently, the monodisperse limit is quite rich

(5.3371 are in between. _and provides a baseline for the broader study of polydisperse
Matzke used a microscope to observe the topology of si¥ggm [26].

hundred cells in the interior of foams that were meticulously Reg soap froth is notoriously fragile, far from equilib-

assembled—one bubble at aume__wnh a_graduated SYNNg@ium, and subject to well-known degradation mechanisms
Matzke reported thatf)=13.70, which is in between TCP gych as coarsening, drainage, and film rupture. Matzke’s dis-
foams and the Kelvin cell. The cells were grouped accordingssion of experimental technique inspires confidence that
to their face content and labeled-ns-ne(-n;), wheren; is  yncertainties were controlled, but his study has never been
the number of faces withedges. This classification scheme (gpeated. These uncertainties do not exist in our simulations.
does not distinguish between the different topological perThe methods used to generate random microstructure are
mutations that are possible. For example, the faces in trivage|| defined: initial conditions for Surface Evolver simula-
lent 14-hedra designated as 2-8-4 can be assembled to foligns are based on Voronoi tessellations, which in turn are

eleven topologically distinct polyhedi@2], which include  pased on random packings of identical spheres. Equal cell
the Williams cell mentloneq above. There are even three difyglumes are set very accurately during relaxation. There is
ferent ways to make 6-0-8; the Kelvin cell is the most sym-ng gas diffusion to cause coarsening and no liquid to drain.

metric. L ) There are no boundaries to cause edge effects, i.e., there are
Most of Matzke's “central” bubbles had 12 to 16 faces; ng “peripheral” cells only “central” cells in spatially peri-

11 and 17 were rare. Most of the faces had 4 to 6 edgeg;gic systems, which represent bulk foam. We consider the

trianglular faces were absent and heptagons were rare. Thirymyations to be a critical test of Matzke’s experiments and
six combinations of faces were found. Bubbles with 14 facesing that our results are in remarkable agreement with his

were most common but the most abundant combinationyseryations.

(19.79 was the 13-hedron, 1-10-2, which can only be made

one way. We propose calling this unique polyhedron the

Matzke cell. Matzke concluded that no single combination Il. THEORY AND SIMULATIONS
could be considered typical because four types were required . . . -
to form the majority of bubbles and the ten most common | N€ basic strategy for developing spatially periodic mod-

types only covered about 80% of his sample. The cell type§!S ©f random foam in three dimensions carries over from
r?/ﬁns_ne ;/atisfy ° P P two dimensions[27], and involves two stepstl) filling

space(the plane with Voronoi polyhedra(polygons pro-
duced from random packings of monodisperse spheres
(diskg and(2) relaxing the Voronoi structures to satisfy Pla-
teau’s laws and minimize surface aréadge length The
ne=f+n,—12. microstructures contailN spheres, convex polyhedra, or
bubbles, packed in cubic unit cells.
This pattern and the prevalence of pentagons led Matzke to Recall that a Voronoi cell is defined as a region composed
comment on the absence of three cells: 1-10-0, 1-10-1, anof points that are closer to a given seed pdsgthere center
0-12-1. It is now known that trivalent polyhedra with thesethan any other, and the faces are flat. Voronoi foams satisfy
combinations of faces do not exig23]. Consequently, 33 the topological requirements on edge and face connectivity
combinations that satisfy Eql), O<n,<6 and 12f<16 in Plateau’s laws but not the geometric conditions; e.g., the
are possible; Matzke found 23 of them. vertex angles of a flat face with straight edges cannot all be

<133, where(f) is the average number of faces per cell.
The surface free energy densi= oS is a fundamental

ng=12—2n,, (1)
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FIG. 1. The first Voronoi structuréV512-RSA is based on a
relatively loose packing of 512 spheras= 0.36) produced by ran-
dom sequential adsorption; the oth®512-RCB is based on ran-
dom close packing¢=0.64) accomplished by molecular dynam-
ics.

equal to the tetrahedral angle. Voronoi cells do not have
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zeroth level of refinement and linear facets. Mesh refinement
involves subdividing each facet into four similar triangles, so
Ri has 4 times as many facets &0. Hundreds of simula-
tions indicate that the basic mesRp-linear, is adequate for
computing the stable structure of random monodisperse
foams that contain a large number of celN=216 and
512). The supporting evidence is discussed below. Calcula-
tions involving finer meshes, higher order facets, and up to
1000 cells will also be discussed.

