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Dynamics and nonequilibrium states in the Hamiltonian mean-field model: A closer look
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We critically revisit the evidence for the existence of quasistationary states in the globally cot\lext
Hamiltonian mean-field model. A slow-relaxation regime at long times is clearly revealed by numerical
realizations of the model, but no traces of quasistationarity are found during the earlier stages of the evolution.
We point out the nonergodic properties of this system in the short-time range, which makes a standard
statistical description unsuitable. New aspects of the evolution during the nonergodic regime, and of the energy
distribution function in the final approach to equilibrium, are disclosed.
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The globally coupled version of théY model, given by nonical scenario. In this situation the equilibrium tempera-

the Hamiltonian ture is defined through the kinetic energy
1 N 1 N 2
H=K+V=3 3 pl+oo S [1-cod6— )], (1) Tea=yKea ®
A= 2N =1

_ _andU=Tef2+(1-MZ/2 [cf. Eq. (2)].
has recently attracted considerable attentjdr-9). This Deviations between the canonical predictions and the mi-
model, usually referred to as the Hamiltonian mean-fieldcrocanonicalnumerica) results were, however, reported in
(HMF) model, describes an ensembleNfrotators charac-  the region of energies just below the critical point, 013
terized by their angle®); and conjugate momentg;. In <y_, where numerical realizations reveal extremely slow
contrast to the usuadY model, interactions affect all pairs of_ relaxation toward the asymptotic stafe2]. Such deviations,
rotators in the ensemble. The HMF model has been studieghserved when the ensemble of rotators is prepared in spe-
in connection with the emergence of collective self-cjaly chosen initial conditions—namely, the so called water-
organized statepl], dynamical behavior near phase transi- paq initial conditions—have been associated with the exis-
tions[2], and anomalous diffusion in phase spk among  tence of long-lived states where, in the thermodynamical
other dynamical and thermodynamical aspects. limit N—o, the system would spend asymptotically long
The canonical thermodynamical description of the HMF{imes. In that limit, canonical equilibrium would never be
model can be completely carried ot,3]. In this descrip-  reached. It has been suggested that the HMF long-lived
tion, it is useful to introduce the “magnetizationM  states—which would replace canonical equilibrium in the
=N"'Z;(cosf ,sin6)=(M,,M,)=M exp(®P) and the aver- thermodynamical limit—would be well described by the
age energy per partic =E/N, with E=H. The canonical equilibrium distributions predicted by Tsallis’s generalization
approach predicts that the values of the magnetization angf thermodynamic$6,7,10. This generalization, in fact, re-
the average energy at equilibriutd,e, andU.,, are related |axes the assumption of extensivity of the Boltzmann-Gibbs
by formulation, and is therefore presumably expected to de-
scribe the equilibrium statistics of systems with long-range
interactiond 11], as in Hamiltonian(1).
Water-bag(WB) initial conditions fix 8,=0 for all i, and
the momenta; are chosen at random from a uniform distri-
whereT is the canonical temperature. The system undergoelution in such a way thak;p;=0 andK = =;p?/2=NU. For
a ferromagneticlike, second-order phase transitionTat these initial conditions, in fact, the potential energy vanishes.
=1/2, from a state wittM,#0 at low temperatures to a For a typical numerical realization at energies just below the
state of vanishing magnetization at high temperatures. Theritical point U, the dynamics of the HMF model can be
energy at the transition it).=3/4. These predictions are summarized as follows. In the first stage, whose duration is
mostly confirmed by the numerical solution of the HMF essentially independent of the system siteand equals a
equations of motion at fixed total energy, i.e., in a microcafew time units[7], there is a rapid broadening of the distri-
bution in 6. This implies an abrupt growth of the potential
energy from its initial value/(t=0)=0, to a value close to
*Electronic address: zanette@cab.cnea.gov.ar that predicted at canonical equilibrium{eq= N(l— Mio)/z.
"Electronic address: mmontemu@ictp.trieste. it The kinetic energy drops accordingly, frat{t=0)=NU to
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0.55 ——aa ' ' HMF equations of motion fokJ =0.69[16]. This value of

the energy corresponds to the largest observed deviation of
L numerical results with respect to the canonical equilibrium
F o oo ] prediction[1,3]. In the plot, the initial stage of kinetic relax-

