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Lattice-based random jammed configurations for hard particles
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A nontrivial subset of the jammed packings for rigid disks and spheres are those that can be obtained by
sequential removal of particles from periodic crystalline arrays. This paper considers the enumeration problems
presented by such packings that are based on the close-packed triangular disk lattice, and the face-centered and
body-centered cubic sphere lattices. Three distinct categories of packings have been distinguished, depending
on their behavior with respect to nonoverlap geometric constraints and/or externally imposed virtual displace-
ments: locally jammed, collectively jammed, and strictly jammed. Each of these possesses an upper limiting
vacancy concentration beyond which no packings of the types considered can exist. For each of the three
lattices, specific vacancy clusters have been identified whose presence would destroy local jamming, and some
of the corresponding patterns that would destroy collective jamming in the triangular disk lattice have also
been found. Within the allowable range of vacancy concentration for each case, the number of distinct jammed
packings is expected to rise exponentially with system size. By using the concept of local attrition factors,
approximate enumerations have been constructed for the three lattice classes of locally jammed packings. In
the interests of later extension of this work, we stress that at least some aspects of these enumeration problems
might benefit from the formal transcription to a lattice-gas/Ising-model representation with vacancy interac-
tions chosen to enforce the packing category of interest.
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[. INTRODUCTION and rigidity, respectively. However, if bonds are randomly
removed with probability + p, then bothK andG will van-
Hard-rod, disk, and sphere models have supplied usefush at some €&p<1 called the rigidity percolation thresh-
prototypes for a wide variety of many-body phenomena.old.
They have also been an enduring source of many challenging Now consider a jammed system that meets one of three
theoretical problems. One class of such problems, still indefinitions(locally, collectively, or strictly jammedthat we
completely understood, concerns the nature of jammed packave recently introducedsee details below[3]. Begin a
ings of disks and spheres, and how the geometric details gfrocess whereby particles are sequentially removed by some
those packings statistically depend on the choice of methodelection process with a random element. The applicable ri-
by which they are created. Many of the most difficult opengidity percolation threshold is the sphere volume fracioh
questions involve classification and enumeration of “ran-at which the system ceases to be jammed according to the
dom” (i.e., irregulay disk and sphere packings, and how theyselected definition. Thus, the value #f will generally vary
relate to the statistical physics of liquids, glasses, and disoffor a given starting structure, depending on the jamming cat-
dered solids. Instead of attempting to resolve any of thesegory, boundary conditions, and random removal process.
general problems, the present study focuses on a restrictednlike the standard rigidity percolation problem, applying a
and therefore more modest, goal: attention is confined to thpurely random removal process in the case of jammed par-
statistics of the special classes of jammed packings for diskiicle systems will lead to a trivial result in the infinite-system
and spheres that are identifiable as vacancy-containing lalimit, namely, a vacancy concentration of zero for unjam-
tices. These selected packingsnd their multicomponent ming. This behavior is explained in Sec. V below; it can be
relativeg may command extra attention because of their conillustrated by considering first a fully dense triangular lattice
nection to known examples of radiation-damaged metdls of hard disks contained within an appropriately shaped finite
and of certain types of nonstoichiometric crysf@gboth of  container. This two-dimensional example is known to be
which can contain high and variable concentrations of vacanstrictly jammed[3], and will unjam whenever two adjacent
cies. disks are removed, i.e., no divacancies can be tolerated. For
In earlier work[3] we discussed how the conceptmf  a finite system, the probability of a divacancy occurrence is
gidity percolation(which has been used to analyze the me-less than unity at a nonzero vacancy concentration. However,
chanical properties of network glassean be generalized to in the infinite-system limit, the probability of such an occur-
characterizgammedhard-particle packings. The standard ri- rence approaches unity, leading to collagsejamming at
gidity percolation problem has been studied for lattice netany positive vacancy concentration, no matter how small.
works to understand the mechanical properties of networhis phenomenon extends to other jammed lattices and to
glasse$4—6|. For example, consider a triangular net of masshigher dimensions. The purpose of this paper is to begin to
points connected by nearest-neighbor central forces. Suchexamine modification of the removal process and its conse-
system is stable and elastically isotropic, and is thereforguences for certain regular lattices in both two and three
characterized by andG, the elastic moduli of compression dimensions.
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The following Sec. Il briefly reviews the major categories strictly jammed. These disallowed deformations include
of packing definitions for hard particles that are relevant forvolume-preserving shear deformations. The close-packed
the present study. This is followed by specification, in Secdisk (triangula) and spheréface-centered cubjdattices are
I, of the regular lattices in two and three dimensions to bestrictly jammed[3].
considered, and identification of the vacancy arrangements |t js important to specify boundary conditions in an analy-
that they can sustain while qualifying as “jammed.” For sjs of particle jamming. Two alternatives will be considered
each lattice and jamming category, Sec. IV introduces the, the following. For some purposes it is appropriate to con-
enumeration functions that arise as a result of sequential pafine the disks or spheres with rigid, impenetrable walls; the
ticle removal from the starting perfect lattices. Section Vjniarior space defined by those walls for the present study
presents some furt_herc_]etails of the enumeration problems, 35l be a convex region bounded by straight-line or planar
\évnell as a;_n a?pro?lmani)/n _method f(l)r at least solrlne of th%egments. The other option imposes periodic boundary con-