The primary criterion used to establish the stability of a
foam structure is based on the length of individual cell edges.
All of the edges in a stable foam have finite length as the
surface converges to minimum area. Short edges that violate
this condition are identified byx<e(\), where\ is the
edge length{\) is the average, and 0.84e<0.10(0.05 is
typical).

In sharp contrast to monodisperse foatrsal or ideal,

equal volumes. Polydispersity and other geometric propertiegoronoi polyhedra generated from randomly packed spheres

of Voronoi tessellations are controlled by settipig the den-
sity of spheres, in various packing algorithf#8,29. The
dispersion of the cell volumes decreasespascreases.

contain many small triangular faces that are virtually elimi-
nated by topological transitio84,35 during foam relax-
ation. The main feature of the relaxation algorithm is a loop

Two methods for packing hard spheres are used in thithat terminates when convergence criteria are satisfied and

study: (1) random sequential adsorptigRSA), which pro-
duces relatively loose packings, af#] classical hard-sphere

stability is achieved. The loop contains three basic stélps:
surface evolution(2) topological transitions, an{B) mesh

molecular dynamics, which is used to obtain higher densitiesleanup. The surface evolves toward minimum energy by
such as random close packifi@CP, where»=0.64. RSA taking hundreds of conjugate-gradient iteration steps. The
is a very simple process. Spheres are randomly, sequentiallgjotion stalls when cell edges shrink to zero length and pro-
and irreversibly deposited in the unit cell unless they overduce skinny triangles. This situation is signaled by a scale
lap. The saturation limit for RSA igp»~0.38. Voronoi foams factor for the motion dropping below some threshold. Topo-
based on RSA can achieve cell volume dispersions as low degical transitions are triggered by deleting short cell edges.
oy=0.12 near saturationr,, is the standard deviation. Mo- This produces locally unstable conditions because more than
lecular dynamics can produce much lower dispersiep: four edges meet at a vertex, or, more than three faces meet at
=0.042 at RCP. Sullivan'scs software[30,31 was used to an edge. Local stability is restored by using standard Surface
generate Voronoi partitions. The structures shown in Fig. JEvolver commands that remove nonminimal features, i.e.,
illustrate the strong influence of# on the regularity of “pop nonminimal edges” and “pop nonminimal vertices.”
Voronoi cells. Future reference to RSA will indicate sphereThis process causes cell-neighbor switchiig36]. The pop
packings with¢~0.36; lower density increases irregularity, commands produce a lot of extra facets in the neighborhood
but has negligible effect on foam properties when the cell®f the unstable features. Mesh cleanup restores the surface to
are constrained to have equal volumes during relaxation. Théhe standard mestO0-linear, by deleting extraneous facets.
resulting foams are monodisperse even though the Voronoi Random Voronoi foams also contain many short edges
structures are not. that continue to shrink as the surface evolves. The first pass
The numerical procedure for relaxing Voronoi structuresthrough the relaxation loop causes about\Dldcal topology
to produce stable foams is based on the Surface Evipggr  changes; the last few cycles may only involve one or two
a computer program that converges to a local minimum byransitions. Successful simulations converge after a few
simulating the process of evolution by mean curva{@d. dozen cycles. Occasionally, the relaxation process fails to
The Surface Evolver has become the standard computer softonverge; short cell edges cannot be eliminated permanently
ware for calculating minimal surfaces in foarf83]. The because the pop commands do not produce new cell neigh-
Evolver implements a finite element method that is capabléors. This is apparently caused by usiR-linear; the local
of solving a broad range of problems involving surfacesgeometry is a poor approximation of the curved features on
shaped by energy minimization. The program has many feaminimal surfaces. We have found that using finer meshes or
tures that enable the simulation of random foams, e.g., thbigher order(quadrati¢ facets always causes the shortest
ability to handle complex topology, a hallmark of real soapedge length ,;, to increase. Consequently, most simulations
froth. that do not converge witiRO-linear, do converge when the
Surface Evolver models use triangular facets to discretizealculations are performed with highly refined meshes and
the foam structure. The initial datafile produces an unrefinediigher order facets. Furthermore, every simulation that con-
mesh with well-defined characteristics: eantsided face verges withRR0O-linear, also converges with mesh refinement.
(with more than three edges subdivided inta linear (flat) ~ This supports the following conjecture: convergence with
triangular facets that share a common vertex in the interior oR0-linear guarantees foam stability. These calculations are
the face. This mesh will be referred to @&0-linear, i.e., conservative and less demanding on computer resources. The
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followed by relaxation. The process exploits the well-known
elastic-plastic behavior of soap froth, which is caused by
shear-induced structural rearrangemdBt86—4Q. The an-
nealing algorithm involves large-deformation tension-
compression cycles repeated along the three axes of the cu-
bic unit cell. Each cycle is composed of four successive step
strains of magnitude 6/5, 5/6, 5/6, and 6/5. The strains are
large enough to provoke a lot of cell-neighbor switching, but
small enough to prevent the buildup of residual stress that is
associated with hysteresis in elastic-plastic systems. Figure 2
shows a typical foam before and after annealing.

