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Aging in an infinite-range Hamiltonian system of coupled rotators
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We analyze numerically the out-of-equilibrium relaxation dynamics of a long-range Hamiltonian system of
N fully coupled rotators. For a particular family of initial conditions, this system is known to enter a particular
regime in which the dynamic behavior does not agree with thermodynamic predictions. Moreover, there is
evidence that in the thermodynamic limit, whidp- < is taken prior ta— o, the system will never attain true
equilibrium. By analyzing the scaling properties of the two-time autocorrelation function we find that, in that
regime, a very complex dynamics unfolds, in whiaging phenomena appear. The scaling law strongly
suggests that the system behaves in a complex way, relaxing towards equilibrium through intricate trajectories.
The present results are obtained for conservative dynamics, where there is no thermal bath in contact with the
system.
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At the very foundations of statistical mechanics, there arghet— limit [3—8]. Unlike most models that display com-
still some hypotheses whose validity rests merely on the explex macroscopic behavior, this infinite-range model in-
trapolation of observational facts and that have to be justifie¢ludes neither randomness nor frustration in its microscopic
a posteriori Among them, let us mention two assumptionsinteractions. Furthermore, on one hand it can be exactly
that are intimately related to the issue addressed in this papeolved in the canonical ensemble, while on the other hand it
The first one refers to the introduction of a probabilistic de-can be efficiently integrated in the microcanonical ensemble.
scription of the evolution of a physical system. The second idn that sense, it is an excellent starting point for analyzing
related to the mechanical specifications that a system mu#fe above mentioned basic questions.
fulfill so that the results of statistical mechanics can be ap- The system consists dfl fully coupled rotators whose
plied [1]. These two points are closely related to the funda-dynamics is described by the following Hamiltonian:
mental problem of establishing a connection between the dy- 1 1
namical behavior of a system, described by the Hamiltonian _ - 2, — _ a\1—

H, and its thermodynamics. In that sense, statistical mechan- H= 2 Z Li+ 2N Ej [1=cod 6= 6;)]=K+V. (1)

ics requires the existence of adequate conditions allowing to

replace the dynamical temporal predictions by a probabilistidt is worth mentioning that this is a rescaled version of a
ensemble calculation that yields the correct equilibriumnonextensive infinite-range Hamiltoni@@]. However, both
mean value of the relevant quantities. of them share the same dynamical behavior after appropriate

A very fast relaxation and a high degree of chaos andescaling of the dynamic variables.
mixing are usually required in order to guarantee that a sys- In Fig. 1, we display the plot,T vs U, where T
tem orbit will cover most of its phase space in a short time.=2(K)/N is the temperature and =(K+V)/N is the total
These questions have been extensively investigated for lowenergy per particle. The solid line corresponds to the canoni-
dimensional systems, whereas, for extended systems, with
infinite degrees of freedom, the matter is still far from settled 1
[2]. '

Due to the analytical and numerical efforts of many au-
thors, it is today a well established fact that even very simple
models, when analyzed in the thermodynamical lirNit
—o0, can yield results that bring to surface central questions
about the foundations of statistical mechanics. In particular,
in this work, we will concentrate on an infinite-rangreean-
field) Hamiltonian system that, despite its simplicity, exhibits
a very peculiar dynamical behavior: depending on the initial
preparation of the system its evolution can get trapped into
trajectories that will prevent the system from attaining equi- 0.0 0.5 U 10
librium in finite time when theN— limit is taken before

00 <+——— - —

FIG. 1. The full line corresponds to the canonical theoretical
caloric curve and the symbols correspond to numerical simulations
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cal calculationd 3], which predict a second-order transition
atU.=0.75. AboveU., constant specific heat is found and
below U. the system orders in a clustered phase. The sym-
bols correspond to the numerical results obtained by integrat-
ing the equations of motion fdd= 1000, 5000 rotators and
until t=1000. The system is initially prepared in a “water-
bag” configuration, that is, all the angles are set to zero while
the momenta are randomly chosen from an uniform distribu-
tion such that the system has total eneljy. By measuring
the nonequilibrium temperatur@r equivalently the magne-
tization of a system started in these out-of-equilibrium ini-
tial conditions, one observes that, for a range of energy val- ]
ues below the transition, the system enters in a 100 ”1"61 ' 162 163 164 ””;'05
guasistationaryregime characterized by a mean kinetic en- t
ergy that varies very slowly. Moreover, the value of this non-
equilibrium temperature remains different from that pre- FIG. 2. Two-time autocorrelation functio@(t+t,,,t,) vst for
dicted by canonical -calculations. Actually, standardsystems of siz&=1000 and energy per particlé=0.69. The data
equilibrium is attained only after a time which grows with correspond to an average over 200 trajectories initialized in water-
the size of the system, hence an infinite system will nevebag configurations. The waiting times arg=8, 32, 128, 512,
reach true equilibriunf7,8]. In the quasistationary regime 2048, 8192, and 32768.
preceding equilibrium, trajectories are non-ergodic and the
dynamics is weakly chaotic with Lyapunov exponent vanish- - For systems that have attained “true” thermodynamical
ing in the thermodynamic limig5]. _ equilibrium, only time differences make physical sense when
It is our objective here to show that the discrepancy begq|cylating relaxation quantities. In this case, it is expected
tween the result; drawn from thg dynamics and those deriv at on an average the system will show only very short
from the canonical ensemble is closely associated to thﬁwemory of past configurations. However, for systems exhib-