umeration functions. various Conclusions as wetl as pointa .o \ith 5 primitive cell of such size and shape that a

requiring discussion appear in the final Sec. VI. An Appendix_ . .
is ?jevot%d to the beha?v?or of the body-centered cuchpsphe ortion of the perfect crystal structure of interésbmposed
of contacting particlegust fits with its neighboring periodic-

acking under shear strain. ) . o :
P g image cells. This second choice implies that any jammed
configuration of local, collective, or strict type can be freely
Il. JAMMING CATEGORIES translated without fundamentally changing its character. It

should be stressed that periodic boundary conditions are less

Jammed configurations of rigid rods, disks, and Sphere?estrictive than rigid boundaries; with a given primitive cell

::e th:éiec I\gr}'g:l;e'g Si'r?m?aigpt;Op{Lfer:ga(zr\?éﬁft'Ocr:)’nhs"::/aemet;/‘s'hape, any particle motions permitted by the former are per-
y P P y b mitted by the latter, but not the reverse.

imposed by neighbors. For rigid rods on a line this includes It th noting i ing that tructi thods f
only a single trivial arrangement, periodic close packing. IS worth noting In passing that construction methods tor
amorphous jammed structures tend often to yield so-called

However, the cases of rigid disks in the plane and rigid . , ) . .
spheres in three-space give rise to rich opportunities for di-rattler” particles [7-10). These are isolated single particles,

versity in jamming. Although the preponderance of jammed®" Small groups of particles, trapped within a confining cage
disk and sphere configurations lack long-range ofdder, are ~ Of jammed particles, but free to move within that cage. A
amorphouy even the subsets exhibiting long-range order, oftypical scenario in two dimensions would involve a rattler
the types considered below in the following Secs. IlI-VI, Within a ring of seven or eight surrounding jammed disks.
also display considerable nontrivial diversity. None of the three jamming definitions above permit the pres-
The “appropriate interpretation” alluded to above refersence of rattlers. In principle, they could always be disre-
to distinct categories of jammed disk or sphere configuragarded, and attention focused entirely on their jammed sur-
tions. For present purposes we distinguish three jammingounding matrix. However, rattlers do not occur in the
definitions, arranged here in order of increasing stringencyontext of the lattice-based jammed configurations that form
[3]. the subject of the present investigation.
(1) Locally jammedEach particle in the system is inca-
pable of being displaced, due to nonoverlap restrictions, pro-
vi(_jed all other pa_rticle_s remain_ fixed _in position. In practi_ce Il LATTICES AND INSTABILITIES
this means for disks in two dimensions that each particle
must be imprisoned by at least three contacting neighbors not
all located in the same semicircle, and in three dimensionlg|
each sphere must be imprisoned by at least four contactin . ) . .
neighbors not all in the same hemisphere. The honeycom re vacancy-containing variants of just three simple crystal

lattice of disks, and the diamond lattice of spheres providéructures. These are the triangulér) disk lattice in two
concrete examples of locally jammed configuratifis dimensions, and the face-centered cutfice) and body-

(2) Collectively jammedNo subset of the particles can centered cub_ic{bcc) lattices in three dimengions. The first
simultaneously be displaced, so that its members move o0 are maximally close packed, the last is not. A natural
of contact with one another and with the remainder set. Ichoice for the primitive cell for disks with either boundary
such a simultaneous displacement were indeed possible, Gendition is a rhombus containing® particles in a vacancy-
could be followed by further displacements that would even{free arrangement; an alternative choice would be a regular
tually eliminate all particle contacts and leave the systenhexagon, which upon housing a perfect triangular crystal
totally unjammed. Obviously any collectively jammed con- would contain a number of disks equal t;3+3m+ 1. The
figuration is also locally jammed, but not the reverse. Ex-corresponding natural shapes for the primitive cell for the
amples are the square lattice of disks, and the simple cubithree-dimensional examples of course are cubic, and the par-
lattice of spheres, provided each is enclosed within rigicticle numbers for vacancy-free filling will berd® and 2m®
walls [3]. for fcc and bcec, respectively. In the following we shall con-

(3) Strictly jammedAny collectively jammed configura- fine attention just to cases in which these natural system
tion that, by virtue of nonoverlap restrictions, disallows all shapesgrhombus, hexagon, cupapply. The covering frac-
uniform nonincreasing volume deformations, is classified asions (the portions of the systems inside partigl@s these