0.50 o oD Od# 1 . i X . .
L emcom oo onms °° ] ation is disregarded. For short times, we observe a wide pla-
- e teau, wherd (t) is apparently constant, but substantially dif-
> P o ° DDC@M fers from its equilibrium value. At long timesl(t) has
N 045 ¢ o o000 o vocummmm O e oo 7 reachedT ., and remains at equilibrium. These two plateaus
o 0 © oooTo o ooormem o o 00T Oé are connected by a crossover stage, wigt¢ exhibits an
. inflexion point and its variation is seemingly faster. Conse-
040 0 coom © cocm 0 cosmm o gosmm ° °” ] guently, LRT conclude that the slow-relaxation regime con-

sists in turn of a first stage where the system is “trapped” in
a QSS, and a subsequent crossover toward canonical equilib-
rium. Since the positiorrc of the crossover shifts to larger
0.35 5 L L " 5 ¢ times asN grows, 7c~N, LRT deduce that in the thermody-
t-t, namical limit the QSS will be observed at all times, and that
canonical equilibrium will never be attained. As we argue in
FIG. 1. Nonequilibrium temperaturd(t)=2K(t)/N of the  the following, however, the presence of the plateaus and,
HMF model for U=0.69 andN=500 (diamonds, 10° (squares  thus, the existence of a QSS in these specific realizations of
and 1¢ (circles, from Fig. 1(b) of Ref. [6]. Note that data are the HMF model, is an artifact of the peculiar way chosen to
plotted against—t,, with t,=100. The horizontal line indicates plot the data in Fig. 1.
the canonical equilibrium temperatufg,= 0.476. The inset shows In the first place, in order to exclude the initial stage of
the same data againstThe scales of the axes in the inset are thekinetic relaxation, LRT choose to pldt(t) as a function of
same as in the main plot. t—1t,, with t,=100, instead of simply cutting off the time
axis atty. Such procedure, which would be innocuous in a
a value close tK=NT/2, and the initial unbalance be- linear time scale, has far-reaching consequences in the loga-
tweenK andV is drastically reduced. As explained below, rithmic scale of Fig. 1. In fact, the poirt=t, becomes
the details of the evolution in this stage of kinetic relaxationshifted to —co in the logarithmic variable, which consider-
depend strongly on the specific realization of the WB initialably enhances the impression of having a plateau at gmall
condition. Typically, however, the potential energy exceeddn the inset of Fig. 1 we ploff(t) against its original
Vgq and attains a maximum, whill reaches a minimum. variable—also in logarithmic scale—showing that the short-
From then on, the system enters a stage of slow relaxatiotime plateau shrinks by one decade. The existence of a cross-
toward canonical equilibrium. over state joining the two plateaus itself is an illusion created
The slow-relaxation regime of the HMF model was re- by the logarithmic scale, even in the original variablén-
ported in the first systematic study of this systeih In Ref.  deed, it can be easily shown that the graph of a function with
[3] it was quantitatively characterized by analyzing the re-monotonic first derivative can display datherwise inexis-
laxation of the nonequilibrium entrop$(t) toward its equi-  ten inflection point by the simple expedient of using a loga-
librium value Sy as a function ofN. The difference| S(t) rithmic scale in the horizontal ax{47].
—S.4 was shown to approach an asymptotic value of order In order to avoid these undesirable effects and to reveal
N‘l’% within a relaxation timer,~N. The same scaling has the true nature of the evolution @{t) in the slow-relaxation
recently been reported for the relaxation time of the nonequiregime, we opt for using linear time scales. Figure 2 shows,
librium temperatureT (t) =2K(t)/N [8]. The states visited plotted with diamonds, the same data as in Fig. 1 Nor
by the system during the slow-relaxation regime have beer-500 up tot=2500, while the inset shows the whole tem-
named quasistationary states, presumably by analogy withoral range. We see that there are no traces of a short-time
the quasiequilibria reported for one-dimensional gravita-plateau, except perhaps for a small interval arotm800. It
tional system$12,13 and similar long-lived states in many- might, however, be argued that the vertical scale in this plot
body systems with long-range interactiofisf]. The name has been exaggeratedly amplified. To decide over this point,
suggests that the time scales associated with the evolution afe have used a Padi&e approximation to fit the data over
such states are much longer than those of any other regintee whole time range, shown as a curve in the inset. The
during the whole evolution. However, the evolution $ft) quality of the fitting is quite acceptable. Its extension to the
toward S, reveals no dynamical regime other than slow re-short-time range, also shown as a curve in the main plot,
laxation[3,15]. proves that in this range the data exhibit the same trend as
Latora, Rapisarda, and Tsal{ERT), on the other hand, for larger times. The evolution in the whole range is there-
have claimed to demonstrate the entity of quasitationarjore uniform, and we find no arguments to attribute the con-
states(QSS from the analysis of the evolution of the non- dition of quasistationarity to the short-time interval. As for
equilibrium temperaturd (t) [6]. For clarity in the discus- the small interval arountl=500, we also include in Fig. 2 a
sion, we reproduce in the main plot of Fig. 1 their Figh)l  data set from Ref.7], calculated with higher numerical pre-
of Ref. [6], whereT(t) is plotted against time for several cision (open circley [18]. These data reveal a minimum in
values ofN, as obtained from numerical integration of the T(t) att~300 and confirm the absence of any plateau. Fig-
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linear time scale. The inset shows the whole time range. The curve FIG. 4. Nonequilibrium temperaturd (t) =2K(t)/N for U
is a Paddike approximation over the entire range. Open circles are= 0.69 and three values df, as a function of the rescaled tiri\.
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FIG. 3. The same data as in Fig. 1 f@ N=10° and (b) N
=10%, with linear time scale. The inset {a) shows the whole time
range, while the curve is a Patlke approximation over the entire

