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Lattice-based random jammed configurations for hard particles
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A nontrivial subset of the jammed packings for rigid disks and spheres are those that can be obtained by
sequential removal of particles from periodic crystalline arrays. This paper considers the enumeration problems
presented by such packings that are based on the close-packed triangular disk lattice, and the face-centered and
body-centered cubic sphere lattices. Three distinct categories of packings have been distinguished, depending
on their behavior with respect to nonoverlap geometric constraints and/or externally imposed virtual displace-
ments: locally jammed, collectively jammed, and strictly jammed. Each of these possesses an upper limiting
vacancy concentration beyond which no packings of the types considered can exist. For each of the three
lattices, specific vacancy clusters have been identified whose presence would destroy local jamming, and some
of the corresponding patterns that would destroy collective jamming in the triangular disk lattice have also
been found. Within the allowable range of vacancy concentration for each case, the number of distinct jammed
packings is expected to rise exponentially with system size. By using the concept of local attrition factors,
approximate enumerations have been constructed for the three lattice classes of locally jammed packings. In
the interests of later extension of this work, we stress that at least some aspects of these enumeration problems
might benefit from the formal transcription to a lattice-gas/Ising-model representation with vacancy interac-
tions chosen to enforce the packing category of interest.

DOI: 10.1103/PhysRevE.67.031107 PACS number~s!: 62.20.Dc, 72.80.Tm
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I. INTRODUCTION

Hard-rod, disk, and sphere models have supplied us
prototypes for a wide variety of many-body phenome
They have also been an enduring source of many challen
theoretical problems. One class of such problems, still
completely understood, concerns the nature of jammed p
ings of disks and spheres, and how the geometric detail
those packings statistically depend on the choice of met
by which they are created. Many of the most difficult op
questions involve classification and enumeration of ‘‘ra
dom’’ ~i.e., irregular! disk and sphere packings, and how th
relate to the statistical physics of liquids, glasses, and di
dered solids. Instead of attempting to resolve any of th
general problems, the present study focuses on a restri
and therefore more modest, goal: attention is confined to
statistics of the special classes of jammed packings for d
and spheres that are identifiable as vacancy-containing
tices. These selected packings~and their multicomponen
relatives! may command extra attention because of their c
nection to known examples of radiation-damaged metals@1#
and of certain types of nonstoichiometric crystals@2# both of
which can contain high and variable concentrations of vac
cies.

In earlier work @3# we discussed how the concept ofri-
gidity percolation~which has been used to analyze the m
chanical properties of network glasses! can be generalized to
characterizejammedhard-particle packings. The standard
gidity percolation problem has been studied for lattice n
works to understand the mechanical properties of netw
glasses@4–6#. For example, consider a triangular net of ma
points connected by nearest-neighbor central forces. Su
system is stable and elastically isotropic, and is theref
characterized byK andG, the elastic moduli of compressio
1063-651X/2003/67~3!/031107~10!/$20.00 67 0311
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and rigidity, respectively. However, if bonds are random
removed with probability 12p, then bothK andG will van-
ish at some 0,p,1 called the rigidity percolation thresh
old.

Now consider a jammed system that meets one of th
definitions~locally, collectively, or strictly jammed! that we
have recently introduced~see details below! @3#. Begin a
process whereby particles are sequentially removed by s
selection process with a random element. The applicable
gidity percolation threshold is the sphere volume fractionf*
at which the system ceases to be jammed according to
selected definition. Thus, the value off* will generally vary
for a given starting structure, depending on the jamming c
egory, boundary conditions, and random removal proce
Unlike the standard rigidity percolation problem, applying
purely random removal process in the case of jammed
ticle systems will lead to a trivial result in the infinite-syste
limit, namely, a vacancy concentration of zero for unja
ming. This behavior is explained in Sec. V below; it can
illustrated by considering first a fully dense triangular latti
of hard disks contained within an appropriately shaped fin
container. This two-dimensional example is known to
strictly jammed@3#, and will unjam whenever two adjacen
disks are removed, i.e., no divacancies can be tolerated.
a finite system, the probability of a divacancy occurrence
less than unity at a nonzero vacancy concentration. Howe
in the infinite-system limit, the probability of such an occu
rence approaches unity, leading to collapse~unjamming! at
any positive vacancy concentration, no matter how sm
This phenomenon extends to other jammed lattices an
higher dimensions. The purpose of this paper is to begin
examine modification of the removal process and its con
quences for certain regular lattices in both two and th
dimensions.
©2003 The American Physical Society07-1
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The following Sec. II briefly reviews the major categori
of packing definitions for hard particles that are relevant
the present study. This is followed by specification, in S
III, of the regular lattices in two and three dimensions to
considered, and identification of the vacancy arrangem
that they can sustain while qualifying as ‘‘jammed.’’ Fo
each lattice and jamming category, Sec. IV introduces
enumeration functions that arise as a result of sequential
ticle removal from the starting perfect lattices. Section
presents some further details of the enumeration problem
well as an approximation method for at least some of
enumeration functions. Various conclusions as well as po
requiring discussion appear in the final Sec. VI. An Appen
is devoted to the behavior of the body-centered cubic sph
packing under shear strain.