To keep the present study within manageable bounds, we
ave chosen to confine attention to jammed structures that
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FIG. 1. Triangular lattice of contacting disks containing a diva- FIG. 2. Local instability in a bec struct ted b -
cancy. The two flanking disks above and below the divacancy are - <. Localinstability In-a bee structure created by a missing

free to move inward, eliminating disk contacts, so that the systenﬁ)a;]r of sfﬁ)hekr.es tt:gt dareblsecond nelg:blprs dtg one Izlinother. Four
fails to satisfy the definition of a locally jammed configuration. spheres flanking this dou e_vac_ar(sym olzed by sma s_qua_r)es
are free to move, one of which is shown here, with its direction of

uninhibited displacement toward the center of the double vacancy
indicated by the arrow. For ease of visualization, only sphere cen-
ters are indicated, as small circles.

ideal lattices are the following:

b= (m/2)3%,
s missing a neighbor to be sure, but those that remain suffice
Prec= (m3)275, (3.)  to prevent any local rearrangements, either singly or collec-
tively (depending on boundary conditign8ut in contrast to
Ppe=3Y?mI8. the two-dimensional triangular disk lattice, a divacancy

formed by removal of a pair of nearest-neighbor spheres is
Both the triangular and fcc perfect lattices are strictlyalso incapable of altering the jamming character of either of
jammed with either boundary condition choice. However, thethese three-dimensional packings. However, there is an im-
bcc perfect lattice is only collectively jammed with rigid portant distinction between the fcc and bcc cases. Removing
boundaried 3], a demonstration of which appears in the Ap-a pair of spheres that are second neighbors from the fcc
pendix, and only locally jammed under periodic boundarylattice does not change its jamming characteristic, but the
consitions. same is not true for the bcc structure. As Fig. 2 illustrates, the

If a single disk is removed from an initially complete presence of a bcc pair of second-neighbor vacancies frees
triangular lattice ofN disks, thus forming a monovacancy, four flanking spheres to move inward toward the center of
the six disks that were the nearest neighbors of the one rehat missing pair, so that the resulting configuration is not
moved have their coordination numbers reduced from six t@ven locally jammed. More widely separated pairs of mono-
five. Nevertheless, the system with the monovacancy is stiacancies in the bcc case do not produce equivalent local
locked into a strictly jammed configuration, able only to instabilities.
move as a whole across periodic boundaries that may have The smallest vacancy cluster in the fcc structure that can
been imposed. The same comment also applies if a secomfstroy its jamming character is a compact trivacancy. This
disk is removed from the system, provided that its location isesults from removal of three spheres which were mutual
remote from that of the first removal, i.e., if the system isnearest neighbors, i.e., which formed an equilateral triangle.
composed ofN—2 disks and two monovacancies. However, Such a compact trivacancy borders one unremoved sphere, to
if the second disk removed is one of the six neighbor parone or the other side of its plane, which is free to move into
ticles of the first monovacancy, the result is a divacancy ashe cluster. In a fashion analogous to that of the triangular
shown in Fig. 1. This divacancy structure does not even meatisk lattice containing a divacancy, a sequence of sphere
the local jamming criterion, as inspection of the figure im-hops into the trivacancy has the effect of moving it through-
mediately shows, because either of the two remaining diskeut the entire system, while permuting sphere positions in its
at the sides of the divacancy is free to move inward. Such sake. Trivacancies that are formed by removal of a linear
displacement can be followed by a sequence of others thatiad of contacting spheres, or a triad with &/2 or a 7/2
eventually could eliminate an arbitrarily large number of diskbend, do not alter the jamming character of the fcc lattice. It
contacts. Alternatively, a sequence of disk displacements ashould be noted in passing that extended vacancy “tunnels,”
step length equal to a diameter can move the divacancy anyvith direction changes and branching, apparently can exist as
where throughout the crystal, and such motions can be usetdable features within a locally, collectively, or strictly
to effect arbitrary permutations of disk locations. jammed fcc system.

Similarly, one or more isolated monovacancies contained Although it is relatively easy to decide whether a given
within fcc or bec structures do not alter their jamming char-vacancy-containing lattice structure meets, or fails to meet,
acters(strict, and collective or local, respectivelyrhe par-  the local jamming criterion, it is generally a more challeng-
ticles flanking a monovacanc§i2 for fcc, 8 for bcg are  ing task to decide if a locally jammed configuration also
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suffice to use a random selection of particles present for re-
moval, subject to the constraint that “dangerous” vacancy
clusters, such as those identified in the preceding Sec. I, are
not permitted to occur. These include the divacancy for the
triangular disk lattice, the equilateral triangular trivacancy
for the fcc sphere lattice, and the next-nearest-neighbor
double vacancy for the bcc sphere lattice.

