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Sound damping in ferrofluids: Magnetically enhanced compressional viscosity
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The damping of sound waves in magnetized ferrofluids is investigated and shown to be considerably higher
than in the nonmagnetized case. This fact may be interpreted as a field-enhanced, effective compressional
viscosity—in analogy to the ubiquitous field-enhanced shear viscosity that is known to be the reason for many
unusual behaviors of ferrofluids under shear.
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[. INTRODUCTION correct. The recently derived ferrofluid dynamid con-
tains, in addition to the expression of E(), also a new
Ferrofluids[1] are colloidal suspensions of monodomain diagonal magnetoviscous stress element that accounts for the
or subdomain ferrimagnetic nanosized particles suspended #dditional energy loss of sound waves if the medium is mag-
a carrier liquid. Under the influence of an external magnetimetized. It is natural to interpret this fact as a magnetically
field the fluid behaves paramagnetically. Among the moresnhanced compressional viscosity, in close analogy to the
remarkable flow phenomena of ferrofiuifs—3] is the en-  magnetically enhanced shear viscosity first observed by
hanced effective shear viscosity in a static magnetic f#ld  npcTague[4]. Note that although this term was derived in
or the viscosity decrease in response to an ac fBid7].  gef [9] as a stringent result of energy and momentum con-
Both are due to the so-called magnetodissipative effect thalgryation, it is not contained in the standard ferrofluid dy-
occurs when the experimental time scale compares to thﬁamics[l—?,].
ma_gne_tic relaxa_tion “”.‘e-.'.” those situgtions Fhe .actual Mag- while the well-known tensor element of E) is nonva-
neglzatlonM dev_lates S|gn|f|cante!y from its equilibrium _value nishing only if the deviationll — M®% and the fieldH point
M. Then the incremer# —M*™ feeds back to the linear to, different directions, the new, diagonal stress element—
momentum balance, via the magnetoviscous stress elemefit, oo o - » dlagona -
2] wrltt(_an as_H (M- M 98 in th_e case of Im_ear constitutive
relationship—remains nonvanishing even if both are parallel
to each other. This is exactly the situation characteristic for
eijk[HX(M—=M®Y], (1) the propagation of sound. Provided the sound frequency
does not greatly exceed the inverse magnetic relaxatioh

leading to the appearance of an enhanced shear viscosity. the ferrofluid, a perceptible extra damping is predicted, sev-
When dealing with compressible flow situations such a<ral orders of magnitude larger than estimated by previous
sound, one needs to go beyond the approximation of incom0rks[10,11].
pressibility. If sound propagates through a magnetized ferro- It is worth pointing out that the new, diagonal stress ele-
fluid, density oscillations couple to the magnetization, andnent may of course be disregarded in incompressible flow
one expects magnetodissipation to become relevant as weflituations. In these cases, the presquet) is determined
Sometimes the attenuation of sound is attributed to the elby the conditionV-v=0. A diagonal stress element such as
evated shear viscosity addressed ab@jebut this point of  the above term then renormalizpsbut leaves the velocity
view disregards the fact that E.) only contributes in shear profile v(r,t) unchanged. Consideration of flow configura-
flow geometries, and not in the compressional flows characions such as those in sound, on the other hand, require the
teristic of sound. Taking the divergence of the momentunelimination of the incompressibility condition. This is done
balance(to derive an equation fov - v, the divergence of the by adding the continuity equation for mass and adopting a
velocity field eliminates the contribution of Ed1), since  viscous term proportional t¥ - v in the Navier-Stokes equa-
ViV;AlL;=0. So if Eq.(1) was the only magnetodissipative tion. In ordinary liquids, the pressure is now determined by
term, one must conclude that sound in magnetized ferrofluidthe thermodynamic equilibrium relatiop=p(p,T) as a
does not experience any additional damping, but this is infunction of densityp and temperaturd. But this is less
simple in electrically polarized or magnetized liquids, where
the concept of pressure is rather ill defingld11,13. The
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Several recent investigations on sound propagation iharacteristic thermal diffusion time over viscous diffusion
magnetizable fluids follow a more mesoscopic approachtime, or equivalently, by kinematic viscosity over heat diffu-
considering relative particle motions within clusters, aggresivity, P= v/, is usually of the order of 10—-100Depend-
gates, or chains. Taketorfil3] attributes the anisotropy of ing on the ferrofluid, we have~10 ®—10"2 m?/s, andx
the sound attenuation coefficient to two types of motions~10 ’—10 ° m?/s.) The same argument holds for solutal
performed by the ferrous colloidal particles in the fluid, ro- diffusion processes that are slower than shear diffusion and
tational and tranlational. Nahmad-Molinai al.[14] inves-  sound by a factoP/L, whereL is the Lewis number. For
tigated the propagation of collective modes through a magferrofluids we typically havé. =O(10 %).
netorheological slurry (with micron-sized grains and Below it will be discussed in more details that the mag-
observed two independent modes. The slower one, with aetic susceptibilityy, usually taken as a function @fandp,
large amplitude, was considered to be a compressional modgust then be considered as a function of entropy per unit