II. JAMMING CATEGORIES

Jammed configurations of rigid rods, disks, and sphe
are those which, in some appropriate interpretation, have
ery particle locked in place by the nonoverlap constrai
imposed by neighbors. For rigid rods on a line this includ
only a single trivial arrangement, periodic close packin
However, the cases of rigid disks in the plane and ri
spheres in three-space give rise to rich opportunities for
versity in jamming. Although the preponderance of jamm
disk and sphere configurations lack long-range order~i.e., are
amorphous!, even the subsets exhibiting long-range order
the types considered below in the following Secs. III–V
also display considerable nontrivial diversity.

The ‘‘appropriate interpretation’’ alluded to above refe
to distinct categories of jammed disk or sphere configu
tions. For present purposes we distinguish three jamm
definitions, arranged here in order of increasing stringe
@3#.

(1) Locally jammed. Each particle in the system is inca
pable of being displaced, due to nonoverlap restrictions, p
vided all other particles remain fixed in position. In practi
this means for disks in two dimensions that each part
must be imprisoned by at least three contacting neighbors
all located in the same semicircle, and in three dimensi
each sphere must be imprisoned by at least four contac
neighbors not all in the same hemisphere. The honeyco
lattice of disks, and the diamond lattice of spheres prov
concrete examples of locally jammed configurations@3#.

(2) Collectively jammed. No subset of the particles ca
simultaneously be displaced, so that its members move
of contact with one another and with the remainder set
such a simultaneous displacement were indeed possib
could be followed by further displacements that would ev
tually eliminate all particle contacts and leave the syst
totally unjammed. Obviously any collectively jammed co
figuration is also locally jammed, but not the reverse. E
amples are the square lattice of disks, and the simple c
lattice of spheres, provided each is enclosed within ri
walls @3#.

(3) Strictly jammed. Any collectively jammed configura
tion that, by virtue of nonoverlap restrictions, disallows
uniform nonincreasing volume deformations, is classified
03110
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strictly jammed. These disallowed deformations inclu
volume-preserving shear deformations. The close-pac
disk ~triangular! and sphere~face-centered cubic! lattices are
strictly jammed@3#.

It is important to specify boundary conditions in an ana
sis of particle jamming. Two alternatives will be consider
in the following. For some purposes it is appropriate to co
fine the disks or spheres with rigid, impenetrable walls;
interior space defined by those walls for the present st
will be a convex region bounded by straight-line or plan
segments. The other option imposes periodic boundary c
ditions with a primitive cell of such size and shape tha
portion of the perfect crystal structure of interest~composed
of contacting particles! just fits with its neighboring periodic-
image cells. This second choice implies that any jamm
configuration of local, collective, or strict type can be free
translated without fundamentally changing its character
should be stressed that periodic boundary conditions are
restrictive than rigid boundaries; with a given primitive ce
shape, any particle motions permitted by the former are p
mitted by the latter, but not the reverse.

It is worth noting in passing that construction methods
amorphous jammed structures tend often to yield so-ca
‘‘rattler’’ particles @7–10#. These are isolated single particle
or small groups of particles, trapped within a confining ca
of jammed particles, but free to move within that cage.
typical scenario in two dimensions would involve a rattl
within a ring of seven or eight surrounding jammed disk
None of the three jamming definitions above permit the pr
ence of rattlers. In principle, they could always be dis
garded, and attention focused entirely on their jammed
rounding matrix. However, rattlers do not occur in th
context of the lattice-based jammed configurations that fo
the subject of the present investigation.