The effective macroscopic stresg of a dry soap foam is
calculated by averaging the local position-dependent stress
over the unit cell41]:

FIG. 2. The first random monodisperse fodRb12-RSA was
annealed to produce the secofRIA512-RSA. It is not obvious
that they have significantly different propertiesee Table)l The
corresponding initial conditiofiv512-RSA) is shown in Fig. 1.

N

20
distribution of edge lengths in relaxed foams is sufficiently TiiT T NV kzl (PVi) 6 + WL( dij—ninjds.  (2)
narrow that\ ., is often well above the cut off; i.eNmin
~0.25\). Here, p, andV, are the pressure and volume of individual
The Voronoi tessellation associated with a particular packbubbles that are partitioned by surfase &§;; is the Kro-
ing of spheres is unique. In contrast, the detailed geometrpecker deltan; is a local unit vector normal to surfacg
and topology of foams produced from a particular Voronoiandds is the differential area element. The factor of 2 occurs
structure depend on a number of adjustable parameters thiadécause each surfa¢soap film) has two sides. For mono-
control relaxation. These parameters include thresholds thalisperse foanV,=V. All of the nonisotropic contributions
define short edges and stalling, the number of iterations &b the stress come from the surface integral.
various stages of the process, etc. However, the global prop- In general, the stress is not isotropic for random foams
erties of relaxed monodisperse foam, suclEand(f), are  that are confined to cubic unit cells. This is relevant because
insensitive to the control parameters used. relieving the excess stress reduces the energy. The foam ex-
Convergence issues and the strong influence of packingeriences elastic recoil, which distorts the cubic unit cell into
density on foam properties motivated us to develop a systena parallelepiped with three different edge lengths and no
atic method for perturbing foams to alter the microstructureright angles. The small corrections Eothat result from re-
This was accomplished by mechanieainealing-subjecting  laxing the lattice to achieve isotropic stress will be discussed
fully relaxed structures to large homogeneous deformationi Sec. Ill.

TABLE I. Global topological and geometric properties of various foam structures, and, a census of ceEtigssaled bys/VY and
L, the total cell edge length per unit volume of foam, is scaled/b§ . The fourteen most common types found by Matzke are included.

Cell Type (S Matzke  RA512 RA216 RA512 RA216 R512 R512 V1000 V1000 R216 R864
RSA RSA RCP RCP RCP RSA RCP RSA X FCC
(f) 13.70 13.71 13.69 13.74 13.74 13.85 13.94 14.28 14.90 14.00 14.00
E 5.328 5.331 5.326 5.327 5339 5371 5.398 5.539 5334 5.326
L 5.390 5.393 5.388 5.388 5403 5.436 5.462 5.580 5.399 5.393
Mo 1.066 0.995 1.214 0.879 0.812 1.025 1.460 1.360 3.089 0.500 0.336
0-12-0 5.291 8.3% 8.0 10.6 6.1 6.5 3.4 11 11 0.0 0.0 0.0
2-8-2 5.313 2.5 2.6 2.8 2.0 1.0 3.6 3.6 1.7 0.5 0.0 0.0
1-10-2 5.314 19.7 20.3 18.8 18.5 20.0 10.4 5.7 3.3 0.3 0.0 0.1
2-8-3 5.333 3.2 2.5 3.5 2.8 2.6 4.1 4.3 2.0 0.2 0.0 0.0
3-6-4 5.329 6.0 54 51 7.2 8.1 10.2 8.9 59 1.2 9.7 3.1
0-12-2 5.316 6.5 8.4 8.7 7.6 6.9 1.9 15 0.2 0.0 0.0 0.0
1-10-3 5.331 12.2 9.5 12.2 11.2 11.1 6.2 4.0 1.6 0.1 0.0 0.0
2-8-4 5.336 10.7 13.9 9.6 145 171 13.4 9.3 5.0 0.6 0.5 1.7
3-6-5 5.354 2.8 2.9 3.1 5.3 4.0 9.0 6.4 4.6 0.6 6.5 6.1
4-4-6 5.350 2.0 1.9 1.0 2.4 1.2 5.2 3.5 3.5 0.5 48.6 36.9
0-12-3 5.321 3.5 5.2 3.9 2.6 2.8 1.0 1.0 0.1 0.0 0.0 0.0
1-10-4 5.337 5.8 6.0 6.4 4.6 55 3.9 3.3 0.7 0.1 0.5 0.0
2-8-5 5.349 4.0 3.5 29 5.0 3.1 53 4.2 1.8 0.3 0.9 0.0
0-12-4 5.329 17 1.0 2.0 13 14 0.5 0.4 0.0 0.0 0.0 0.0
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FIG. 3. Distribution of cells withf faces.