similar to what is found in porous fluid-saturated media.yasss, in addition top. Adiabaticity is a valid approxima-
Later, Brand and Pleindd.5] attributed this mode to a wave tjon here because in ferrofiuids, shear diffusion and sound

propagating along the particle chains. _ are usually fast processes on the time scale of heat conduc-
Others author$16] pursue a macroscopic, hydrodynamic tjon.

treatment similar to the approach employed here. Parsons (i) Sound waves up to the MHz range are weakly

[10] considered ferrofluids subject to strong magnetic ﬁeld%amped. The spatial decay length® of the complex wave
and took the vector of saturated magnetization as similar 19, mberk= w/c+ia exceeds the wave number®/w by
the director in nematic liquid crystals. As a result, he foundmany orders of magnitudd8]. Under those circumstances it

that magnetically induced relative corrections to the soungs the custom to account for all damping mechanisms to lin-
velocity are small, around 1I6. As discussed by Henjes ear order.

[11], he worked with a purely mechanical pressure ignoring (iv) This paper focuses on sound attenuation. The tiny
electromagnetic contributions in the diagonal stress. Usingqrrection to the sound velocity is disregarded. An order of
proper hydrodynamics, Henjg¢s1] found that the magneti- agnitude estimate for the magnetically induced correction
cally induced corrections to the sound velocity are Sma”yields Ac=(uoxH2/p)Y2 Even at the highest magnetic
again of order 10°. She also argued that since typical mag-fig|q strength considered here, one gatgc<10"%.

. . . —6 L .

netic relaxation times are of the order 010" ° s, magne- The unperturbed state of the ferrofluid is given by a ho-
todissipation is smalll fpr acoustic sqund frequenmes up t(?nogeneously magnetized ferrofiuid at rest, with dengity
w/(2w):20 I_<Hz_. This is corregt, buj[ it does not imply that,and equilibrium magnetizatioM = yH, where y is the
magnetodissipation can be entirely ignored, because all dispagnetic susceptibility. To describe small amplitude sound

sipation mechanisms derive from fast characteristic timesyyitations. we introduce deviations from this stdle v

and the question is of relative weight. Summarizing, Previ-siy - 5B and sM proportional to a plane wave with wave
ous theoretical investigations on sound propagation in ferrofy o tork . In particular, the velocity field is taken as a longi-
luids do not account for magnetodissipation. The present pa;,qinal sound mode in the form

per does, and the result is: In the hydrodynamic frequency

regime,wr=1, even moderate magnetic fields will induce

extra damping of approximately 10%. Vo Eei(k-rﬂut)_ ©)

Il. THE STARTING EQUATIONS . . . . .
The equations of motion governing the ferrofluid dynamics

To quantify the damping in compressional flow situations,have recently been derived on the basis of the conservation
propagation of sound waves through homogeneously magnéaws and symmetrief9]. The density fieldo(r,t) obeys as
tized ferrofluids will be investigated. To streamline the con-usual the continuity equation
sideration and to focus on the basic physics, we shall imple-
ment the following simplifications. dp+Vi(pv;)=0. (3)