III. LATTICES AND INSTABILITIES

To keep the present study within manageable bounds
have chosen to confine attention to jammed structures
are vacancy-containing variants of just three simple cry
structures. These are the triangular~tri! disk lattice in two
dimensions, and the face-centered cubic~fcc! and body-
centered cubic~bcc! lattices in three dimensions. The firs
two are maximally close packed, the last is not. A natu
choice for the primitive cell for disks with either bounda
condition is a rhombus containingm2 particles in a vacancy-
free arrangement; an alternative choice would be a reg
hexagon, which upon housing a perfect triangular crys
would contain a number of disks equal to 3m213m11. The
corresponding natural shapes for the primitive cell for t
three-dimensional examples of course are cubic, and the
ticle numbers for vacancy-free filling will be 4m3 and 2m3

for fcc and bcc, respectively. In the following we shall co
fine attention just to cases in which these natural sys
shapes~rhombus, hexagon, cube! apply. The covering frac-
tions ~the portions of the systems inside particles! in these
7-2
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LATTICE-BASED RANDOM JAMMED CONFIGURATIONS . . . PHYSICAL REVIEW E 67, 031107 ~2003!
ideal lattices are the following:

f tri5~p/2!31/2,

f fcc5~p/3!21/2, ~3.1!

fbcc531/2p/8.

Both the triangular and fcc perfect lattices are stric
jammed with either boundary condition choice. However,
bcc perfect lattice is only collectively jammed with rigi
boundaries@3#, a demonstration of which appears in the A
pendix, and only locally jammed under periodic bounda
consitions.

If a single disk is removed from an initially complet
triangular lattice ofN disks, thus forming a monovacanc
the six disks that were the nearest neighbors of the one
moved have their coordination numbers reduced from six
five. Nevertheless, the system with the monovacancy is
locked into a strictly jammed configuration, able only
move as a whole across periodic boundaries that may h
been imposed. The same comment also applies if a se
disk is removed from the system, provided that its location
remote from that of the first removal, i.e., if the system
composed ofN22 disks and two monovacancies. Howev
if the second disk removed is one of the six neighbor p
ticles of the first monovacancy, the result is a divacancy
shown in Fig. 1. This divacancy structure does not even m
the local jamming criterion, as inspection of the figure im
mediately shows, because either of the two remaining d
at the sides of the divacancy is free to move inward. Suc
displacement can be followed by a sequence of others
eventually could eliminate an arbitrarily large number of d
contacts. Alternatively, a sequence of disk displacement
step length equal to a diameter can move the divacancy
where throughout the crystal, and such motions can be u
to effect arbitrary permutations of disk locations.

Similarly, one or more isolated monovacancies contain
within fcc or bcc structures do not alter their jamming ch
acters~strict, and collective or local, respectively!. The par-
ticles flanking a monovacancy~12 for fcc, 8 for bcc! are

FIG. 1. Triangular lattice of contacting disks containing a div
cancy. The two flanking disks above and below the divacancy
free to move inward, eliminating disk contacts, so that the sys
fails to satisfy the definition of a locally jammed configuration.
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missing a neighbor to be sure, but those that remain suf
to prevent any local rearrangements, either singly or coll
tively ~depending on boundary conditions!. But in contrast to
the two-dimensional triangular disk lattice, a divacan
formed by removal of a pair of nearest-neighbor sphere
also incapable of altering the jamming character of either
these three-dimensional packings. However, there is an
portant distinction between the fcc and bcc cases. Remo
a pair of spheres that are second neighbors from the
lattice does not change its jamming characteristic, but
same is not true for the bcc structure. As Fig. 2 illustrates,
presence of a bcc pair of second-neighbor vacancies f
four flanking spheres to move inward toward the center
that missing pair, so that the resulting configuration is n
even locally jammed. More widely separated pairs of mon
vacancies in the bcc case do not produce equivalent l
instabilities.

The smallest vacancy cluster in the fcc structure that
destroy its jamming character is a compact trivacancy. T
results from removal of three spheres which were mut
nearest neighbors, i.e., which formed an equilateral trian
Such a compact trivacancy borders one unremoved spher
one or the other side of its plane, which is free to move in
the cluster. In a fashion analogous to that of the triangu
disk lattice containing a divacancy, a sequence of sph
hops into the trivacancy has the effect of moving it throug
out the entire system, while permuting sphere positions in
wake. Trivacancies that are formed by removal of a line
triad of contacting spheres, or a triad with a 2p/3 or a p/2
bend, do not alter the jamming character of the fcc lattice
should be noted in passing that extended vacancy ‘‘tunne
with direction changes and branching, apparently can exis
stable features within a locally, collectively, or strict
jammed fcc system.

Although it is relatively easy to decide whether a giv
vacancy-containing lattice structure meets, or fails to me
the local jamming criterion, it is generally a more challen
ing task to decide if a locally jammed configuration al

-
re
m

FIG. 2. Local instability in a bcc structure created by a miss
pair of spheres that are second neighbors to one another.
spheres flanking this double vacancy~symbolized by small squares!
are free to move, one of which is shown here, with its direction
uninhibited displacement toward the center of the double vaca
indicated by the arrow. For ease of visualization, only sphere c
ters are indicated, as small circles.
7-3
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STILLINGER, SAKAI, AND TORQUATO PHYSICAL REVIEW E67, 031107 ~2003!
satisfies the collectively jammed or even the strictly jamm
criteria @3#. However, in the case of the triangular disk latti
confined by rigid boundaries in either the rhombus or he
gon form, a straightforward, if cumbersome, test can be
plied to tell whether a locally jammed configuration is al
collectively jammed. The principle involved is illustrated
Fig. 3, where a specific collective displacement of seve
disks around a closed path, uninhibited by disk repulsio
has been identified that would eliminate disk contacts
destroy jamming. All such collective displacement paths d
play the following features.

