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Dynamics and nonequilibrium states in the Hamiltonian mean-field model: A closer look
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We critically revisit the evidence for the existence of quasistationary states in the globally coupledXY ~or
Hamiltonian mean-field! model. A slow-relaxation regime at long times is clearly revealed by numerical
realizations of the model, but no traces of quasistationarity are found during the earlier stages of the evolution.
We point out the nonergodic properties of this system in the short-time range, which makes a standard
statistical description unsuitable. New aspects of the evolution during the nonergodic regime, and of the energy
distribution function in the final approach to equilibrium, are disclosed.
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The globally coupled version of theXY model, given by
the Hamiltonian

H5K1V5
1

2 (
i 51

N

pi
21
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2N (
i , j 51

N

@12cos~u i2u j !#, ~1!

has recently attracted considerable attention@1–9#. This
model, usually referred to as the Hamiltonian mean-fi
~HMF! model, describes an ensemble ofN rotators charac-
terized by their anglesu i and conjugate momentapi . In
contrast to the usualXY model, interactions affect all pairs o
rotators in the ensemble. The HMF model has been stu
in connection with the emergence of collective se
organized states@1#, dynamical behavior near phase tran
tions @2#, and anomalous diffusion in phase space@4#, among
other dynamical and thermodynamical aspects.

The canonical thermodynamical description of the HM
model can be completely carried out@1,3#. In this descrip-
tion, it is useful to introduce the ‘‘magnetization’’M
5N21( i(cosui ,sinui)[(Mx ,My)[M exp(iF) and the aver-
age energy per particleU5E/N, with E[H. The canonical
approach predicts that the values of the magnetization
the average energy at equilibrium,Meq andUeq, are related
by

Ueq5
T

2
1

1

2
~12Meq

2 !, ~2!

whereT is the canonical temperature. The system underg
a ferromagneticlike, second-order phase transition atTc
51/2, from a state withMeqÞ0 at low temperatures to
state of vanishing magnetization at high temperatures.
energy at the transition isUc53/4. These predictions ar
mostly confirmed by the numerical solution of the HM
equations of motion at fixed total energy, i.e., in a micro
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nonical scenario. In this situation the equilibrium tempe
ture is defined through the kinetic energy

Teq5
2

N
Keq, ~3!

andU5Teq/21(12Meq
2 )/2 @cf. Eq. ~2!#.

Deviations between the canonical predictions and the
crocanonical~numerical! results were, however, reported
the region of energies just below the critical point, 0.5,U
,Uc , where numerical realizations reveal extremely slo
relaxation toward the asymptotic state@1,2#. Such deviations,
observed when the ensemble of rotators is prepared in
cially chosen initial conditions—namely, the so called wat
bag initial conditions—have been associated with the e
tence of long-lived states where, in the thermodynami
limit N→`, the system would spend asymptotically lon
times. In that limit, canonical equilibrium would never b
reached. It has been suggested that the HMF long-li
states—which would replace canonical equilibrium in t
thermodynamical limit—would be well described by th
equilibrium distributions predicted by Tsallis’s generalizati
of thermodynamics@6,7,10#. This generalization, in fact, re
laxes the assumption of extensivity of the Boltzmann-Gib
formulation, and is therefore presumably expected to
scribe the equilibrium statistics of systems with long-ran
interactions@11#, as in Hamiltonian~1!.

Water-bag~WB! initial conditions fixu i50 for all i, and
the momentapi are chosen at random from a uniform dist
bution in such a way that( i pi50 andK5( i pi

2/25NU. For
these initial conditions, in fact, the potential energy vanish
For a typical numerical realization at energies just below
critical point Uc , the dynamics of the HMF model can b
summarized as follows. In the first stage, whose duration
essentially independent of the system sizeN and equals a
few time units@7#, there is a rapid broadening of the distr
bution in u. This implies an abrupt growth of the potenti
energy from its initial valueV(t50)50, to a value close to
that predicted at canonical equilibrium,Veq5N(12Meq

2 )/2.
The kinetic energy drops accordingly, fromK(t50)5NU to
©2003 The American Physical Society05-1
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a value close toKeq5NTeq/2, and the initial unbalance be
tweenK and V is drastically reduced. As explained belo
the details of the evolution in this stage of kinetic relaxati
depend strongly on the specific realization of the WB init
condition. Typically, however, the potential energy excee
Veq and attains a maximum, whileK reaches a minimum
From then on, the system enters a stage of slow relaxa
toward canonical equilibrium.