range.

The arrows indicate the typical dispersion ft) after averaging
over a large set of realizations-(L0° to ~10*, see text For N
=500 the dispersion is negligible in this scale. The inset shows the
time of the minimum inT(t) as a function oN. The straight line is

a power-law fit, with slope 1.7.

ure 3 shows the data from Fig. 1 fiie=10° and 1d in linear
time scale. Again, we find no evidence of the existence of
plateaus or QSS.

Let us mention that, more indirectly, the observation of
anomalous diffusion in the slow-relaxation stage of the HMF
model[4] confirms that no special regimes exist within that
stage. In fact, superdiffusion in the unfold@dspace,fe
(=9, + ), which is characterized by an anomalous disper-
sion law({A 6%)~t¢, is recorded in the whole slow-relaxation
stage with a constant exponemt=1.4. The transition to or-
dinary diffusion (@=1) occurs at the same time as the sys-
tem reaches canonical equilibrium. The short-time plateau of
Fig. 1 and the crossover to canonical equilibrium are not
detected by the transport properties of this system.

The data shown in Figs. 2 and 3 exhibit an inconsistency
regarding the behavior of the nonequilibrium temperature in
the first stage of the slow-relaxation regime. In fact, while in
the results folN=500 (circles and forN=10* we observe a
well-defined minimum inT(t), low-precision data forN
=500 (diamonds$ and results foN=10° do not display such
minimum. To clarify this aspect of the evolution, we have
performed extensive numerical calculations for the same
value of the energylJ=0.69. We have used a first-order
Verlet symplectic scheme, choosing the integration step in
such a way that the relative error in the total energy conser-
vation aroundAE/E~ 103 [19]. This choice makes it pos-
sible to average over many realizations of the water-bag ini-
tial conditions (5<10* for N=500 to 1G for N=3000).
Our results for the nonequilibrium temperatuigt) are
shown in Fig. 4, as a function of the rescaled tithid. Each
dot has been obtained as an average in time, ovéd @1
0.2N time units. The arrows indicate, fodd= 1000 and 3000,
the typical dispersion in the values ®{t) after averaging
over the whole set of realizations. Fluctuations are indeed
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0 0 0 0

FIG. 5. Snapshots ip space at four different times of a single FIG. 6. Snapshots i space at time=230 of four realizations
realization of the HMF model with water-bag initial conditions of the HMF model with water-bag initial conditiondNE 104U
(N=10,U=0.69). In the four plots the horizontal and vertical =0.69). Horizontal and vertical scales are as in Fig. 5.
axes span the intervals-(w,7) and (—2,2), respectively.

the plot. Take into account, however, thht performs, for

large, as expected near a phase transition and due to th&ort times, diffusivelike motiofil]. The WB initial condi-
highly chaotic HMF dynamic§2,3], which makes it difficult  tion would here correspond to a uniform distribution along a
to obtain reliable numerical results. In any case, our numerivertical segment a®=0, with |p|<\6U~2.03. As ad-
cal calculations consistently confirm the existence of a minivanced above, we observe a rapid broadening of the distri-
mum in the nonequilibrium temperature, and the subsequemiution in the angle coordinai accompanied by a moderate
steady growth off(t). The inset shows the position of the collapse inp. At t=100, much of the ensemble has become
minimumt,;, as a function oN, including also the value for = strongly mixed inu space, due to the highly chaotic nature
N=10" taken from the data of Fig.(B). The straight line  of the dynamics for this value af [1,3]. There is, however,
corresponds to a power-law fittingy,,<N", which yields»  a substantial fraction of the ensemble, represented by the
=1.7+0.1. Though the plot spans less than two decades igones where points remain ordered, where the strong corre-
N, the fact that ., grows faster than linearly with the system |ations imposed by the WB initial condition persist. This
size is clear. fraction is mainly situated near the center of the distribution,