~a! Each disk serving as a vertex of the path is a poin
which the path changes direction by6p/3.

~b! Each disk of the path in its undisplaced position co
tacts exactly three disks, two that are fore and aft along
path, and one not part of the path. The last may be on ei
side of the path, but in every case is opposite the 2p/3 bend
angle at the path vertex.

The smallest such path is the regular hexagon. Althoug
is not true in every instance, any larger path, such as
shown in Fig. 3, may contain within it one or more of the
small hexagonal paths that by themselves can act as disp
ment cycles. Examination of Fig. 3 reveals several of the

IV. GENERATION AND ENUMERATION PROBLEMS

The obvious approach to generating the packings
cussed above is to start with a complete and perfect lat
and then to remove disks or spheres sequentially, subject
suitably chosen protocol. If the objective is to form and
enumerate packings that are at least locally jammed, it wo

FIG. 3. Portion of a locally jammed disk configuration, based
the triangular lattice, which contains a collective instability.
closed circuit of simultaneous disk displacements has been
cated by arrows, the effect of which would be to eliminate d
contacts that are necessary for jamming.
03110
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suffice to use a random selection of particles present for
moval, subject to the constraint that ‘‘dangerous’’ vacan
clusters, such as those identified in the preceding Sec. III,
not permitted to occur. These include the divacancy for
triangular disk lattice, the equilateral triangular trivacan
for the fcc sphere lattice, and the next-nearest-neigh
double vacancy for the bcc sphere lattice.

Suppose that before any particle removal, the primit
cell for the lattice of interest contained a large numberN of
disks or spheres. Some numbern of these will be removed.
Let Va(N,n) stand for the number ofdistinguishable
jammed packings that can result, where the indexa5 l ,c,s
indicates, respectively, the type under consideration: at l
locally, at least collectively, or strictly jammed. Recall th
we consider both rigid boundary conditions, as well as pe
odic boundary conditions. Only the latter have the possibi
of freely translating any configuration to an alternative po
tion by any multiple of the lattice basis vectors. Cons
quently, for all three lattices and for all threea choices, we
have

Va~N,0!51,

Va~N,1!5N ~rigid boundary conditions!, ~4.1!

and

Va~N,0!5Va~N,1!51 ~periodic boundary conditions!.
~4.2!

The enumeration quantitiesVa can only be nonzero for
some range of the integer variablen that will depend on the
lattice chosen, the jamming categorya, and the boundary
conditions. The upper limit for this variable is determined
the least-dense jammed packing of typea. As an example,
consider the triangular disk lattice. If local jamming is th
category of concern, the least-dense structure in the la
system limit will be dominated by the pattern of the hone
comb lattice, illustrated in Fig. 4. This structure has coor
nation number equal to three, and consists entirely
rotatable hexagons of disks. It is important to bear in m
that this pattern may have to be broken at a rigid boundar
preserve the local jamming criterion, but this is only a ‘‘su
face’’ correction; and with periodic boundary conditions t
honeycomb pattern might be out of phase with its imag
thus also requiring a ‘‘surface’’ modification. One-third o
the disks are missing from the precursor triangular lattice
form the extended honeycomb structure, so that in this c
the large-system asymptotic upper limit to the number
vacancies will be given by

nmax;N/3 ~ tri, local jamming!. ~4.3!

The more stringent requirement to have at least collec
jamming cannot tolerate the low disk density implied by E
~4.3!, but instead terminates at a higher disk density~lower
vacancy number!. In the large-system limit this is illustrate
by the Kagome´ lattice pattern, Fig. 5, for which the coord
nation number is four. With periodic boundary conditions,
does not quite suffice to have the perfect Kagome´ structure

i-
7-4
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LATTICE-BASED RANDOM JAMMED CONFIGURATIONS . . . PHYSICAL REVIEW E 67, 031107 ~2003!
everywhere throughout the system. But if two nonpara
principal rows of vacancies in this structure are refilled
the way across the system, this just manages to produce
lective jamming. In the large-system limit, such refilling
two rows represents a negligible change in the vacancy c
centration from that of the perfect Kagome´ lattice, so we
have

nmax;N/4 ~ tri, collective jamming!. ~4.4!