The slow-relaxation regime of the HMF model was r
ported in the first systematic study of this system@1#. In Ref.
@3# it was quantitatively characterized by analyzing the
laxation of the nonequilibrium entropyS(t) toward its equi-
librium value Seq as a function ofN. The differenceuS(t)
2Sequ was shown to approach an asymptotic value of or
N21/2 within a relaxation timet r;N. The same scaling ha
recently been reported for the relaxation time of the noneq
librium temperatureT(t)52K(t)/N @8#. The states visited
by the system during the slow-relaxation regime have b
named quasistationary states, presumably by analogy
the quasiequilibria reported for one-dimensional grav
tional systems@12,13# and similar long-lived states in many
body systems with long-range interactions@14#. The name
suggests that the time scales associated with the evolutio
such states are much longer than those of any other reg
during the whole evolution. However, the evolution ofS(t)
towardSeq reveals no dynamical regime other than slow
laxation @3,15#.

Latora, Rapisarda, and Tsallis~LRT!, on the other hand
have claimed to demonstrate the entity of quasitation
states~QSS! from the analysis of the evolution of the non
equilibrium temperatureT(t) @6#. For clarity in the discus-
sion, we reproduce in the main plot of Fig. 1 their Fig. 1~b!
of Ref. @6#, whereT(t) is plotted against time for severa
values ofN, as obtained from numerical integration of th

FIG. 1. Nonequilibrium temperatureT(t)52K(t)/N of the
HMF model for U50.69 andN5500 ~diamonds!, 103 ~squares!,
and 104 ~circles!, from Fig. 1~b! of Ref. @6#. Note that data are
plotted againstt2t0, with t05100. The horizontal line indicate
the canonical equilibrium temperatureTeq50.476. The inset shows
the same data againstt. The scales of the axes in the inset are t
same as in the main plot.
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HMF equations of motion forU50.69 @16#. This value of
the energy corresponds to the largest observed deviatio
numerical results with respect to the canonical equilibriu
prediction@1,3#. In the plot, the initial stage of kinetic relax
ation is disregarded. For short times, we observe a wide
teau, whereT(t) is apparently constant, but substantially d
fers from its equilibrium value. At long times,T(t) has
reachedTeq and remains at equilibrium. These two platea
are connected by a crossover stage, whereT(t) exhibits an
inflexion point and its variation is seemingly faster. Cons
quently, LRT conclude that the slow-relaxation regime co
sists in turn of a first stage where the system is ‘‘trapped’
a QSS, and a subsequent crossover toward canonical eq
rium. Since the positiontC of the crossover shifts to large
times asN grows,tC;N, LRT deduce that in the thermody
namical limit the QSS will be observed at all times, and th
canonical equilibrium will never be attained. As we argue
the following, however, the presence of the plateaus a
thus, the existence of a QSS in these specific realization
the HMF model, is an artifact of the peculiar way chosen
plot the data in Fig. 1.

In the first place, in order to exclude the initial stage
kinetic relaxation, LRT choose to plotT(t) as a function of
t2t0, with t05100, instead of simply cutting off the time
axis at t0. Such procedure, which would be innocuous in
linear time scale, has far-reaching consequences in the l
rithmic scale of Fig. 1. In fact, the pointt5t0 becomes
shifted to2` in the logarithmic variable, which conside
ably enhances the impression of having a plateau at smat.
In the inset of Fig. 1 we plotT(t) against its original
variable—also in logarithmic scale—showing that the sho
time plateau shrinks by one decade. The existence of a cr
over state joining the two plateaus itself is an illusion crea
by the logarithmic scale, even in the original variablet. In-
deed, it can be easily shown that the graph of a function w
monotonic first derivative can display an~otherwise inexis-
tent! inflection point by the simple expedient of using a log
rithmic scale in the horizontal axis@17#.