Meanwhile, no plateau is observed, at least, of the kindn a region of relatively small momentum, but ordered arrays
shown in Fig. 1. A plateau may of course be compulsivelyof points are also seen in other zoneswotpace. For these
ascribed to the zone around the minimunilgf) att.,;,, but  times, thus, the system can be thought of as a mixture of two
it would be far from coinciding in nature with the QSS re- phases, namely, a strongly mixed, “gaseous” phase and a
ported by LRT. In fact, although the minimum becomeshighly correlated, “condensed” phase.
broader for largem, it also shifts to longer times, which  The distribution of the condensed phasg.ispace results
hardly insures that a stationafyonequilibrium) temperature  to strongly depend on the specific realization of the WB ini-
would be observed in the limN—co. tial condition. This sensibility to the initial conditions, illus-

The well-defined minimum of the nonequilibrium tem- trated in Fig. 6, is again a consequence of the chaotic dynam-
peratureT (t) att,;, establishes a quite natural boundary be-ics that, as time elapses, amplifies the originally small
tween short-time and long-time dynamical ranges. It is intervariations between different realizations. An important
esting to analyze in more detail the short-time evolution,byproduct of this property, combined with the persistence of
with emphasis in the angle and momentum distribution of thehe initial correlations, is that the condensed phase is not
ensemble inu space, where at each time the system is repergodic, in the sense that averages over realizations of the
resented by a set & points in the @,p) plane. One-particle WRB initial condition yield a poor description of the statistical
distributions of both angles and momenta have received paproperties over time of any single realization. The lack of
ticular attention in previous worKL,3,6,7, so that such rep- ergodicity of the condensed phase makes in turn the whole
resentation is useful for comparison. Figure 5 shows fousystem nonergodic in this short-time range. An illustration of
snapshots, at different times, of tlespace distribution in a this overall lack of ergodicity is provided by the short-time
single (typical) realization of the HMF model witN=10"  evolution of the nonequilibrium temperature. In any single
rotators, alU=0.69. For clarity, the origin of the angle vari- realization, after its initial dropT(t) displays chaotic oscil-
able,#=0, has been chosen to coincide in each plot with thdations of appreciable amplitude. Due to the sensibility to
phase®d of the total magnetizatiol . In this way, the center initial conditions, however, the phases of such oscillations
of the distribution coincides approximately with the center ofdiffer between realizations, and the oscillations disappear
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10* . . . over each 100 time units. The condensate size decreases
steadily, displaying most of the time a power-law decay with
e a nontrivial exponenb~t~ %85 This rather smooth decay is
10° b 1 abruptly interrupted by a sudden collapse of the condensate,
att~1.6x10% In Fig. 7(b), we show the evolution of the
average energy per particle in the condensate. We see that it
nae 5 varies nhonmonotonically with time, though its value is never
far from u=1. Other realizations for the same value Nf
confirm that these results are generic. Moreover, they are
robust with respect to the definition of the threshéldFor
different values ofN, realizations in the short-time range
show that the collapse of the condensed phase occurs at a
time preceding, but approximately equal ttg;,. In other
words, when the minimum of the nonequilibrium tempera-
ture is attained, the condensate has just evaporated. From
then on, the system enters the final stage of its relaxation to
canonical equilibrium.