Suppose that before any particle removal, the primitive
cell for the lattice of interest contained a large numeof
disks or spheres. Some numbeof these will be removed.
Let Q,(N,n) stand for the number ofdistinguishable
jammed packings that can result, where the indexl,c,s
indicates, respectively, the type under consideration: at least
locally, at least collectively, or strictly jammed. Recall that
we consider both rigid boundary conditions, as well as peri-
odic boundary conditions. Only the latter have the possibility
of freely translating any configuration to an alternative posi-
tion by any multiple of the lattice basis vectors. Conse-
quently, for all three lattices and for all threechoices, we
have

QQ(NIO) = 1!
FIG. 3. Portion of a locally jammed disk configuration, based on o -
the triangular lattice, which contains a collective instability. A Q,(N,1)=N (rigid boundary conditions (4.1
closed circuit of simultaneous disk displacements has been indi-
cated by arrows, the effect of which would be to eliminate diskand

contacts that are necessary for jamming.
Q,N,0=Q,N,1)=1 (periodic boundary conditions

satisfies the collectively jammed or even the strictly jammed (4.2)

criteria[3]. However, in the case of the triangular disk lattice

. - AR The enumeration quantitie®, can only be nonzero for
confined by rigid boundaries in either the rhombus or hexa-sOme range of the integer variabighat will depend on the

gon form, a straightforward, if'cumbersome., test.can. be Prattice chosen, the jamming categoty and the boundary
plied to tell whether a locally jammed configuration is aISOconditions. The upper limit for this variable is determined by

collectively jammed. The principle involved is illustrated in he least-dense jammed packing of typeAs an example
Fig. 3, where a specific collective displacement of severa onsider the triangular disk lattice. If local jamming is the

disks around a closed path, uninhibited by disk repulsions ategory of concern, the least-dense structure in the large-

has been |dent|f|ed that would §I|m|r]ate disk contacts a.néystem limit will be dominated by the pattern of the honey-
destroy jamming. All such collective displacement paths OIIS'comb lattice, illustrated in Fig. 4. This structure has coordi-

play thEe f(;llg\_/wl:lg fea_\tures. . f th i - nation number equal to three, and consists entirely of
(@) Each disk serving as a vertex of the path is a poin A otatable hexagons of disks. It is important to bear in mind

which the path changes direction bym/3. that this L
: o . - pattern may have to be broken at a rigid boundary to
(b) Each disk of the path in its undisplaced position con- reserve the local jamming criterion, but this is only a “sur-

tacts exactly three disks, two that are fore and aft along th ace” correction; and with periodic boundary conditions the

path, and one not part of the path. The last may be on eitheﬁone : L
; . . . ycomb pattern might be out of phase with its images,
side of the path, but in every case is opposite théend ¢ 5150 requiring a “surface” modification. One-third of

angrlﬁ at the” patth virtext.h is th lar h Althouah .l}he disks are missing from the precursor triangular lattice to
€ smaliest such paih IS he regufar hexagon. Ougn torm the extended honeycomb structure, so that in this case

is not true in every instance, any larger path, such as the{}1 ; o
A AR e large-system asymptotic upper limit to the number of
shown in Fig. 3, may contain within it one or more of these ge-sy ymp PP

) vacancies will be given b
small hexagonal paths that by themselves can act as displace- g y

ment cycles. Examination of Fig. 3 reveals several of these. Nmax—~N/3  (tri, local jamming. (4.3

The more stringent requirement to have at least collective
jamming cannot tolerate the low disk density implied by Eq.

The obvious approach to generating the packings disf4.3), but instead terminates at a higher disk denibyver
cussed above is to start with a complete and perfect latticejacancy number In the large-system limit this is illustrated
and then to remove disks or spheres sequentially, subject toksy the Kagoméattice pattern, Fig. 5, for which the coordi-
suitably chosen protocol. If the objective is to form and tonation number is four. With periodic boundary conditions, it
enumerate packings that are at least locally jammed, it wouldoes not quite suffice to have the perfect Kagstracture

IV. GENERATION AND ENUMERATION PROBLEMS
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FIG. 6. Collectively jammed disk packing created by converting
the triangular vacancy array of the Kagorattice (Fig. 5 to a
rectangular array. This conversion leaves the density and coordina-
everywhere throughout the system. But if two nonparallekion number unchanged.

principal rows of vacancies in this structure are refilled all

the way across the system, this just manages to produce cQltyyctures, but simultaneously converts both of these cases to

lective jamming. In the Iarg.e.-system Iimit., such refilling of the more stringent category of strict jamming. Consequently,
two rows represents a negligible change in the vacancy cofge 150 have

centration from that of the perfect Kagonhattice, so we
have Nmax~N/4  (tri, strict jamming. (4.5

FIG. 4. Honeycomb lattice of contacting disks. This is the
lowest-density structure related to the triangular disk lattice that
remains locally jammed.