The deviatoric stressri’j is the nonisotropic part ob;

[42]. The scalaz, the magnitude ofr;, is given by
1/2

3=(Jp) = : )

_ O'A,. O'-/
2"

whereJ, is a scalar tensor invariant, asy is the surface of
individual bubbles. The quantity is a measure of stress

PHYSICAL REVIEW &7, 031403 (2003

The integral is evaluated over the surface of individual
bubbles, which distinguishe@kij from the interface tensor
that appears in the Doi-Ohta theory for the rheology of com-
plex interfaced43]. By comparing Eqs(2)—(4) it is clear
thatq"ij can be viewed as the “bubble interface stress.” The
components ohkij and the scalaQ, are zero for highly
symmetric objects such as spheres, cubes, and regular
dodecahedra.

Ill. RESULTS AND DISCUSSION

The following scheme is used in the text and figures to
distinguish between various foam structures(\\@ronoi), R
(relaxed, or RA (relaxed and annealgdfollowed by the
system siz&€N) and sphere-packing conditions. For example,
R512-RCP refers to a relaxed foam that contains 512 cells;
the initial condition was built from random close packed
spheres. RSA refers to loose sphere packings with0.36
generated by random sequential adsorption. Table | contains
data on the global foam properti&s(f), andu,. All quan-
tities are dimensionless; energy and stress are scaled by
a/VY3 and length is scaled by The variance of, de-
fined by

pa=(1%) (1), (5)

is a measure of topological disorder. It is unnecessary to
report the average number of edges per fagebecause this
quantity is related tdf) through

()= —2_ 6)
6—(n)

anisotropy for the entire foam. We introduce an analogoud his identity is derived from Euler’s equation and applies to
measure for the shape anisotropy of individual foam cellsspatially periodic systems that have the connectivity of soap

the scalaQ, is defined by

1 1/2
) : (4)

Qk=(§qkijqkij

1
k — =2/
a4 = Vi zaLk(ggij—ninj)ds.

T T T T T
@  Matzke

p(n)

FIG. 4. Distribution of faces witn edges.

froth. Surface areas and other metrics of foam structure are
calculated usingR0-quadratic, unrefined meshes and qua-
dratic facets. Convergence studies using highly refined qua-
dratic meshesR2-quadrati¢ indicate thatE is accurate to
within 0.001% whenR0-quadratic is used. The probability
p(f) that a cell hag faces, ang(n) that a face has edges,

is graphed in Figs. 3 and 4.

Results for the Voronoi structures shown in Table | are
based on averages of ten samples. All of the Voronoi foams
have(f)>14. All of the fully relaxed monodisperse foams
have (f)<14. The Voronoi structures based on RSA
(V-RSA) have the largest values dff)=14.90 andu,
=3.09, and the largest surface ar&as5.54, which shows
how far they are from equilibrium. Ongoing studies indicate
that polydisperse foams have lowerand(f) than monodis-
perse foams. Consequently, V-RSA structures would be even
farther from equilibrium if the original cell volumes were
used as constraints in the Surface Evolver calculations.

Results for R512-RSA and R512-RCP refer to relaxed
foams built from 20 V-RSA and 30 V-RCP structures, respec-
tively. Data for R216 and R1000 are not presented but are
similar. The difference between R-RSA and R-RCP foams, as
measured bye and(f), is striking (see Table | and Fig.)5
The V-RSA foams, which initially have higher surface area
than the V-RCP foams, settle into higher local minima during
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FIG. 5. E vs(f) for various relaxed monodisperse foams. All of

the fi involve dimensionl ntities: enerqv and siress a FIG. 6. Cell population in various random monodisperse foams.
€ figures 1,8 € ensioniess qua s 9y 'fhe annealed foam®&A) are in excellent agreement with Matzke’s
scaled byo/V+"* and length is scaled by~".