In order to avoid these undesirable effects and to rev
the true nature of the evolution ofT(t) in the slow-relaxation
regime, we opt for using linear time scales. Figure 2 sho
plotted with diamonds, the same data as in Fig. 1 forN
5500 up tot52500, while the inset shows the whole tem
poral range. We see that there are no traces of a short-
plateau, except perhaps for a small interval aroundt5500. It
might, however, be argued that the vertical scale in this p
has been exaggeratedly amplified. To decide over this po
we have used a Pade´-like approximation to fit the data ove
the whole time range, shown as a curve in the inset. T
quality of the fitting is quite acceptable. Its extension to t
short-time range, also shown as a curve in the main p
proves that in this range the data exhibit the same trend
for larger times. The evolution in the whole range is the
fore uniform, and we find no arguments to attribute the co
dition of quasistationarity to the short-time interval. As f
the small interval aroundt5500, we also include in Fig. 2 a
data set from Ref.@7#, calculated with higher numerical pre
cision ~open circles! @18#. These data reveal a minimum i
T(t) at t'300 and confirm the absence of any plateau. F
5-2
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DYNAMICS AND NONEQUILIBRIUM STATES IN THE . . . PHYSICAL REVIEW E 67, 031105 ~2003!
FIG. 2. The same data as in Fig. 1 forN5500 ~diamonds!, with
linear time scale. The inset shows the whole time range. The c
is a Pade´-like approximation over the entire range. Open circles
higher-precision results from Ref.@7#.

FIG. 3. The same data as in Fig. 1 for~a! N5103 and ~b! N
5104, with linear time scale. The inset in~a! shows the whole time
range, while the curve is a Pade´-like approximation over the entire
range.
03110
ure 3 shows the data from Fig. 1 forN5103 and 104 in linear
time scale. Again, we find no evidence of the existence
plateaus or QSS.

Let us mention that, more indirectly, the observation
anomalous diffusion in the slow-relaxation stage of the HM
model @4# confirms that no special regimes exist within th
stage. In fact, superdiffusion in the unfoldedu space,uP
(2`,1`), which is characterized by an anomalous disp
sion law^Du2&;ta, is recorded in the whole slow-relaxatio
stage with a constant exponenta'1.4. The transition to or-
dinary diffusion (a51) occurs at the same time as the sy
tem reaches canonical equilibrium. The short-time plateau
Fig. 1 and the crossover to canonical equilibrium are
detected by the transport properties of this system.

The data shown in Figs. 2 and 3 exhibit an inconsisten
regarding the behavior of the nonequilibrium temperature
the first stage of the slow-relaxation regime. In fact, while
the results forN5500 ~circles! and forN5104 we observe a
well-defined minimum inT(t), low-precision data forN
5500~diamonds! and results forN5103 do not display such
minimum. To clarify this aspect of the evolution, we ha
performed extensive numerical calculations for the sa
value of the energy,U50.69. We have used a first-orde
Verlet symplectic scheme, choosing the integration step
such a way that the relative error in the total energy cons
vation aroundDE/E;1023 @19#. This choice makes it pos
sible to average over many realizations of the water-bag
tial conditions (53104 for N5500 to 103 for N53000).
Our results for the nonequilibrium temperatureT(t) are
shown in Fig. 4, as a function of the rescaled timet/N. Each
dot has been obtained as an average in time, over 0.1N to
0.2N time units. The arrows indicate, forN51000 and 3000,
the typical dispersion in the values ofT(t) after averaging
over the whole set of realizations. Fluctuations are inde

ve
e

FIG. 4. Nonequilibrium temperatureT(t)52K(t)/N for U
50.69 and three values ofN, as a function of the rescaled timet/N.
The arrows indicate the typical dispersion ofT(t) after averaging
over a large set of realizations (;103 to ;104, see text!. For N
5500 the dispersion is negligible in this scale. The inset shows
time of the minimum inT(t) as a function ofN. The straight line is
a power-law fit, with slope 1.7.
5-3
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DAMIÁ N H. ZANETTE AND MARCELO A. MONTEMURRO PHYSICAL REVIEW E67, 031105 ~2003!
large, as expected near a phase transition and due to
highly chaotic HMF dynamics@2,3#, which makes it difficult
to obtain reliable numerical results. In any case, our num
cal calculations consistently confirm the existence of a m
mum in the nonequilibrium temperature, and the subsequ
steady growth ofT(t). The inset shows the position of th
minimum tmin as a function ofN, including also the value for
N5104 taken from the data of Fig. 3~b!. The straight line
corresponds to a power-law fitting,tmin}Nn, which yieldsn
51.760.1. Though the plot spans less than two decade
N, the fact thattmin grows faster than linearly with the syste
size is clear.

Meanwhile, no plateau is observed, at least, of the k
shown in Fig. 1. A plateau may of course be compulsiv
ascribed to the zone around the minimum ofT(t) at tmin , but
it would be far from coinciding in nature with the QSS r
ported by LRT. In fact, although the minimum becom
broader for largerN, it also shifts to longer times, which
hardly insures that a stationary~nonequilibrium! temperature
would be observed in the limitN→`.