Nmax~ N/4  (tri, collective jamming. (4.9 Limits on the vacancy contents for the three-dimensional

lattices also exist, but are more difficult to find. However,

However the Kagomstructure is not unique in this re- some results can be stated. The fcc lattice consists of four
equivalent interpenetrating simple cubic lattices. If all

spect. The pattern of vacancies in the Kagdattice can be . . .
. I spheres comprised in one of these sublattices are removed,
altered from triangular to rectangular, as shown in Fig. 6,

The resulting structure continues to exhibit coordinationtr;]e.resufltbIS S(tj'” a stng_tly JamCmed StI’UCtll.lI’e W'tﬁ either
number four. It also satisfies EGt.4), provided that it simi- choice of boundary conditions. Consequently, we have

larly has had two nonparallel principal rows of vacancies
refilled. With respect to stacking periodicity in the vertical
direction in Figs. 5 and 6, these alternativ@s their per- N i . . .
fectly periodic formg are analogous respectively to the In addltl_on, the bcc Iattlc_:e consists of two equwalent inter-
three-dimensional face-centered cubic and hexagonal closénetrating diamond lattices. If one of these two is removed,
packed structures. It must also be noted that two-row refillthe remaining diamond lattice is only locally jammed, but

number(four) for local jamming, it cannot tolerate any fur-

ther sphere removals. Therefore

Nmax=N/4  (fee, strict jamming. (4.6)

PR SR SRSSE S &
A EEE S
AR R SRR RSN S
R RS RE RS 3
RARERESRRS
ER R RN 8N NS .
R ER BB ERRS

Nmax=N/2 (bcc, local jamming. 4.7

V. ENUMERATION VERSUS DENSITY

Although each of the specific examples just cited involves
a periodic structure, the fact remains that, over each of the
ranges G=n=ng{«@), the great majority of the packings
enumerated by the functiorfs,(N,n) will contain irregular,

““““‘ nonperiodic arrangements of vacancies. One of the basic
tasks, then, is to calculate, or at least to approximate, these

PR SO SR RNESS S
enumeration functions. We shall continue to be interested in

FIG. 5. The Kagorndattice of contacting disks. Provided that the large-system limit, for which the fractional concentration

rigid boundaries are present, this structure attains the lowest particf vacancies
density for collectively jammed structures based on the triangular
lattice. x=n/N (5.1
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is an appropriate intensive variable. In that large-system 1.0
limit, X can be treated substantially as a continuous variablen.
over its range of definition. Furthermore, one expects each g
Q, in the same asymptotic limit to behave as follows:

IN[Q,(N,n)]~No (). 5.2
N[0 ,(N,n)]~Nory(X) (5.2 -

This result emerges from the expectation that in a large
system should be asymptotically multiplicative over its ©
(large subsystems. A standard thermodynamic interpretation 2 0.4 1
identifies eachr, as a configurational entropy per site di- =

f unjammin

vided by Boltzmann’s constafk . § 0.2 | )

Let us confine attention for the moment to the local jam- © FCC lattice
ming criterion @=1). Under the frankly unrealistic as- 0O
sumption that at giveiN,nthe particles and vacancies could 0.0 - - - .
randomly intermix, one would obtain an upper bound for 0 0025 005 0075 01 0.125
Q,(N,n), namely, Vacancy concentration, x

N! FIG. 8. Probabilities that fcc sphere lattice systems, with uncon-
Q4(N,n)=< m’ (5.3 strained random sphere removals, remain locally jammed as a func-
' | tion of the vacancy concentration. The numbirsf spheres in the

or equivalently for the large-system limit starting complete lattice8ight to left in the figure¢ are 500, 4000,

13500, 32000, and 62 500.
o (X)=—XINX—(1-x)IN(1—X) [O=X=Xma(l)].
(5.4) dom number generator to select particles for successive re-

moval (without constraint from a set of reasonably large
This disregards the occurrence of “unjamming” vacancylattices, it is possible to test whether the resulting configura-
clusters such as those identified in the preceding Sec. IV fation at each stage of removal remains locally jammed, using
each of the lattices. However, such clusters are statisticalljhe geometric criteria described in the previous Sec. lll. Fig-
infrequent for very smalk, and so the upper boun®.4  ure 7 presents a set of results for triangular disk lattices of
should be tight in that regime. But asincreases toward its several sizes, subject to periodic boundary conditions, spe-
upper limit for the lattice of interest, the bound necessarilycifically indicating as a function ot how the probability of
becomes poorer as random occurrence of pairs of vacanciégcoming locally unjammed increases monotonically as par-
that are placed next to one another becomes an increasingiyles are sequentially removed. Figures 8 and 9 do the same
likely local pattern. This situation, and its system-size-for the fcc and bcc cases, respectively. Each of the curves
dependent implications, can be illustrated by a series oéhown in Figs. 7-9 represents an average of 10 000 separate
straightforward computer simulations. Using a pseudoranruns of unconstrained random particle removal.