In the long-time range, when the ensemble of rotators has
- . presumably attained an ergodic state,tspace configura-
T, o Id tion can be described statistically, in terms of averages over
©EVERS iy ; realizations, by means of a distribution functift,p). Pre-
vious results on the.-space distribution of the HMF model
b refer, in all cases, to reduced distribution functiohg6)
andf,(p). In Ref.[3], the momentum distribution function
03, 7 o 0 is used to illustrate, folJ=0.69, slow relaxation for long
! times. For other values &, far from the critical point, both
fy andf, were compared at moderately long times with the
the average energy per particle in the condensate, for a single re -rediCtion of fcanonical TtatiStilcs’ Shovaing thi relatively fast
o . y ttainment of canonical equilibrium for such energies. In
ization of the HMF model withN=10" and U=0.69. Each dot Refs.[6] and[7], in contrast, deeper significance is attributed
corresponds to a running average over 100 time units. The straight S T . .
line in (a) has slope-0.85. tp non.equmbnum distribution functlons—alwgy_s in connec-
tion with QSS. There, LRT suggest thit exhibits the fin-
gerprints of nonextensive thermodynamics, and support this
upon averaging. This observation should warn of the averagzlaim showing that the momentum distribution can be ac-
ing procedures used in previous wdiK to study statistical ceptably fitted, at low values qf, by the power-law distri-
properties such as the nonequilibrium temperature and thgution derived from Tsallis’s nonextensive formulatidri].
momentum distribution function in the initial regime of ki- Tsallis's formulation, however, predicts the one-particle
netic relaxation. The warning applies also to the average datgrobability distribution for the energy, and not for the mo-
of T(t) shown in our Fig. 4 at the shortest times. Before thementum. Now, since the one-particle enefdy
nonergodic condensate disappears, in fadstandard sta-
tistical approach to the HMF model results to be of limited 2
applicabiliy. e=2 4 1-M,sino-M,cosp (4
As the evolution proceeds, particles from the condensate 2
“evaporate” into the gaseous phagg,2]. From Fig. 5 we
note that, at=10", only faint traces of the condensed phasedepends both o#i andp, statistical descriptions in terms ef
remain in the ensemble. We have studied the dynamics adndp are equivalent only if the.-space distribution is inde-
this evaporation process as follows. First of all, we havependent of¢, i.e. if the energy distribution functiof_(€)
numbered the rotators in each realization of the HMF modetan be unambiguously given in terms ff(p). This is not
in such a way that, at the initial time;(0)<p;(0) fori  our case folU<U,, unfortunately, since the angle distribu-
<]. At subsequent times, we have defined the condensate @8n is not uniform, as illustrated by our Figs. 5 and 6, and by
formed by the rotators such that the distance fo-1 in u LRT’s Fig. 3(a) in Ref.[6]. Ignoring the angular dependence
space, 5;=(0;,1— 6;)°+(pi+1—P;)° is lower than a of the one-particle distribution inw space invalidates the
given thresholds. We fix the threshold as the average dis-identification of f, as an equilibrium distribution derived
tance between contiguous pairstat0, 6=2+6U/N. from a generalized thermodynamical formulation like Tsal-
The numbemn of rotators in the condensed phase displaydis’s, which—just as ordinary thermodynamics—yields ca-
considerable oscillations in time. According to the discussiomonical distributions as functions of the energy.
in the previous paragraph, we choose to measuia a We have evaluatell, by means of numerical realizations
single (typical) realization forN=10* and to average over of the HMF model folN=10". From the energy distribution
time intervals. Figure (&) shows the evolution afi averaged function we can in turn calculate the energy probability den-