(i) Only the leading-order magnetic field effe@(H?) on e
the attenuation of sound is considered. This especially im=|.
plies the linear constitutive relatidvi 4= yH. Moreover, the
complication[17] that sound in magnetized ferrofluids is

he equation for the magnetization reads

: " —X
generally accomp_anled by she_ar waves need not be c_on5|d —M; =\ Mvj; _Nzijioj +(MXQ)=—=h;, (4
ered. Although this coupling gives rise to rather surprising dt

phenomen417], it contributes only aD(H#*) to the disper-

sion of soundsee below. whered/dt=¢g;+v-V and Q=(V Xv)/2 is the vorticity of

(i) We consider sound propagation and shear diffusion inhe flow. The contributions proportional ¥ andX, appear
the adiabatic limit. Adiabaticity meansss=5(s/p)=0, with the applied field breaking the isotropy of the system.
rather thanST=0 as is the case in the isothermal limit. Adia- These two terms reflect the fact that—in addition to the vor-
baticity is valid because in ferrofluids, shear diffusion andticity {—compressional and elongational flow, denoted re-
sound are usually fast processes on the time scale of hespectively asv;;=V-v and vﬂz%(Viijervi—%&ijvkk),
conduction. The Prandtl numbe@ given by the quotient of contribute to the dynamics d¥l. Further terms associated
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with the uniaxial symmetrysee the terms proportional i . RESULTS
and \, in Eqg. (13) of Ref. [9]] have been omitted on the
left-hand side of Eq(4) as they are of higher order in the
magnetic field. The increment We now return to the adiabatic formulation, wheye
=x(p,s). Using Eq.(3) and the longitudinal plane wave
velocity field (2), the magnetization fluctuationM = 6M;
+6M, is related to the density variations by

A. Dispersion of isothermal sound waves

XX

1
B®—B)=——(M—xH), (5)
o7 MOT( ) ~(M—=xH)
with B®%= oM (1+ x)/x, accounts for magnetodissipative

. . . (plx)dxldp—ioT
relaxation on the time scale given by

)\+2)\
1t ghe op

The magnetic field variablesl,B,M are defined in SI M=M, 1+x+ioT p’ ©
units as usual, withuy the vacuum permeability. For the
evolution of the magnetic fields, we adopt the static Maxwell ) 1
equationsV-B=V xXH=0. With the plane wave behavior (P/X)axlap_""T()\l_ 5)‘2) Sp
similar to Eq.(2), the fluctuations are related in the following oM, =M, TTior 7
manner: (10)
OoH=—6M|, 6B=puodM, . (6)  The real and the imaginary parts 6K are associated with

magnetically induced corrections to the sound velocity and
Here the indiceg and_L refer to the respective directions attenuation, respectively. Substituting E¢@),(10) into the

relative to the propagation directidnof the wave. divergence of the momentum balance vyields the following
The balance equation for the linear momentum readsomplex dispersion relation for sound waves in magnetized
dypvi+ ViIL;;=0, with the stress tens8] ferrofluids:
A 2 (4
2 is w @
Hij: _U+ST+,LLP+H'B_ )\1__ hM 5”_1_[:) k:__l (—7]1+7]2+7]m y (11)
3 ! Cs ZPCS 3

—H;B,— E(Mihj"'Mjhi)"_i(hiMj_thi)- 7) wherec§=apo(p,§)/&p is the square of the zero-field adia-
2 2 batic sound velocity. Recall that—according to approxima-

) ) ) ) tion (iv)—magnetic corrections afs are disregarded. The in-
To avoid misunderstandings of what is meant by the “pres‘crementnm is given by

sure at nonzero magnetic field strength,” the diagonal ele-

ment is written in terms of the density of total enengythe

entropy densitys, and the chemical potential. The viscous D= mo7xH
stresse:ﬂi”j'sz 27;11)?j + 17,6jv i« are taken as usual with the
shear viscositynp,; and the volume viscosity;,. The terms
proportional to\; , are counter terms to those of E@f),