1.0 1.0
o (4
5 o)
208 £ 0.8 -
£
: ;
-E\ 0.6 1 'E‘! 0-6
35 35
> 0.4 ; 0.4
: E .
g 02 Triangular lattice 2 0.2 BCC lattice
a a
0.0 : : 0.0 : : .
0.00 0.02 0.04 0.06 0.08 0 002 004 0.06 008 0.1
Vacancy concentration, x Vacancy concentration, x

FIG. 7. Probabilities that triangular disk lattice systems, with  FIG. 9. Probabilities that bcc sphere lattice systems, with uncon-
unconstrained random disk removals, remain locally jammed as atrained random sphere removals, remain locally jammed as a func-
function of the vacancy concentration. The numhiéref disks in  tion of vacancy concentration. The numbeisof spheres in the
the starting complete latticesight to left in the figurg¢ are 300, starting complete latticegight to left in the figure are 250, 2000,
1875, 7500, 30 000, and 187 500. 6750, 16 000, and 31 250.
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-2 : : : f(x) the fraction of neighbor occupancy states, each
weighted appropriately by the proper powersxaénd of 1
. —X, that in fact are consistent with local jamming. Realizing
-3 1 I that one such attrition factor might be considered for each
. " remaining particle, inequalit{5.3) becomes replaced by the
improved estimate
_— -4 1 M
><o * ¢ B [
E 5] Q)(N,n)= NTOE [FOOIN™, (5.7
y ]
= and so
-6 | .
o (xX)=—=xInx+(1=x)In[f(x)/(1—%)]. (5.9
_7 A ‘ ‘ . We stress that this approach assumes independenceor-
-13 -1 -9 -7 -5 relation among attrition factors, an approximation that is
In(1/N) subject to improvement in a more sophisticated analysis.

The a priori occurrence probabilities of 0,1,..., 6 vacan-

FIG. 10. Plots ofx,, the positions of vertical midpoints for the Ci€S in the first-neighbor shell of a disk in the triangular
families of curves appearing in Figs. 7-9. The triangular lattice caséattice are given, respectively, by the terms in the expression

is denoted by diamonds, the bcc case by squares, and the fcc case
by circles. Y54 (1 X)5+ 6(1—X)5x+ 15(1 - X) X2+ 20(1— x) 3

: . . o +151—x)%x*+6(1—x)x®+x5=1. (5.9
The system-size scaling of the families of curves in Figs.
7-9 can be inferred from an elementary argument. For th&ome of the configurations represented by these terms are
triangular disk lattice consisting dfl sites, the number of jnadmissible for local jamming. Only nine of 15 cases of two
nearest-neighbor site pairs that could become a divacancy igcancies are admissible, only two of 20 cases of three va-
3N. But with random deletion of particles from sites at Stagecancies, and none with four, five, or six vacancies are admis-
x, the expected number of divacancies NX3. Choosing  sible. As a result, the corresponding polynomial representing

i the weighted numbers of local-jamming-acceptable configu-
x=(3N) (5.9  rations is

sets this expectation value equal to unity, which corresponds (1 —x)6+6(1—x)5x+9(1—x)*2+2(1—x)33

to equal probabilities for local jamming and for unjamming.

This in turn corresponds to the vertical-direction midpoint of =(1-x)%(1+x)(1+2x—2x?). (5.10
the curves in Fig. 7. Exactly the same expresgioi3) ap- . o ) .

plies to the expectation value unity for the number of doubleThis polynomial is the desired attrition factéfx) for each
vacancies on second-neighbor sites in the bce case. For tif§cupied site. Substitution into E¢p.8) yields

fcc lattice, 6N is the number of compact triangles that could

~ _ _ _v\2
serve as trivacancy sites, to eliminate local jamming. Be- i1 (X) = =X IN X+ (1=X)IN[(1=X)%(1+x)

cause the expected number of such trivacanciesNs®6 X (1+2x—2x?)]. (5.12)

expectation value unity and the vertical-direction midpoints

of the fcc curves in Fig. 9 correspond to Numerical investigation shows that this expression remains
non-negative over the permissible rangex<1/3, while

x=(6N) 3. (5.6)  exhibiting a single maximum at which

Figure 10 presents plots of the vertical-direction midpoint x=0.1989,

locations, denoted by,, for all of the curves in Figs. 7-9, (5.12

versus In(IN). Just as Eq95.5 and(5.6) indicate, the tri- 0i,1(0.1989=0.332826.