However the Kagome´ structure is not unique in this re
spect. The pattern of vacancies in the Kagome´ lattice can be
altered from triangular to rectangular, as shown in Fig.
The resulting structure continues to exhibit coordinat
number four. It also satisfies Eq.~4.4!, provided that it simi-
larly has had two nonparallel principal rows of vacanc
refilled. With respect to stacking periodicity in the vertic
direction in Figs. 5 and 6, these alternatives~in their per-
fectly periodic forms! are analogous respectively to th
three-dimensional face-centered cubic and hexagonal cl
packed structures. It must also be noted that two-row re
ing not only produces collective jamming for these tw

FIG. 4. Honeycomb lattice of contacting disks. This is t
lowest-density structure related to the triangular disk lattice t
remains locally jammed.

FIG. 5. The Kagome´ lattice of contacting disks. Provided tha
rigid boundaries are present, this structure attains the lowest pa
density for collectively jammed structures based on the triang
lattice.
03110
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structures, but simultaneously converts both of these case
the more stringent category of strict jamming. Consequen
we also have

nmax;N/4 ~ tri, strict jamming!. ~4.5!

Limits on the vacancy contents for the three-dimensio
lattices also exist, but are more difficult to find. Howeve
some results can be stated. The fcc lattice consists of
equivalent interpenetrating simple cubic lattices. If
spheres comprised in one of these sublattices are remo
the result is still a strictly jammed structure with eith
choice of boundary conditions. Consequently, we have

nmax>N/4 ~ fcc, strict jamming!. ~4.6!

In addition, the bcc lattice consists of two equivalent int
penetrating diamond lattices. If one of these two is remov
the remaining diamond lattice is only locally jammed, b
because each of its spheres has the minimal coordina
number~four! for local jamming, it cannot tolerate any fur
ther sphere removals. Therefore

nmax5N/2 ~bcc, local jamming!. ~4.7!

V. ENUMERATION VERSUS DENSITY

Although each of the specific examples just cited involv
a periodic structure, the fact remains that, over each of
ranges 0<n<nmax(a), the great majority of the packing
enumerated by the functionsVa(N,n) will contain irregular,
nonperiodic arrangements of vacancies. One of the b
tasks, then, is to calculate, or at least to approximate, th
enumeration functions. We shall continue to be interested
the large-system limit, for which the fractional concentrati
of vacancies

x5n/N ~5.1!

t

le
r

FIG. 6. Collectively jammed disk packing created by converti
the triangular vacancy array of the Kagome´ lattice ~Fig. 5! to a
rectangular array. This conversion leaves the density and coord
tion number unchanged.
7-5
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STILLINGER, SAKAI, AND TORQUATO PHYSICAL REVIEW E67, 031107 ~2003!
is an appropriate intensive variable. In that large-syst
limit, x can be treated substantially as a continuous varia
over its range of definition. Furthermore, one expects e
Va in the same asymptotic limit to behave as follows:

ln@Va~N,n!#;Nsa~x!. ~5.2!

This result emerges from the expectation thatVa in a large
system should be asymptotically multiplicative over
~large! subsystems. A standard thermodynamic interpreta
identifies eachsa as a configurational entropy per site d
vided by Boltzmann’s constantkB .

Let us confine attention for the moment to the local ja
ming criterion (a51). Under the frankly unrealistic as
sumption that at givenN,n the particles and vacancies cou
randomly intermix, one would obtain an upper bound
Va(N,n), namely,

Va~N,n!<
N!

n! ~N2n!!
, ~5.3!

or equivalently for the large-system limit

s l~x!<2x ln x2~12x!ln~12x! @0<x<xmax~ l !#.
~5.4!

This disregards the occurrence of ‘‘unjamming’’ vacan
clusters such as those identified in the preceding Sec. IV
each of the lattices. However, such clusters are statistic
infrequent for very smallx, and so the upper bound~5.4!
should be tight in that regime. But asx increases toward its
upper limit for the lattice of interest, the bound necessa
becomes poorer as random occurrence of pairs of vacan
that are placed next to one another becomes an increas
likely local pattern. This situation, and its system-siz
dependent implications, can be illustrated by a series
straightforward computer simulations. Using a pseudor