The well-defined minimum of the nonequilibrium tem
peratureT(t) at tmin establishes a quite natural boundary b
tween short-time and long-time dynamical ranges. It is in
esting to analyze in more detail the short-time evolutio
with emphasis in the angle and momentum distribution of
ensemble inm space, where at each time the system is r
resented by a set ofN points in the (u,p) plane. One-particle
distributions of both angles and momenta have received
ticular attention in previous work@1,3,6,7#, so that such rep-
resentation is useful for comparison. Figure 5 shows f
snapshots, at different times, of them-space distribution in a
single ~typical! realization of the HMF model withN5104

rotators, atU50.69. For clarity, the origin of the angle var
able,u50, has been chosen to coincide in each plot with
phaseF of the total magnetizationM . In this way, the center
of the distribution coincides approximately with the center

FIG. 5. Snapshots inm space at four different times of a sing
realization of the HMF model with water-bag initial condition
(N5104,U50.69). In the four plots the horizontal and vertic
axes span the intervals (2p,p) and (22,2), respectively.
03110
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the plot. Take into account, however, thatF performs, for
short times, diffusivelike motion@1#. The WB initial condi-
tion would here correspond to a uniform distribution along
vertical segment atu50, with upu,A6U'2.03. As ad-
vanced above, we observe a rapid broadening of the di
bution in the angle coordinateu, accompanied by a moderat
collapse inp. At t5100, much of the ensemble has becom
strongly mixed inm space, due to the highly chaotic natu
of the dynamics for this value ofU @1,3#. There is, however,
a substantial fraction of the ensemble, represented by
zones where points remain ordered, where the strong co
lations imposed by the WB initial condition persist. Th
fraction is mainly situated near the center of the distributio
in a region of relatively small momentum, but ordered arra
of points are also seen in other zones ofm space. For these
times, thus, the system can be thought of as a mixture of
phases, namely, a strongly mixed, ‘‘gaseous’’ phase an
highly correlated, ‘‘condensed’’ phase.

The distribution of the condensed phase inm space results
to strongly depend on the specific realization of the WB i
tial condition. This sensibility to the initial conditions, illus
trated in Fig. 6, is again a consequence of the chaotic dyn
ics that, as time elapses, amplifies the originally sm
variations between different realizations. An importa
byproduct of this property, combined with the persistence
the initial correlations, is that the condensed phase is
ergodic, in the sense that averages over realizations of
WB initial condition yield a poor description of the statistic
properties over time of any single realization. The lack
ergodicity of the condensed phase makes in turn the wh
system nonergodic in this short-time range. An illustration
this overall lack of ergodicity is provided by the short-tim
evolution of the nonequilibrium temperature. In any sing
realization, after its initial drop,T(t) displays chaotic oscil-
lations of appreciable amplitude. Due to the sensibility
initial conditions, however, the phases of such oscillatio
differ between realizations, and the oscillations disapp

FIG. 6. Snapshots inm space at timet530 of four realizations
of the HMF model with water-bag initial conditions (N5104,U
50.69). Horizontal and vertical scales are as in Fig. 5.
5-4
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DYNAMICS AND NONEQUILIBRIUM STATES IN THE . . . PHYSICAL REVIEW E 67, 031105 ~2003!
upon averaging. This observation should warn of the ave
ing procedures used in previous work@7# to study statistical
properties such as the nonequilibrium temperature and
momentum distribution function in the initial regime of k
netic relaxation. The warning applies also to the average
of T(t) shown in our Fig. 4 at the shortest times. Before
nonergodic condensate disappears, in fact, a~standard! sta-
tistical approach to the HMF model results to be of limit
applicability.

As the evolution proceeds, particles from the condens
‘‘evaporate’’ into the gaseous phase@1,2#. From Fig. 5 we
note that, att5104, only faint traces of the condensed pha
remain in the ensemble. We have studied the dynamic
this evaporation process as follows. First of all, we ha
numbered the rotators in each realization of the HMF mo
in such a way that, at the initial time,pi(0),pj (0) for i
, j . At subsequent times, we have defined the condensa
formed by the rotatorsi such that the distance toi 11 in m
space, d i5A(u i 112u i)

21(pi 112pi)
2, is lower than a

given thresholdd. We fix the threshold as the average d
tance between contiguous pairs att50, d52A6U/N.