presence of $trong long-term memory effects "’.‘”d SIOW rela)ﬁ’[ing aging a complex time dependence is observed in the
ation dynamics, a phenomenon usually naragihg Aging behavior ofC(t+t,,,t,,), indicating long-term memory ef-

is one of the most striking features in the off-equilibrium S
Of]ects. In such a case, even at macroscopic time scales, the

dynamics of complex systems. It refers to the presence . lation f . h licit d
strong memory effects spanning time lengths that in som&Vo-time autocorrelation function shows an exp Icit depen-
w) together with a slow relax-

cases exceed any available observational time. Although aglence on both timest (andt

ing has been seen in a wide variety of contexts and systenf{lOn regime.. _ _ _
[10], some of them, actually very simple ongxg11], it is In order to integrate the motion equations numerically, we
perhaps in the realm of spin glass dynamics where a syster@mployed a fourth-order symplectic methidd] with a fixed
atic study of these phenomena has been carriedseet Ref. time step selected so as to keep a constant value of the en-
[10], and references therginSystems thaage can be clas- ergy within a relative erroAE/E of order 104, All the
sified into dynamical universality classes according to thesimulations were started from the water-bag initial condi-
scaling properties of their relaxation function. Moreover,tions explained above.
these scaling properties contribute to a quantitative descrip- In Fig. 2, we present the results of the numerical calcula-
tion of complex phenomena, even in cases where a generabn of the two-time autocorrelation functiof2) for U
theory is lacking 10,12,. =0.69. This value of the energy, together with the water-bag
Aging can be characterized by measuring the two-timénitial conditions set the system into a particular dynamical
autocorrelation function along the system trajectories. If theegime, in which ensemble discrepancy is more pronounced
state of the system in phase space can be completely charaghen finite size results are extrapolated to the thermody-
terized giving a state vector, then the two-time autocorre- namic limit. In the graph, features characteristic of aging

lation function is defined as follows: phenomena can be distinguished. For a gikgthe system
first enters a quasiequilibrium stage, in the sense that tempo-
KAL) X(E ) — (X (E 1)) - (x(t ral translational invariance holds, wi@(t+t,,t,)~1, up
C(t+t\,v,tw)=< (1 ) X{tw)) = (X(t+ ) (X( W)>, to a time of ordet,,. After that, the system enters a second
Tt+1, 91, relaxation characterized by a slow power law decay and a

) strong dependence on both times. This phenomenology can
be clearly seen in the curves for the largggs.

where oy, are standard deviations and the symiel -) In Fig. 3, we show the best data collapse for the long-time
stands for average over several realizations of the dynamicgehavior of the autocorrelation function, using the data of
In the case of a Hamiltonian system withdegrees of free-  Fig. 2 corresponding to the three largest waiting timgs (
dom the state vector is decomposed in coordinates and theit 2048, 8192, and 32 768The resulting scaling law clearly
conjugate momenta, therefore we establish the following nomdicates that for the whole range of valuestttf, consid-
tation: x=(6,L). ered,
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FIG. 4. Two-time autocorrelation functio@(t+t,, ,t,) vst for
systems ofN=1000 andU=5.0. The data correspond to an aver-
age over 10 trajectories initialized in water-bag configurations. The
waiting times aret,,=8, 32, 128, 512, 2048, 8192, and 32 768.
" Inset: semilog representation of the same data.

FIG. 3. Data collapse for the long-time behavior of the autocor-
relation functionC(t+t,,,t,,). The data are the same shown in Fig.
2 for the three largest,,. The gray solid line corresponds to
eq(—0.2t/t€,). Inset: Inglinear representation of the same data
with q=2.35.