FIG. 7. Probabilities that triangular disk lattice systems, w
unconstrained random disk removals, remain locally jammed a
function of the vacancy concentration. The numbersN of disks in
the starting complete lattices~right to left in the figure! are 300,
1875, 7500, 30 000, and 187 500.
03110
m
le
h

n

-

r

or
lly

y
ies
gly
-
of
-

dom number generator to select particles for successive
moval ~without constraint! from a set of reasonably larg
lattices, it is possible to test whether the resulting configu
tion at each stage of removal remains locally jammed, us
the geometric criteria described in the previous Sec. III. F
ure 7 presents a set of results for triangular disk lattices
several sizes, subject to periodic boundary conditions, s
cifically indicating as a function ofx how the probability of
becoming locally unjammed increases monotonically as p
ticles are sequentially removed. Figures 8 and 9 do the s
for the fcc and bcc cases, respectively. Each of the cur
shown in Figs. 7–9 represents an average of 10 000 sep
runs of unconstrained random particle removal.

a

FIG. 8. Probabilities that fcc sphere lattice systems, with unc
strained random sphere removals, remain locally jammed as a f
tion of the vacancy concentration. The numbersN of spheres in the
starting complete lattices~right to left in the figure! are 500, 4000,
13 500, 32 000, and 62 500.

FIG. 9. Probabilities that bcc sphere lattice systems, with unc
strained random sphere removals, remain locally jammed as a f
tion of vacancy concentration. The numbersN of spheres in the
starting complete lattices~right to left in the figure! are 250, 2000,
6750, 16 000, and 31 250.
7-6
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The system-size scaling of the families of curves in Fi
7–9 can be inferred from an elementary argument. For
triangular disk lattice consisting ofN sites, the number o
nearest-neighbor site pairs that could become a divacan
3N. But with random deletion of particles from sites at sta
x, the expected number of divacancies is 3Nx2. Choosing

x5~3N!21/2 ~5.5!

sets this expectation value equal to unity, which correspo
to equal probabilities for local jamming and for unjammin
This in turn corresponds to the vertical-direction midpoint
the curves in Fig. 7. Exactly the same expression~5.5! ap-
plies to the expectation value unity for the number of dou
vacancies on second-neighbor sites in the bcc case. Fo
fcc lattice, 6N is the number of compact triangles that cou
serve as trivacancy sites, to eliminate local jamming. B
cause the expected number of such trivacancies is 6Nx3,
expectation value unity and the vertical-direction midpoi
of the fcc curves in Fig. 9 correspond to

x5~6N!21/3. ~5.6!

Figure 10 presents plots of the vertical-direction midpo
locations, denoted byx0 , for all of the curves in Figs. 7–9
versus ln(1/N). Just as Eqs.~5.5! and ~5.6! indicate, the tri-
angular and bcc cases lie on a straight line with slope
while the fcc results lie on another straight line with slo
1/3.

We now develop an approximation procedure for the th
s l(x) functions. This approximation is analogous to the o
invoked by Pauling many years ago to estimate the resid
entropy of ice@11,12#. The unconstrained random-mixing e
pression that appeared in the right member of inequa
~5.3! neglected the possible occurrence of vacancy arran
ments in the first-neighbor shell of any remaining parti
that would be inconsistent with local jamming. Denote

FIG. 10. Plots ofx0 , the positions of vertical midpoints for th
families of curves appearing in Figs. 7–9. The triangular lattice c
is denoted by diamonds, the bcc case by squares, and the fcc
by circles.
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f (x) the fraction of neighbor occupancy states, ea
weighted appropriately by the proper powers ofx and of 1
2x, that in fact are consistent with local jamming. Realizi
that one such attrition factor might be considered for ea
remaining particle, inequality~5.3! becomes replaced by th
improved estimate

V l~N,n!>F N!

n! ~N2n!! G@ f ~x!#N2n, ~5.7!

and so

s l~x!>2x ln x1~12x!ln@ f ~x!/~12x!#. ~5.8!

We stress that this approach assumes independence~no cor-
relation! among attrition factors, an approximation that
subject to improvement in a more sophisticated analysis

The a priori occurrence probabilities of 0,1,..., 6 vaca
cies in the first-neighbor shell of a disk in the triangul
lattice are given, respectively, by the terms in the express

~12x!616~12x!5x115~12x!4x2120~12x!3x3

115~12x!2x416~12x!x51x6[1. ~5.9!

Some of the configurations represented by these terms
inadmissible for local jamming. Only nine of 15 cases of tw
vacancies are admissible, only two of 20 cases of three
cancies, and none with four, five, or six vacancies are adm
sible. As a result, the corresponding polynomial represen
the weighted numbers of local-jamming-acceptable confi
rations is

~12x!616~12x!5x19~12x!4x212~12x!3x3

[~12x!3~11x!~112x22x2!. ~5.10!

This polynomial is the desired attrition factorf (x) for each
occupied site. Substitution into Eq.~5.8! yields

s tri, l~x!>2x ln x1~12x!ln@~12x!2~11x!