K|COS' 0 . K, St
(1+X)2+(Tw)2 1+(7'w)2

2

] , (12

where

they are constrained by the Onsager symmetry relations. p dx 2 2
To make contact to previous formulations of the stress K| = ;$+(1+X) ANt §>\z” : 13
tensor[1,2], we have to switch for a moment Torather than
's as an independent variable. Then the square bracket in Eq. p dx 1 2
(7) can be recast in terms of the thermodynamic relation for K| = Y %Jr Ny— 5)\2” . (14)

the pressurg@q(p,T) at zero magnetic field,
7m €an be interpreted as a “magnetic extra viscosity.” The
woM? p dx expression forp,, is clearly anisotropic, and denotes the
2y \ 7 xap) angle between the applied magnetic fielcand the direction
(8) k of propagation. Note also that,, is frequency dependent,
being maximal atrw—0 and vanishing in the high fre-
where y=x(p,T). Note that magnetodissipation, propor- quency limitro>1. Equationg13), (14) can be simplified
tional to h-M, remains finite even if the transport coeffi- if the magnetic susceptibility is proportional to the density
cientsh; and\, (not yet measurgdare negligibly small. As  thus (o/x)dx/dp~1. For a rough estimate, take the data
outlined in Sec. I, this term arrives cogently during the deri-[19] for a high-viscosity hydrocarbon-based ferrofl (&P G
vation of the stress tensor and accounts for magnetodissip@33, Ferrofluidics y=1.1, ;,=0.5 Pa, andr=0.55ms, in
tive processes ih is parallel to the equilibrium magnetiza- addition toh;=\,=7,=0 (for lack of better information
tion M®4 This is crucial for situations wher& and H Then a 100-Hz sound wave propagating in an applied mag-
oscillate colinearly but with a temporal phase I4Becall  netic field of sayH=10* A/m (this is a field strength at
that the customary magnetodissipative term given by(Eq. which most ferrofluids still obey linear constitutive relatipns
drops out ifM andH are parallel to each othér. experiences a magnetoviscous extra damping 9%o at the

H? 1
po-l-,uo7— )\1_§)\2+1 hM+
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parallel orientatiork||H (i.e., #=0) and almost 9% at the D. Comparison with experiments

transverse setupd=90°). The same estimate applies to @  The experimental material on sound propagation in ferrof-
ferrofluid of similar microscopic makeup, but at a viscosity |,ids is rather scarce. The early measurements of Chung and
of 7,=5 mPa and a frequency of 10 kHtlere we assume |gjgr [8,20] on a water-based ferrofiuid seem to be the only
7 775, Valid for Brownian particles, i.e., when the particle’s g gijaple systematic study of the velocity and attenuation of
magnetic moment is fixed to the _crystallographlc Orlenta'sound(note, however, that Skumiel[21] later investigations
.t|on). Damping increments of t.h's size should be deteCta.bl?eveal a strong dependence of the sound velocity on the type
in a careful sound wave e_xpenment. MoreO\_/er, by SCanNiNg¢ 1he carrier liquid, i.e., whether it is aqueous or organic
the 6 dependence ofy,,, it should be possible to obtain h . ts of Ref§8,20] were carried out with 2.25-
information on the transport coefficierkg and .. The experimen - : '
MHz ultrasound, employing pulse echo and continuous wave
methods. The experimental data cover a wide magnetic field
B. Adiabatic versus isothermal susceptibility range from 0 up to 2500 G{2x10° A/m). Within the
weak field subrange, where linear constitutive relations hold
for most ferrofluids,H<10* A/m=125G say, the damping
incrementa was found to increase by 1.8 dB=Q0%) at
§=0, but to decreasé@anomalous sound attenuatjdoy al-
most 3.5 dB &50%) atd=90°. Unfortunately no informa-
ax(ps)  ax(p.T)  _ax(p,T) Ca, tion was given whether demagnetization effects due to the
= + (15 cylindrical probe geometry had been taken into account here.
However, we point out that the observed anomalbude-
pendence does not even qualitatively comply with the
involving both the magnetostrictive and the magnetocalorigresent theory. Neither the observed history dependence of
contributions. Herea,=—(1/p)dp(p,T)/dT denotes the the experimental datéalso detected by Gotoh and Chung
thermal expansion coefficient; the isothermal sound ve- [22]) can be explained by the present approach. The latter
locity, and Cv=Ta~s(T,p)/(7T the specific heat at constant peculiarities suggests that the small ultrasound wavelengths
volume, each one of them is evaluated at zero magnetic fieldouple to microscopic inhomogeneities associated with par-
Equation(15) indicates that adiabatic sound waves involveticle chains or clusters in the ferrofluid suspension. Anisotro-
both magnetostrictive as well as magnetocaloric contribupies, field dependencies, and anomalies recorded by the ul-
tions. Herea,= —(1/p) dp(p,T)/JT denotes the thermal ex- trasound experiments therefore seem to depend on
pansion coefficient an€,=Tas(T,p)/dT the specific heat Mechanisms that are rather different from those covered by
at constant volume, both of them are evaluated at zero maghe present hydrodynamic analysis. Owing to the lack of