ey oo . o o

FIG. 7. Evolution of(a) the size of the condensate phase énd
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' ' relaxation of another classical system with long-range inter-
actions, namely, a one-dimensional self-gravitating system
[21].

We remark that LRT have assigned a distribution function
to states which are clearly in the short-time range. In that
range the system is still strongly nonergodic and, as dis-
cussed above, such statistical description is therefore of very
4 1 limited significance. Their best fitting, foN=10" at t
° ’=5X105 R e =1200, corresponds in fact to a state where probably most
" ’=2X610 o of the ensemble is still in the condensed phase. Moreover,
* =10 © e *e they compare results for different system sizes at the same
time (see their Fig. &) in Ref.[6]), disregarding the scaling
laws of time scales with the size, which threatens the validity
, L ©° . ° of their evaluation of the fitting quality as a function WNf
00 05 Lo L5 20 [their Fig. 2d)]. Finally, we mention that the abrupt drop of
min f, for large momenta—also seen at larger times in our results

FIG. 8. Probability distribution of energies at three times in thefor P(¢), Fig. 8—eludes any description based on Tsallis's
long-time range, for a system df= 10" rotators atU=0.69, as a thermodynamics. The artificial cutoff imposed by LRT to
function of e—epi,. The straight line stands for the exponential their fitting of f,, aimed at mimicking its abrupt drop, can
canonical prediction with temperatufie=0.476. hardly find any consistent justification within such formal-

ism. We conclude that no evidence supports the association
sity P(e), sincef (€)= p(e)P(e), wherep(e) is the density  of nonequilibrium HMF states with generalized thermody-
of states. The HMF density of states can be expressed ifgmical equilibria.
terms of elliptic functions, as In summary, we have reexamined the slow-relaxation dy-
namics of the Hamiltonian mean-field model, when the evo-

ple)= 2,2 K( 2M (5) lution starts from water-bag initial conditions. First, we have
me—1+M \e—1+M revised the evidence that would support the existence of qua-

sistationary states in the nonequilibrium dynamics of the
for e>1+M and model. In that regard, we have shown that the plateaus in the
temporal evolution of the nonequilibrium temperatdré)

p(e)= ip }arccosl_—e,i (6) [6,7] are a mere artifact of the use of a logarithmic scale for
me—1+M |2 M 'e-1+M the time axis in the plot of (t). Moreover, a detailed analy-

sis of the evolution of the nonequilibrium temperature shows
for 1-M<e<1+M, whereK andF are the complete and ¢ the dynamics can be decomposed into two well-defined
incomplete elllpt|(_: integrals of the first kind, respectively dynamical regimes: a short-time range characterized by the
[20|]:.' The gnehrgy |str?oundelij ffrom be{ci\;]v, ‘a‘t"{.zl_M'l tted presence of a condensed phase, in which the system pre-
Igure © SNows the resutts a(e). atnree imes, plotted o /6g strong memory of the initial conditions, and a long-
as a funcuon .C)f?_ €min- The straight line represents the time range, in which the condensed phase has evaporated
iafgnfgrlrg;;glr?sgntze?(h? ocrr?i)l(wri)r%_uerpbfotgsee;V:nghqagiab?ium and the system slowly relaxes toward equilibrium. A natural
temperature, at the very beginning of the long-time rangel.:)ound"’lry between these two regimes is given by the mini-

For this time we note a considerable deviation from canoni"4™M reached by the nonequilibrium temperature, which re-

cal equilibrium, with an abrupt cutoff at— e, ~1 preceded ced_es toward Ia_lrger times as the_ _system §ize grows. The nu-
by an overpopulated interval. For very low energies, how-merical e_zvaluatlon o_f the probab_lhty density function of the
ever, the coincidence with the equilibrium distribution is al- ©ne-particle energy in the long-time range demonstrates that
ready quite good. Far=2x 1CP the cutoff persists, but it is the system is slowly relaxing to the_BoItzmann dlstrlbuthn,
less abrupt and has shifted to higher energies, while in tha@nd does not support any connection with the generalized
|0W_energy range the distribution is closer to canonical equiequilibrium distributions derived from Tsallis’s nonextensive
librium. Finally, for t=10°, canonical equilibrium is well formalism.

established in almost the whole range of energies shown in It must be stressed that neither previous work nor our
the figure. Deviations of the nonequilibrium temperaturepresent results elucidate the nature of the HMF evolution in
with respect toT,, are therefore to be ascribed to the de-the thermodynamical limiN—o. The existence of different
pleted tail at high energies. From these results, we concludéynamical regimes, with different scaling laws in terms\pf
that in the long-time regime the equilibrium energy distribu-makes an extrapolation from the available numerical results
tion of the HMF model with WB initial conditions is built up extremely uncertain. The possibility of performing signifi-
from low energies, with a depleted high-energy tail that re-cant, extensive numerical realizations of this model with cur-
cedes as time elapses. It is interesting to point out that exent computational facilities seems to be restricted to en-
actly the same behavior has been reported for the energsembles of, at most,N~10* elements. Numerical
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realizations for much larger systems may be necessary im the Hamiltonian mean-field model should definitely clarify
order to attain a meaningful approach to the thermodynamiits relation to systems with some degree of structural disor-
cal limit. der or frustration, such as glasses, that also exhibit slow-
The origin of slow dynamics in the Hamiltonian mean- dynamics features. In turn, this would contribute to a unified
field model, also revealed by the study of aging phenomengiew on nonequilibrium phenomena in systems with many
and strong memory effects in the long-time rari@& re-  degrees of freedom.
mains to be explained as well. A plausible arguni@itmay
perhaps arise from the study of the role of the state of zero We thank S. Ruffo for his motivating remarks on the
magnetization, which fotJ<U, is thermodynamically un- HMF model, and C. Tsallis for comments on his own work.
stable, and its connection with critical slowing doj@l—a  D. H. Z. acknowledges the hospitality at the Abdus Salam
connection which has often been invoked but not yet invesinternational Center for Theoretical PhysiCEieste, Italy,
tigated. Revealing the basic mechanisms of slow relaxatiowhere this work was partially carried out.
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