3~112x22x2!#. ~5.11!

Numerical investigation shows that this expression rema
non-negative over the permissible range 0<x<1/3, while
exhibiting a single maximum at which

x>0.1989,
~5.12!

s tri, l~0.1989!>0.332826.

By definition, these last results locate~at least approxi-
mately! the concentration of vacancies that produces
greatest number of locally jammed packings, and specify
exponential growth rate of that number with increasing s
tem size. It should be noted in passing that the approxim
expression~5.11! remains positive asx→1/3, although the
exact behavior requires that it vanish in that limit.

Similar arguments can be applied to the bcc and fcc lat
cases. The result for the enumeration functionsbcc,l is found
to be the following:

e
ase
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sbcc,l~x!52x ln x1~12x!ln@~12x!3~114x22x224x3

13x4!#. ~5.13!

This function has its maximum within the allowable ran
0<x<1/2 at the following position:

x>0.1307,
~5.14!

sbcc,l~0.1307!>0.241827.

In view of the fact that the approximation~5.13! becomes
negative for x.0.3430, whereas it should remain no
negative for allx,1/2, it is tempting to conclude that Eq
~5.13! is actually a lower bound to the exact bcc result.

The 12 neighbors of any sphere in the fcc lattice ha
centers located at the vertices of a polyhedron with 14 fa
Eight of these faces are equilateral triangles, the remain
six are squares. Removing the particles of either type of f
to create a compact trivacancy or square tetravacancy
spectively, leaves the remaining nine or eight neighbors
calized in one hemisphere about the central sphere. Co
quently, either type of face removal results in a violation
the local jamming status, and so must be avoided. Subje
this understanding, systematic examination of all poss
arrangements of spheres and vacancies among the 12 n
bor sites in the fcc lattice finally yields the following resu
for that structure:

s fcc,l~x!>2x ln x1~12x!ln@~12x!3~114x110x2112x3

23x4212x5212x616x8!#. ~5.15!

Once again this exhibits a single positive maximum, loca
at

x>0.2615,
~5.16!

s fcc,l~0.2615!>0.468500.

The expression~5.15! remains positive over the rather wid
interval 0,x,0.6142, perhaps indicating that in this ca
the attrition-factor approximation has yielded an upp
bound to the exact function. In this connection, it has be
determined@13# that random removal of spheres from the f
lattice, subject only to the compact-triangle-avoidance c
straint, can produce strictly and, hence, locally jamm
structures with 12x as low as 0.70. Possibly a more car
fully patterned vacancy arrangement would produce a
lower 12x value.

VI. CONCLUSIONS AND DISCUSSION

Providing a complete statistical description and enume
tion of all jammed packings for rigid disks and for spher
constitutes a daunting task. The present investigation
identified and focused instead on a more manageable ob
tive, specifically the examination of jammed packings th
arise from particle removals from the close-packed triangu
lattice ~disks!, and from the face-centered and body-cente
cubic lattices~spheres!. Three categories of jammed pac
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ings have been distinguished: locally jammed, collectiv
jammed, and strictly jammed. Upper limits on the vacan
concentrations for each category have been identified
well as some of those vacancy-cluster configurations
would violate the jamming classification. Using the notion
particle-environment attrition factors, we have derived a
proximate local jamming enumeration functions of vacan
concentration for the three lattices, and in each case a si
enumeration~entropy! maximum appears as a function o
that vacancy concentration.

The vacancy set for any depleted lattice can be viewed
an example of the venerable ‘‘lattice gas’’ family of mode
that has a rich tradition in statistical mechanics, especi
due to the formal connection to spin-1/2 Ising models@14–
16#. The vacancy-cluster constraints that must be observe
comply with local, collective, or strict jamming can be inte
preted as interactions operating among the vacancy ‘‘p
ticles’’ of the lattice gas. The case of local jamming in th
triangular disk lattice is especially simple, wherein neare
neighbor pairs of vacancies experience infinite repulsion,
are noninteracting at all other pair separations. Local ja
ming in the bcc lattice requires infinite repulsive pair inte
actions for second-neighbor pairs of vacancies, but no o
interactions ~including first-neighbor pairs!. All vacancy
pairs are interaction-free for the locally jammed fcc case,
compact equilateral triangles of vacancy triplets~mutual
nearest neighbors! must be prevented by infinite three-bod
interactions, and square tetravacancies must be prevente
infinite four-particle interactions. The vast array of metho
that have been developed in the past to handle lattice-gas
Ising models @14–16# offers opportunities for improving
upon the approximate attrition-factor results described in
preceding Sec. V for local jamming enumeration. We hope
exploit these opportunities in the near future.