angular and bcc cases lie on a straight line with slope 1/2,
while the fcc results lie on another straight line with slopeBy definition, these last results locatat least approxi-
1/3. mately the concentration of vacancies that produces the
We now develop an approximation procedure for the threggreatest number of locally jammed packings, and specify the
o(x) functions. This approximation is analogous to the oneexponential growth rate of that number with increasing sys-
invoked by Pauling many years ago to estimate the residudaém size. It should be noted in passing that the approximate
entropy of icd 11,12. The unconstrained random-mixing ex- expression(5.11) remains positive ags—1/3, although the
pression that appeared in the right member of inequalityexact behavior requires that it vanish in that limit.
(5.3 neglected the possible occurrence of vacancy arrange- Similar arguments can be applied to the bcc and fcc lattice
ments in the first-neighbor shell of any remaining particlecases. The result for the enumeration functigg,, is found
that would be inconsistent with local jamming. Denote byto be the following:
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Opee) (X) = —xINx+(1=x)In[(1—x)3(1+ 4x— 2x>— 4x3 ings have been distinguished: locally jammed, collectively
. jammed, and strictly jammed. Upper limits on the vacancy
+3x%)]. (5.13  concentrations for each category have been identified, as

) ] _ ) o well as some of those vacancy-cluster configurations that
This function has its maximum within the allowable rangeould violate the jamming classification. Using the notion of

0=<x=1/2 at the following position: particle-environment attrition factors, we have derived ap-
proximate local jamming enumeration functions of vacancy
x=0.1307, concentration for the three lattices, and in each case a single
(5.19 enumeration(entropy maximum appears as a function of
Ohecy(0.1309=0.241827. that vacancy concentration.

. o The vacancy set for any depleted lattice can be viewed as
In view of the fact that the approximatiof.13 becomes an example of the venerable “lattice gas” family of models
negative forx>0.3430, whereas it should remain non-that has a rich tradition in statistical mechanics, especially
negative for allx<<1/2, it is tempting to conclude that Eq. due to the formal connection to spin-1/2 Ising modélé—
(5.13 is actually a lower bound to the exact bcc result. 16]. The vacancy-cluster constraints that must be observed to
The 12 neighbors of any sphere in the fcc lattice havecomply with local, collective, or strict jamming can be inter-
centers located at the vertices of a polyhedron with 14 faceqreted as interactions operating among the vacancy “par-
Eight of these faces are equilateral triangles, the remaininticles” of the lattice gas. The case of local jamming in the
six are squares. Removing the particles of either type of factiangular disk lattice is especially simple, wherein nearest-
to create a compact trivacancy or square tetravacancy, reeighbor pairs of vacancies experience infinite repulsion, but
spectively, leaves the remaining nine or eight neighbors loare noninteracting at all other pair separations. Local jam-
calized in one hemisphere about the central sphere. Consgting in the bcc lattice requires infinite repulsive pair inter-
guently, either type of face removal results in a violation ofactions for second-neighbor pairs of vacancies, but no other
the local jamming status, and so must be avoided. Subject tinteractions (including first-neighbor paids All vacancy
this understanding, systematic examination of all possiblgairs are interaction-free for the locally jammed fcc case, but
arrangements of spheres and vacancies among the 12 neiglompact equilateral triangles of vacancy triplétautual
bor sites in the fcc lattice finally yields the following result nearest neighboysnust be prevented by infinite three-body
for that structure: interactions, and square tetravacancies must be prevented by
infinite four-particle interactions. The vast array of methods
Oree) (X)= =X INX+(1=X)IN[(1-X)3(1+4x+10x*+12°  that have been developed in the past to handle lattice-gas and
4 5 6 8 Ising models[14-16 offers opportunities for improving
3= 12— 124+ 6x7) | (515 upon the approximate attrition-factor results described in the
d)receding Sec. V for local jamming enumeration. We hope to

Once again this exhibits a single positive maximum, locate , oo e
exploit these opportunities in the near future.

at In connection with the lattice-gas interpretation, we note
x=0.2615, in passing that a generalization suggests itself which may be
(5.16 ins_tructive to pursue at some stage. Specifically, one can re-
1o (0.2615=0.468500. strict the occurrence of vacancies to greater pair distances,

and again pose the same kind of enumeration questions as
The expressiorf5.15 remains positive over the rather wide above in that extended situation. As an example, consider the
interval 0<x<0.6142, perhaps indicating that in this casetriangular lattice, and impose the constraint that vacancies
the attrition-factor approximation has yielded an uppercan exist no closer to one another than at fourth-neighbor
bound to the exact function. In this connection, it has beerpositions. It is interesting to note that the maximum vacancy
determined 13] that random removal of spheres from the fcc concentration permitted by this demandig,=1/7, and that
lattice, subject only to the compact-triangle-avoidance conthis maximum is attained in a periodic chiral structure. Fig-
straint, can produce strictly and, hence, locally jammedure 11 illustrates one of the mirror-image pair of patterns.
structures with +x as low as 0.70. Possibly a more care- This disk packing is strictly jammed with either rigid-wall or
fully patterned vacancy arrangement would produce a yeperiodic boundary conditions.