data. The foam that was produced from a loose sphere packing and

. . not annealedR512-RSA is quite different from the others.
the relaxation process. Molecular dynamics was used to pack

spheres in the density range 03%<0.64 to produce re- Kelvin cell has none. Relaxed foams are much closer to
laxed structures with properties that are in between R-RSMMatzke’s results than Voronoi foams; and relaxed foams
and R-RCP foams. This suggests that the corresponding ifvased on RCP are closer than those based on RSA. Matzke
termediate region in Fig. 5 is covered by random monodisdid not find any cells with more than one heptagonal face;
perse foams. the 14-hedron 3-7-3-1 was the most common cell with any.
Several relaxed foams were annealed until they reachedBhe R-RSA foams, in particular, contain cells with two or
stationary state based &wand(f). The results are presented even three heptagone.g., 6-2-3-2, 3-8-1-2, 5-5-1-3, and
in Table I. In one case, a specific structdR612-RSA was  4-7-3-3, cells with octagon$5-4-5-0-1), and cells with both
subjected to 14 tension-compression cycles in three differen-6-2-2-1. The relaxation process eliminates virtually all
directions. Data for the last 15 of 42 structures were avertriangular faces, which are prevalent in Voronoi structures
aged to obtain théstationary properties designated RA512- but absent in the experiments. On rare occasions triangular
RSA. This particular simulation required more than twofaces do survive relaxation and we have verified that they are
weeks of CPU time on a workstation. Thendn distribu-  stable under mesh refinement. They obviously occur on tet-
tions for fully annealed foams are in excellent agreementahedral cells in real foams that are highly polydisperse, and
with Matzke (see Figs. 3 and)4 Notice how the peak in there is no reason to believe that triangular faces cannot exist
pentagonal faces builds as the structures are relaxed and thgnmonodisperse foam.
annealed. The cell inventories for the fully annealed foams are in
The results presented in Fig. 5 show that random monoremarkable agreement with experiment, as shown in Fig. 6.
disperse foams fall within a well-defined region E(f)  The Matzke cell, 1-10-2, is the most abundant, followed by
space. The corresponding limits, 5.32B=<5.380 and the 14-hedra: 1-10-3 and 2-8-4. The pentagonal dodecahe-
13.68<(f)=13.97, suggest that a range of microstructures igiron, the prototypical foam cell, is also common. Annealing
involved. The simulations are consistent with experiment orcauses the populations of 0-12-0, 1-10-2, 0-12-2, and 1-10-3
the basis of f) since Matzke measured)=13.70. The an- to increase substantially; coincidentally, these cells all have
nealing process drives random monodisperse foams towartghique topology.
stationary states with lowelE=5.330+0.006 and (f) The conditions in the molecular dynamics simulations are
=13.74:0.06. controlled to produce random sphere packings, but occasion-
Table | also contains a census of cell types. The results arally the system begins to crystalliZd4]. This occurred in
based on several hundred foam structures that contain hutwo simulations with 216 spheres and has a strong influence
dreds of cells. Matzke’s sample size was 600 cells. Less thaon the microstructure of relaxed foams. The effecttoand
5% of the cells in V-RSA structures are represented in thé&f) is shown in Fig. 5; foams labeled R-X and RA¢X for
table, as opposed to 31% for the V-RCP structures. Consigrystalling fall outside the range that corresponds to random
tent with every basis for comparison used in this studymonodisperse foam. One structuif@216-X) has(f)=14.
Voronoi structures based on RSA are the least foamlike. ReFhe difference in cell inventory between it and the random
call that there are 33 types of cells with<(2<16 and 4 foams is striking'see Table). The most common cells in the
=n=6. We found all 28 types that contain pentagons. Of thdatter are absent from R216-X, which contains 48.6% 4-4-6
remaining five(6-0-ng) only the Kelvin cell was present in and 6.5% Kelvin cells. Similar behavior was observed by
relaxed monodisperse foams; 6-0-6 and 6-0-7 were detectegightly perturbing an fcc packing of sphereg~0.73) and
in Voronoi structures. Kelvin cells are rare but this is notproducing other relaxed foams that haf@=14. One such
surprising since pentagonal faces are so abundant and tBeucture(R864-FCQ contained 23.4% Kelvin cells, 8.1%
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FIG. 7. Reduction in surface free enerd that results from S L L ]
relaxing the lattice to achieve isotropic stre~{0). The curve 0
refers to Eq.(7) with G=0.82.