In connection with the lattice-gas interpretation, we no
in passing that a generalization suggests itself which may
instructive to pursue at some stage. Specifically, one can
strict the occurrence of vacancies to greater pair distan
and again pose the same kind of enumeration question
above in that extended situation. As an example, consider
triangular lattice, and impose the constraint that vacanc
can exist no closer to one another than at fourth-neigh
positions. It is interesting to note that the maximum vacan
concentration permitted by this demand isxmax51/7, and that
this maximum is attained in a periodic chiral structure. F
ure 11 illustrates one of the mirror-image pair of patter
This disk packing is strictly jammed with either rigid-wall o
periodic boundary conditions.

Collective and strict jamming constraints in principle al
lend themselves to transcription into lattice-gas interactio
However, such interactions will have arbitrarily high orde
in ‘‘particle’’ number, and consequently may be essentia
useless for computational or analytic purposes.

For small values ofx, Eq. ~5.1!, typical system configu-
rations under local, collective, or strict jamming protoco
will exhibit no long-range order in the arrangement of vaca
cies. But whenx rises to its maximum in each case, th
resulting vacancy patterns indeed display long-range p
odic order, as Figs. 4, 5, 6, and 11 have illustrated. T
raises the basic question, for each lattice and jamming
7-8
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LATTICE-BASED RANDOM JAMMED CONFIGURATIONS . . . PHYSICAL REVIEW E 67, 031107 ~2003!
egory, whether increasingx across its range would encount
a disorder-order phase transition. The local jamming
proximations Eqs.~5.11!, ~5.13!, and ~5.15! do not reveal
such phase transitions. However, our planned subseq
studies employing more precise methods of analysis m
reach different conclusions.

A final point is worth emphasizing to help place the fam
lies of lattice-based jammed packings in a larger geome
context. The results presented in Sec. IV above illustrate
fact that the lowest particle-density configurations for ea
of the ‘‘tri,’’ ‘‘bcc,’’ and ‘‘fcc’’ cases are still a large fraction
of the perfect-lattice densities. With regard to local jammi
at least, it has been demonstrated@17# that disk and sphere
packings with arbitrarily low covering fractionsf can be
constructed. These low-density packings can be perio
with arbitrarily large unit cells, but are not obviously th
result of removing particles from an initial dense crystalli
structure, such as the three types considered in the pre
study ~tri, fcc, bcc!. At present it is not known what the
lowest attainable packing densities are for the collectiv
jammed and the strictly jammed criteria, whether periodic
otherwise.
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FIG. 11. Periodic chiral pattern of vacancies in the triangu
lattice, representing the maximum vacancy concentration unde
constraint of no vacancy pairs closer than fourth neighbors.
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APPENDIX

Let a stand for the collision diameter of contacting ha
spheres arranged in a perfect bcc lattice. Consider the
fundamental cubic structural unit in that lattice consisting
a central sphere at the origin~0,0,0! of a Cartesian coordinate
system, and its eight nearest neighbors at the posit
(6321/2a,6321/2a,6321/2a) of the cube vertices. The edg
length of this cube of neighbors, 23321/2a, exceedsa so
that the eight neighbors are out of contact with one anot

Consider next a constant-volume uniaxial deformation
the cube into a rectangular solid. This will be implement
by multiplying z coordinates by a factor 11h, while thex
andy coordinates are multiplied by (11h)21/2. The result-
ing heighth and base side lengthl of the rectangular solid
will be

h52~11h!a/31/2, ~A1!

l 52a/31/2~11h!1/2.

To avoid either of these distances becoming less than
collision diametera, it is necessary to limith to the range

31/2/2<11h<4/3. ~A2!

As a result of this uniaxial distortion, the common di
tanced(h) of all eight neighbors from the origin is the fol
lowing function ofh:

d~h!5321/2a@~11h!212/~11h!#1/2. ~A3!

One easily verifies that over the range~A2! this expression
attains its minimum ath50, where in factd5a. For any
otherh value in the range~A2!, d exceedsa. Consequently,
a uniaxial distortion of either sign breaks the eight conta
between the sphere at the origin and its neighbors. By ex
sion, applying the same uniaxial distortion uniformly to a
entire bcc lattice would break all of its sphere contacts,
that system would no longer be jammed. Consequently,
bcc crystal with rigid boundaries fails to meet the stand
required for ‘‘strict jamming,’’ as defined in Sec. II above.

Note that this kind of argument cannot be applied to
close-packed triangular disk lattice or the fcc sphere latt
Neither of these admit of a positive distortion range ana
gous to~A2!, because the neighbors are already in cont
with one another in the undistorted state, and in fact b
lattices are strictly jammed.
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