lower 1—x value. Collective and strict jamming constraints in principle also
lend themselves to transcription into lattice-gas interactions.
V1. CONCLUSIONS AND DISCUSSION However, such interactions will have arbitrarily high orders

in “particle” number, and consequently may be essentially
Providing a complete statistical description and enumerauseless for computational or analytic purposes.

tion of all jammed packings for rigid disks and for spheres For small values ok, Eq. (5.1), typical system configu-
constitutes a daunting task. The present investigation haations under local, collective, or strict jamming protocols
identified and focused instead on a more manageable objewdll exhibit no long-range order in the arrangement of vacan-
tive, specifically the examination of jammed packings thatcies. But whenx rises to its maximum in each case, the
arise from particle removals from the close-packed triangularesulting vacancy patterns indeed display long-range peri-
lattice (disks, and from the face-centered and body-centereddic order, as Figs. 4, 5, 6, and 11 have illustrated. This
cubic lattices(spheres Three categories of jammed pack- raises the basic question, for each lattice and jamming cat-
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APPENDIX

Let a stand for the collision diameter of contacting hard
spheres arranged in a perfect bcc lattice. Consider then a
fundamental cubic structural unit in that lattice consisting of
a central sphere at the orig@,0,0 of a Cartesian coordinate
system, and its eight nearest neighbors at the positions
(=312, +37 123 +3712%) of the cube vertices. The edge
length of this cube of neighbors,x23~'2a, exceedsa so
that the eight neighbors are out of contact with one another.

Consider next a constant-volume uniaxial deformation of
the cube into a rectangular solid. This will be implemented
by multiplying z coordinates by a factor- 7, while thex
andy coordinates are multiplied by (d7) 2 The result-

FIG. 11. Periodic chiral pattern of vacancies in the triangularing heighth and base side lengthof the rectangular solid
lattice, representing the maximum vacancy concentration under thgill be
constraint of no vacancy pairs closer than fourth neighbors.

egory, whether increasingacross its range would encounter h=2(1+ p)a/3"?, (A1)
a disorder-order phase transition. The local jamming ap-
proximations Eqgs(5.11), (5.13, and (5.15 do not reveal
such phase transitions. However, our planned subsequent

studies employing more precise methods of analysis M3X5 avoid either of these distances becoming less than the

reach different conclusions. . . o S
) e o . collision diam n r lim he ran
A final point is worth emphasizing to help place the fami- collision diameter, it is necessary to limity o the range

lies of lattice-based jammed packings in a larger geometric

| =2a/3"4(1+ 7)"~

context. The results presented in Sec. IV above illustrate the 3Y22<1+ p=<4l3. (A2)
fact that the lowest particle-density configurations for each
of the “tri,” “bcc,” and “fcc” cases are still a large fraction As a result of this uniaxial distortion, the common dis-

of the perfect-lattice densities. With regard to local jammingtanced(#) of all eight neighbors from the origin is the fol-
at least, it has been demonstraféd] that disk and sphere |owing function of :

packings with arbitrarily low covering fractiong can be

constructed. These low-density packings can be periodic, 1 ) "

with arbitrarily large unit cells, but are not obviously the d(n)=3""al(1+n)°+2/(1+n)]"~ (A3)

result of removing particles from an initial dense crystalline

structure, such as the three types considered in the presdpfie easily verifies that over the rang®2) this expression
study (tri, fcc, bcg. At present it is not known what the attains its minimum at;=0, where in factd=a. For any
lowest attainable packing densities are for the collectivelyother » value in the range¢A2), d exceedsa. Consequently,

jammed and the strictly jammed criteria, whether periodic ord uniaxial distortion of either sign breaks the eight contacts
otherwise. between the sphere at the origin and its neighbors. By exten-

sion, applying the same uniaxial distortion uniformly to an
entire bcc lattice would break all of its sphere contacts, so
that system would no longer be jammed. Consequently, the

S.T. was supported by the Petroleum Research Fund dxc crystal with rigid boundaries fails to meet the standard
administered by the American Chemical Society and by theequired for “strict jamming,” as defined in Sec. Il above.
MRSEC Grant at Princeton University, NSF DMR-0213706. Note that this kind of argument cannot be applied to the
The authors thank Professor Robert Connelly for directingclose-packed triangular disk lattice or the fcc sphere lattice.
them to Ref[17], and also thank Aleksandar Donev for in- Neither of these admit of a positive distortion range analo-
valuable discussions on several aspects of this paper. Finallgpus to(A2), because the neighbors are already in contact
the authors thank Obioma Uche for producing the majoritywith one another in the undistorted state, and in fact both
of the figures appearing in this paper. lattices are strictly jammed.
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