. FIG. 9. Surface are§, vs shape anisotrop®, for cells in fully
5-2-6, 7.1% 4-4-7, and 6.6% 5-2-8; none of these cells isnealed foams.
included in the tabulated results. We consider these foam
structures to be atypical and artifacts of the initial Conditionssponding strains are around 5%. it is reasonable to assume
Annealing did not convert them into random foams, but €x-ht |inear elasticity applies. The energy corrections for foam
haustive studies were not pursued. anisotropy are small-{0.001).

The energies repo_rted in Table | gnd Fig. 5 have been The surface ares, and shape anisotrop®, are useful
corrected for. foam anisotropy. The gdjustments are ba,‘s?‘?' ometric characteristics of individual foam cells. A graph of
the assumption th_at random monodisperse foams exh|_b|t ISE, vs Qy for each cell in a particular foam structure, before
tr_oplc linear elastic behavior. The change in eneldy is (R512-RSA and afte(RA512-RSA annealing, is presented
given by[45] in Fig. 8. In general, the cells in R-RSA foams are more
irregular and many of them have larger surface area and
shape anisotropy than the cells in other foams. Bx€,
region has a sharp lower boundary. We have found that a
simple quadratic relation given by

AE—lG 2—122 7

where G is the shear modulus and is strain. The lattice

vectors for R216 foams were adjusted until isotropic stress

was achieved, i.e3~0. The results foAE graphed against

>, are compared with Eq7) in Fig. 7. The shear modulus

_ /3 ; ;

G=0.827/V* measured by Princen and Kif46,47 was  provides a lower bound 08,-Q data. The parameteS;,

used in the comparison; regression analysis gave0.79.  —5 2560 is the surface area ofanimal regular dodecahe-

Excellent agreement between the simulations and theory sugyon. This object is very symmetric: the cell edges have

ports the use of Eq.7) to correct for foam anisotropy, and equal length, and the surrounding bubbles are identical and

shows that the simulations are consistent with experimenta| e lower pressure. The other paramedgs=0.8969 can

measurements of the shear modulus. Sicend the corre- e viewed as the “shear modulus” for pentagonal dodecahe-
dra, by analogy with Eq(7). The value ofG,, was fixed by

1
— 2
S=S+ 2G12Q , (8)

T d T E T Y T X T

considering the dodecahedra contained in the Friauf-Laves

+ R-RSA
o RA + + foam, a TCP structure also known as C[b7]. These
5.5k Bl sl ke el i dodecahedra are highly anisotropicS, € 5.3451,Qy

=0.3997). The observation that pentagonal dodecahedra are
clustered near the bottom &-Q, graphs inspired us to
focus on this celllsee Figs. 8 and)9 The average surface
area(S,) for each cell type is presented in Table I; pentago-
nal dodecahedr#s.291) are lower than all other§5.314—
5.354. The minimal regular dodecahedron has lower surface
area than any cell in the foams that were examined; however,
it does not provide a strict lower bound. BraKikes] recently
used spherical inversion, a conformal transformation, to
show that the minimal regular dodecahedron is a saddle
point; the transformation to a sphere involves monotonic de-
crease of the surface-to-volume ratio. The corresponding ob-

jects are consistent with Plateau’s laws.
The quantity is a global(foam-leve) measure of anisot-
ropy andQ, is a local(cell-leve) measure. Sinc& andG;,

FIG. 8. Surface are§, vs shape anisotrop®, for each cell in
a foam beforgR512-RSA and after(RA512-RSA it is fully an-
nealed. The lower bound refers to ES).
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5.8

5.6
Lk I
FIG. 10. Schlegel diagrams of three polyhedra: 2-8-2, pentago- 54
nal dodecahedrofD-12-0, and Matzke cel(1-10-2. Consider to-
pological transitions that involve the horizontal edge on the central 52
pentagon on 0-12-0. Switching this edgeerforming a T1 gives
2-8-2. Splitting this edge(inserting a quadrilateral fagegives

1-10-2. 5 | | | | T
are both near unity, the magnitudes Bf and Q, can be 5.25 5.3 5.35 S 5.4 5.45
directly compared and viewed as measures of stress or strain. k

Figure 9 contains af,-Q graph for se\{eral thousand CeII§ FIG. 11. Edge length vs surface are§, of individual cells in
in fully annealedRA) foams. The graph illustrates geometri- fully annealed foams.

cal frustration in foams. Cells are scarce in the immediate

vicinity of the minimal dodecahedron. Pentagonal dodecahef-Or fully annealed foams and thatincreases wittE for all of

dra cannot pack to fill space. Packing in monodisperse foam e foams. The edge length, of individual foam cells is

requires more neighbors on average than twelve: a minimu . . R
1. , graphed against their surface argaand presented in Fig.