netic field. For a typical olefine-based carrier liquid, the di-other pertinent experimental data, let us nevertheless try a
mensionless factar?e, /C, can be estimated by 0.3. quantitative comparison with the measurements of Isler and

Chung[8]. For a rough estimate, we take the viscosity of
their aqueous ferrofluid by, =103 Pa and the susceptibil-
C. Enhanced compressional viscosity ity by xy=1 (specifications are not give&nDue to the high
In order to classify the viscosity increment, [Eq.(12)]  ultrasound drive frequency, the experiment was operated in
as an field-dependent offset to either the shear viscogity the limitw7>1 and thus the expected extra damping is quite
or the volume viscosity,, we evaluate the entropy produc- Small. Even if the magnetic relaxation times estimated to

tion in the present setup. Following RE®] the total entropy P& as small as 10 s, the prediction of Eq(12) at 6=0 is
production is given by two orders of magnitude smaller than the empirical value.

We therefore conclude that for a reliable quantitative check
0.2 5 X of the present theory, experiments at acoustic frequencies
R=271(vjj))“+ 72(V-v) +mh : (160 (wherewr=1) would be more suitable.

Knowing the dependence of the magnetic susceptibility a
a function of density and temperatugd,p,T), the derivative
pdx!dp(p,s) in the above equations can be expressed a
follows:

ap P ap JT  C, '

. . . IV. DISCUSSION
Computing the magnetoviscous surplilast term in Eq.
(16)] up to first order inw7 yields The present analysis deals with the attenuation of sound

in ferrofluids, which are exposed to a weak homogeneous
magnetic field in any direction relative to the propagation.
5 This has been accomplished by investigating the linear dis-
(V-v)2. (17 persion of a pure longitudinal velocity excitation. Recently, it
has been pointed outl7] that density excitationgsound
and transverse velocity fluctuatiofghear wavesin magne-
The formal similarity of Eq(17) with the second term of Eq. tized ferrofluids do not evolve separately as is the case at
(16) suggests that the “magnetic extra viscosity,, accord- H=0. At finite H, sound waves may produce shear excita-
ing to Eq.(12) is to be interpreted as an enhanced comprestions and vice versa. Clearly, if shear waves accompany
sional viscosityA 7,(H). sound this opens a new attenuation mechanism that cannot

K”00520
x)?

X
MoT

H?2 + K, Sinfé

h?=uox
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be ignored. In the remainder of this section, we shall argue Tio dx My XM, )
why this cross coupling remains without consequences for VXV X(hX M):T W Wv dépt---,
the present analysis. By taking the curl of the momentum (19

balance, one arrives at ) o N
thus acting as a magnetodissipative source of vort@ityif

the applied magnetic field is weak, we hale= O(H?). Via
1 the termQ XM in Eq. (3), this sound-made vorticity induces
pa— pV2Q=—VXVX(hxM). (18 a third-order correction itM, which—at the considered ac-
4 curacy levelO(H?)—does not affect the sound dispersion.
Note, however, that a proper study of sound damping in
stronglymagnetized ferrofluid&s for instance undertaken in
Assuming that a sound emitter produces plane density wavegef. [10]) must not ignore the complication arising from the
Jp(t) within a magnetized ferrofluid, the right-hand side of magnetodissipative crosscoupling between compressional
Eqg. (18) can be recast as and shear excitations.
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