The numbern of rotators in the condensed phase displa
considerable oscillations in time. According to the discuss
in the previous paragraph, we choose to measuren in a
single ~typical! realization forN5104 and to average ove
time intervals. Figure 7~a! shows the evolution ofn averaged

FIG. 7. Evolution of~a! the size of the condensate phase and~b!
the average energy per particle in the condensate, for a single
ization of the HMF model withN5104 and U50.69. Each dot
corresponds to a running average over 100 time units. The stra
line in ~a! has slope20.85.
03110
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over each 100 time units. The condensate size decre
steadily, displaying most of the time a power-law decay w
a nontrivial exponentn;t20.85. This rather smooth decay i
abruptly interrupted by a sudden collapse of the condens
at t'1.63104. In Fig. 7~b!, we show the evolution of the
average energy per particle in the condensate. We see th
varies nonmonotonically with time, though its value is nev
far from u51. Other realizations for the same value ofN
confirm that these results are generic. Moreover, they
robust with respect to the definition of the thresholdd. For
different values ofN, realizations in the short-time rang
show that the collapse of the condensed phase occurs
time preceding, but approximately equal totmin . In other
words, when the minimum of the nonequilibrium temper
ture is attained, the condensate has just evaporated. F
then on, the system enters the final stage of its relaxatio
canonical equilibrium.

In the long-time range, when the ensemble of rotators
presumably attained an ergodic state, itsm-space configura-
tion can be described statistically, in terms of averages o
realizations, by means of a distribution functionf (u,p). Pre-
vious results on them-space distribution of the HMF mode
refer, in all cases, to reduced distribution functions,f u(u)
and f p(p). In Ref. @3#, the momentum distribution function
is used to illustrate, forU50.69, slow relaxation for long
times. For other values ofU, far from the critical point, both
f u and f p were compared at moderately long times with t
prediction of canonical statistics, showing the relatively fa
attainment of canonical equilibrium for such energies.
Refs.@6# and@7#, in contrast, deeper significance is attribut
to nonequilibrium distribution functions—always in conne
tion with QSS. There, LRT suggest thatf p exhibits the fin-
gerprints of nonextensive thermodynamics, and support
claim showing that the momentum distribution can be
ceptably fitted, at low values ofp, by the power-law distri-
bution derived from Tsallis’s nonextensive formulation@11#.
Tsallis’s formulation, however, predicts the one-partic
probability distribution for the energy, and not for the m
mentum. Now, since the one-particle energy@1#

e5
p2

2
112Mx sinu2M y cosu ~4!

depends both onu andp, statistical descriptions in terms ofe
andp are equivalent only if them-space distribution is inde
pendent ofu, i.e. if the energy distribution functionf e(e)
can be unambiguously given in terms off p(p). This is not
our case forU,Uc , unfortunately, since the angle distribu
tion is not uniform, as illustrated by our Figs. 5 and 6, and
LRT’s Fig. 3~a! in Ref. @6#. Ignoring the angular dependenc
of the one-particle distribution inm space invalidates the
identification of f p as an equilibrium distribution derived
from a generalized thermodynamical formulation like Ts
lis’s, which—just as ordinary thermodynamics—yields c
nonical distributions as functions of the energy.

We have evaluatedf e by means of numerical realization
of the HMF model forN5104. From the energy distribution
function we can in turn calculate the energy probability de

al-

ht
5-5
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sity P(e), sincef e(e)5r(e)P(e), wherer(e) is the density
of states. The HMF density of states can be expresse
terms of elliptic functions, as

r~e!5
2A2

pAe211M
KS 2M

e211M D ~5!

for e.11M and

r~e!5
2A2

pAe211M
FS 1

2
arccos

12e

M
,

2M

e211M D ~6!

for 12M,e,11M , whereK andF are the complete and
incomplete elliptic integrals of the first kind, respective
@20#. The energy is bounded from below, atemin512M.