of 133 in TCP foams(C19 and around 13.75 in random 11 ‘A cell with f faces has 86 edgesL, is calculated by
foams. The magnitude 0@ (with an average value of symming the edge lengths and dividing by three to compen-
0.233+0.071) indicates that most cells are quite distortedsate for the fact that each edge is shared by three cells. The
when jammed together. _ figure shows that, is strongly correlated with, in sharp

We can gain insight into the types of cells found in ran-contrast toS, , which is not.L, increases substantially wifh
dom monodisperse fpam by analyzing topological transitiongyen though each cell has the same volume. This is also
[9,34-3@ and focusing on the central role of pentagonalijystrated in Fig. 12, which contains a graphlgfvs n, (the
dodecahedra. We will not consider rearrangements that inyymper of quadrilateral faces on a gdbr differentf. The
volve cells with triangular faces because they are scarce i@dge length of-hedra decreases slightly witty, which can
monodisperse foam, and for similar reasons, we will not conpe yiewed as a measure of topological inhomogeneity. A cell
sider cells with fewer than twelve faces. This leaves us with, 53¢ mostly pentagonal faces wheg=0: it loses two pen-
two basic topology changes for the pentagonal dodecahedrqggons and gains a hexagon with the addition of each quad-
and both are illustrated in Fig. 10 with the aid of Schlegelyjjateral.
diagrams. There are only two possibilities because every The dependence df, on f and n, is captured by the

edge is topologically equivalent. In the first case, edg&g|iowing model. The surface are®, of the kth cell can be
switching(reminiscent of a T1 in two dimensionsearranges expressed as

the faces to form a different 12-hedron, 2-8-2. The second
case involves edge splitting, whereby a quadrilateral face is
inserted at an edge, and results in 1-10-2. The latter indicates k= Na(@4) + Ns(as) + Ne(ag)

why Matzke cells are so common—they aspire to become _ (10— T (fina— 2
pentagonal dodecahedra by losing a quadrilateral face [n4Ca+ (12=2N4)Cs +(fn4=12)Ce (N )i
through the reverse topology change. =[cgf —12(cg—C5) +(Cg—2C5+ c4)n4]()\>ﬁ, 9

Topological transitions that involve Matzke cells are
equally illuminating. There are more possibilities because the ) L )
edges on 1-10-2 are not all topologically equivalent so we'Neré(an) is the average area of a face witfsides(A ), is
will just summarize the results. There are 33 ways to switcHN€ average edge Iengzth, and the geometric factgrare
edges: 11 result in 3-6-4; 6 result in 2-8-3; and 4 give backdefined byc,=(an)/(A)i . All of these parameters refer to
1-10-2. This indicates why 3-6-4 may be more common tharihe kth cell. Equation(1) has been used to simplify E).
2-8-3 even though the latter has more pentagonal faces. THd"e edge length  per cell is given by
other 12 ways of switching edges produce 13-hedra with
triangular or heptagonal faces. There are also 33 ways to add L= (fF—2)(\)y. (10)
quadrilateral faces to a Matzke cell: 19 produce various
forms of 2-8-4; 4 result in 1-10-3; and the other ten possi- . )
bilities lead to heptagonal faces. The fact that 1-10-2 and*©MPining Eqs(9) and(10) gives
2-8-4 are close topological relatives is consistent with their

abundance in random monodisperse foam. Si-/z(f_z)
Results forl, the total cell edge length per unit volume of L= 7" (1)
foam, are presented in Table |. The data show tha6.39 [cef —12(Cg—Cs) +(Cs—2C5+Cy)Ny4]

031403-8



STRUCTURE OF RANDOM MONODISPERSE FOAM PHYSICAL REVIEW &7, 031403 (2003

. 4 : } 2 [ Regular Polygons
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FIG. 12. Edge length., of individual f-hedra graphed against FIG. 14. The area of faces withn edges compared against the
n,, the number of quadrilateral faces they contain. The data reprearea of regular polygons with edge lengtk-0.46[see Eq(12)].
sent several thousand cells from fully annealed foams. The curves
refer to Eq. (11), which involves one adjustable parameter, foams and higher for fully annealed foams. The Kelvin foam