¢ +t,,.t,)~C(t). Therefore, the presence of aging is related to
C(t+ty,,t,) = f(_ﬁ), (3)  the existence of quasistationary states. It is important to em-
L phasize that, although the dynamics presents temporal trans-
lational invariance in the high energy regime, the relaxation
where f(t/t§)~(t/t) "*. It is worth mentioning that this of the system is very slow.
Scaling is the same as observed eXperimenta”y in Spin glaSS There is nowadays growing evidence that aging is a very
systemg 14]. The values obtained for the scaling parametersommon dynamical phenomenon, associated to a great vari-
are 8~0.90 and\~0.74. In the inset, we exhibit an alter- ety of physical systems. So far, there are two scenarios
native representation of the data which yields a linear plot. Iyithin which aging can emerge. On one hand, the onset of
corresponds to WiC(t+t,,t,)] vs t/t, where the function aging in many systems derives from the presence of coars-
Iny(X), namedq logarithm, is defined as followfsl5]: ening processes that give place to critical slowing down of
the dynamics. In this case the scaling law of the two-time

1- . . . . .
x9-1 autocorrelation function is ruled by the following expression

Inq(x) = ﬁ (4)
In this expressiong=1+1/x, which for the data in Fig. 2, Gt b t) ~ TLO/L (). ©
yields g=~2.35. Therefore, we can obtain a complete func-
tional form of the autocorrelation function valid over the
whole range of the scaling variabhét(fV just by identifying
the functionf(x) in Eq. (3) with the inverse of I(x), that is,
the q exponential 15]:

whereL (t) is the mean linear size of the domains at time
[17]. On the other hand, aging also appears as a consequence
of weak ergodicity breakinffl0] and it is related to the com-
plex fractal structure of the region of phase space that the
system explores in time. This is the case, for instance, in the
1 Sherrington-Kirkpatrick(SK) model and other spin glass
f(x)ze;x=[1—(1—q)x]ﬁ, (5) models in which the complexity of the energy landscape is
associated to a certain degree of randomness and/or frustra-
which naturally arises within the nonextensive statistics intion in the Hamiltonian.
troduced by Tsallis inspired by the probabilistic description What is particularly remarkable in this work is the appear-
of multifractal geometrie§16]. The same qualitative behav- ance of a complex aging behavior inaean-fieldmodel
ior has been observed for other systems sizes, naiely lacking both randomness and frustration. Since the model we
=500, 2000. are analyzing in this paper is an infinite-range one, such as
This aging scenario contrasts with the time invariant bethe SK model, a coarsening scenario has to be ruled out from
havior observed within the high energy phase, where no quahe outset. Furthermore, all our results are obtained in a con-
sistationary regime is detected. In fact, let us discuss Fig. 4ervative system without any thermal bath in contact with it.
where we present the results of the calculation of the two- Moreover, it is worth noting that the scaling law found for
time autocorrelation functio(®) for U=5.0, well above the the two-time autocorrelation functions below the transition,
second-order phase transitigine., inside the homogeneous where a quasistationary regime is detected, points to a sce-
phase, with water-bag initial conditions. What we observe nario very similar to that observed in spin glas§&4]. As
here is essentially that the autocorrelation function dependsccurs in spin glasses, there is weak breakdown of ergodic-
on the two times only through their difference, that @t ity, which is consistent with the observation of weakly cha-
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otic orbits, i.e., with a vanishing Lyapunov exponent in thethrough its aging dynamics. Our observation of the existence
thermodynamic limit[5]. Drawing the analogy with spin of aging in this Hamiltonian system and its characterization
glasses even further, our results seem to confirm that thiey scaling properties reminiscent of spin glass dynamics is a
system visits phase space confined inside very intricate trgesult that can contribute to establish a unified frame for the
jectories (presumably nonergodic This conjecture is also discussion of the out-of-equilibrium dynamics of systems
supported by features observednspace[6-8]. The fact  with many degrees of freedom.
that the relaxation of the two-time autocorrelation function
can be well fitted by ajrexponential decay over the whole  We thank Constantino Tsallis for very stimulating discus-
range oft/t,, deserves further investigation. Although a pos-sions. We also want to thank Andrea Rapisarda, Vito Latora,
sible connection with nonextensive statistid$] is still not ~ Alessandro Pluchino, and Ra@. Vallejos for very useful
clear, we believe that it would be interesting to examine thiscomments. This work was partially supported by grants from
possibility. CONICET (Argenting, Agencia Codoba Ciencia(Argen-

In summary, in this paper we have characterized the slowina), SEYCT/UNC(Cordoba, Argenting and FAPERJRio
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