Figure 8 shows the results forP(e) at three times, plotted
as a function ofe2emin . The straight line represents th
canonical prediction,Peq(e)}exp(2e/T). Observe thatt55
3104 corresponds to the minimum of the nonequilibriu
temperature, at the very beginning of the long-time ran
For this time we note a considerable deviation from cano
cal equilibrium, with an abrupt cutoff ate2emin'1 preceded
by an overpopulated interval. For very low energies, ho
ever, the coincidence with the equilibrium distribution is a
ready quite good. Fort523105 the cutoff persists, but it is
less abrupt and has shifted to higher energies, while in
low-energy range the distribution is closer to canonical eq
librium. Finally, for t5106, canonical equilibrium is well
established in almost the whole range of energies show
the figure. Deviations of the nonequilibrium temperatu
with respect toTeq are therefore to be ascribed to the d
pleted tail at high energies. From these results, we conc
that in the long-time regime the equilibrium energy distrib
tion of the HMF model with WB initial conditions is built up
from low energies, with a depleted high-energy tail that
cedes as time elapses. It is interesting to point out that
actly the same behavior has been reported for the en

FIG. 8. Probability distribution of energies at three times in t
long-time range, for a system ofN5104 rotators atU50.69, as a
function of e2emin . The straight line stands for the exponent
canonical prediction with temperatureT50.476.
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relaxation of another classical system with long-range in
actions, namely, a one-dimensional self-gravitating sys
@21#.

We remark that LRT have assigned a distribution funct
to states which are clearly in the short-time range. In t
range the system is still strongly nonergodic and, as d
cussed above, such statistical description is therefore of v
limited significance. Their best fitting, forN5105 at t
51200, corresponds in fact to a state where probably m
of the ensemble is still in the condensed phase. Moreo
they compare results for different system sizes at the s
time ~see their Fig. 2~c! in Ref. @6#!, disregarding the scaling
laws of time scales with the size, which threatens the valid
of their evaluation of the fitting quality as a function ofN
@their Fig. 2~d!#. Finally, we mention that the abrupt drop o
f p for large momenta—also seen at larger times in our res
for P(e), Fig. 8—eludes any description based on Tsalli
thermodynamics. The artificial cutoff imposed by LRT
their fitting of f p , aimed at mimicking its abrupt drop, ca
hardly find any consistent justification within such forma
ism. We conclude that no evidence supports the associa
of nonequilibrium HMF states with generalized thermod
namical equilibria.

In summary, we have reexamined the slow-relaxation
namics of the Hamiltonian mean-field model, when the e
lution starts from water-bag initial conditions. First, we ha
revised the evidence that would support the existence of q
sistationary states in the nonequilibrium dynamics of
model. In that regard, we have shown that the plateaus in
temporal evolution of the nonequilibrium temperatureT(t)
@6,7# are a mere artifact of the use of a logarithmic scale
the time axis in the plot ofT(t). Moreover, a detailed analy
sis of the evolution of the nonequilibrium temperature sho
that the dynamics can be decomposed into two well-defi
dynamical regimes: a short-time range characterized by
presence of a condensed phase, in which the system
serves strong memory of the initial conditions, and a lon
time range, in which the condensed phase has evapor
and the system slowly relaxes toward equilibrium. A natu
boundary between these two regimes is given by the m
mum reached by the nonequilibrium temperature, which
cedes toward larger times as the system size grows. The
merical evaluation of the probability density function of th
one-particle energy in the long-time range demonstrates
the system is slowly relaxing to the Boltzmann distributio
and does not support any connection with the generali
equilibrium distributions derived from Tsallis’s nonextensi
formalism.

It must be stressed that neither previous work nor
present results elucidate the nature of the HMF evolution
the thermodynamical limitN→`. The existence of differen
dynamical regimes, with different scaling laws in terms ofN,
makes an extrapolation from the available numerical res
extremely uncertain. The possibility of performing signi
cant, extensive numerical realizations of this model with c
rent computational facilities seems to be restricted to
sembles of, at most, N;104 elements. Numerica
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realizations for much larger systems may be necessar
order to attain a meaningful approach to the thermodyna
cal limit.

The origin of slow dynamics in the Hamiltonian mea
field model, also revealed by the study of aging phenom
and strong memory effects in the long-time range@9#, re-
mains to be explained as well. A plausible argument@8# may
perhaps arise from the study of the role of the state of z
magnetization, which forU,Uc is thermodynamically un-
stable, and its connection with critical slowing down@2#—a
connection which has often been invoked but not yet inv
tigated. Revealing the basic mechanisms of slow relaxa
c

. E

e-

03110
in
i-

a

ro

-
n

in the Hamiltonian mean-field model should definitely clari
its relation to systems with some degree of structural dis
der or frustration, such as glasses, that also exhibit sl
dynamics features. In turn, this would contribute to a unifi
view on nonequilibrium phenomena in systems with ma
degrees of freedom.
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