S«=5.33. (0.447 is in the middle of the range and Weaire-Phelan
(0.465 is slightly higher.
which is exact if one allows the, and S, to vary from cell The areax of a face tends to increase with the number of

to cell. We neglect this variation and 18¢=5.33, the aver- edgesn. The results for a fully annealed foam presented in

age cell area. The, are calculated by assuming that the Fig. 14 are typical of all relaxed foams. The curve in Fig. 14
faces are regular polygons: follows from Eq.(12) with A =0.46. This simple relation for

the area of regular polygons captures the magnitude arid
the increase withn.
n
— 2_
Cn= e /\"=gcotaln. 12 IV. CONCLUSIONS
The Surface Evolver was used to simulate the equilibrium
The result is in excellent agreement with the data shown immicrostructure of monodisperse soap froth that possesses to-
Fig. 12. pological disorder, a hallmark of real systems. The initial
The probabilityp(\) of finding an edge of lengtk in the  conditions are based on Voronoi tessellations, which in turn
interval S\ is shown in Fig. 13. Once again, there is a dra-are based on random packings of identical spheres. Frequent
matic difference between Voronoi structures and relaxedopological transitions occur as the structure evolves toward
foams. Voronoi partitions have very brogg\) with many  some local minimum in surface free energy under the con-
small edges and long edges; and V-RSA structures are tharaint that all of the cells have equal volume. The final en-
least foamlike. Fully relaxed foams have narrgdh) and  ergy and topological properties depend strongly on the initial
virtually no short edges. The average edge length is essestate, which is controlled by the density of packed spheres.
tially constant, 0.43&(\)=<0.460; it is lower for V-RSA Loose packings ¢~0.36) were produced by random se-
quential adsorption and dense, random close packiggs (
~0.64) were built with classical molecular dynamics tech-
nigues. The Voronoi structures that are based on RCP have
smaller surface area and cell-volume dispersion, and evolve
to equilibrium monodisperse foams with lower energy than
their RSA counterparts. All Voronoi foams hayg) >14; alll
of the relaxed monodisperse foams hd¥e<14. Ordered
foams with(f) as large as 18 have been reporfdd,5Q.
The random foams can be driven into lower energy minima
with smaller (f) by annealing—subjecting them to large-
deformation tension-compression cycles that involve step
strains and relaxation. Persistent annealing achieves station-
. . ary states withHE=5.330+0.006 and(f)=13.74+0.06, but
= ' ' ' ' does not cause random foams to become ordered.
0 02 04 06 08 1 12 Matzke investigated bubble shapes in monodisperse
foams that were assembled by sequentially depositing single
FIG. 13. Distribution of edge lengths in various foams with  bubbles onto the foam surface. The bubbles gained neighbors
=512. as they were being covered by other bubbles in the experi-
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ment. In sharp contrast, Voronoi “bubbles” lose neighbors ador the edge length of individual cells and the area of indi-
the foams are relaxed and annealed in the computer. Thadual faces.

experiments and simulations meet aroyiig=13.70. Fur- We have introduced a new measure of shape anisotropy
thermore, the distribution dfhedral cells anai-gonal faces, for individual cells,Q,, which is related to the contribution
and the detailed census of cell types in experiment and sim@f the faces to the foam stress. Graphs of surface area vs

lation are in remarkable agreement. Matzke’s results are upgshape anisotropy reflect the geometrical frustration in foams.
held. Pentagonal dodecahedra have lower surface area than other

Random monodisperse foams with significantly differentCells in monodisperse foams. The pentagonal dodecahedron

topological and geometric properties were simulated. The ex"imld M.‘"‘tZkf Qe|(1-_|_1r?-3| are (E)Iose reIati\éesffrom abtopl)olqgi-
tent to which this diversity can be realized in real soap froth®@ PoINt of view. The latter becomes the former by losing a

remains to be seen. Achieving and maintaining equal—volumguadr'la‘ter‘;‘rl1 face. _Th[{S shows whthatzkIedcglls z;red SO
bubbles and characterizing the foam structure while gas difgpoarl?rt?\%?/_cane?/egirc):gesuorfa?:goarlrr]gapen agonal dodecanedra so
fuses and liquid drains, is no less daunting a task today thal . ' .

g g y The techniques presented here have been extended to in-

t . f fragil far f t . . .
gggiﬁb(r:iirr]nury ago. Soap foams are fragile and far from ru?/estigate random polydisperse foams. Ongoing studies are

We have investigated large systems, gathered meaninngIrOVid'ng_ a wealth of information on virtual foams that are
statistics on foam topology, and calculated geometric propY€Y realistic[S1].
erties relatgd to surface area, edge Igngth, and stress at the ACKNOWLEDGMENTS
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